Pre-class Puzzle

• What’s the minimum number of colors needed to color a map of the USA?

• Every state is assigned one color

• Adjacent states must be given different colors

• 4
• Four-color theorem says ≤ 4
• Must be at least 4:
 • Suppose we had only 3 colors
 • Pick some colors for CA and OR (Red and Green)
 • NV must be Blue
 • ID must be Red
 • AZ must be Green
 • UT!!!!!!
Announcements

- Project 5 out
 - Due Tuesday Nov 13 (5 days)
- Project 6 out
 - Due Tuesday Nov 20 (12 days)
- Project 7 out
 - Due Thursday Nov 29 (21 days)
- Project 8 will be released on Tuesday
 - Due Saturday Dec 8
Today

- Register allocation
 - Graph coloring by simplification
 - Coalescing
Register Allocation

- From an intermediate representation with unlimited number of “temporary”/local variables
- Assign temporary variables to the (small) number of machine registers
Register Allocation

• Register allocation is in generally an NP-complete problem
 • Can we allocate all these n temporaries to k registers?
• But we have a heuristic that is linear in practice!
 • Based on graph coloring
 • Given a graph, can we assign one of k colors to each node such that connected nodes have different colors?
 • Here, nodes are temp variables, an edge between t_1 and t_2 means that t_1 and t_2 are live at the same time. Colors are registers.
• But graph coloring is also NP-complete! How does that work?
Coloring by Simplification

• Four phases
• **Build:** construct interference graph, using dataflow analysis to find for each program point vars that are live at the same time
• **Simplify:** color based on simple heuristic
 • If graph G has node n with $k-1$ edges, then $G \setminus \{n\}$ is k-colorable iff G is k-colorable
 • So remove nodes with degree $< k$
• **Spill:** if graph has only nodes with degree $\geq k$, choose one to potentially spill (i.e., that may need to be saved to stack)
 • Then continue with Simplify
• **Select:** when graph is empty, start restoring nodes in reverse order and color them
 • When we encounter a potential spill node, try coloring it. If we can’t, rewrite program to store it to stack after definition and load before use. Try again!
\{\texttt{live-in: } j, k\}

g := *(j+12)\\
h := k - 1\\
f := g * h\\
e := *(j+8)\\
m := *(j+16)\\
b := *(f+0)\\
c := e + 8\\
d := c\\
k := m + 4\\
j := b\\
\{\texttt{live-out: } d, j, k\}
Choose any node with degree <4

Stack:

\[\text{Stack: } g \]
Simplification (4 registers)

Choose any node with degree <4

Stack:

- g
- h
Simplification (4 registers)

Choose any node with degree <4

Stack:

- g
- h
- k

Diagram: A network of nodes and edges, with node k highlighted.
Simplification (4 registers)

Choose any node with degree <4

Stack:

g
h
k
d
Simplification (4 registers)

Choose any node with degree <4

Stack:

- g
- h
- k
- d
- j
Simplification (4 registers)

Choose any node with degree <4

Stack:

g
h
k
d
j
e
Simplification (4 registers)

Choose any node with degree <4

Stack:

- g
- h
- k
- d
- j
- e
- f
Simplification (4 registers)

Choose any node with degree <4

Stack:

\[\text{Stack:} \quad g, h, k, d, j, e, f, b \]
Choose any node with degree <4

Stack:

Stack: g h k d j e f b c
Simplification (4 registers)

Choose any node with degree <4

Stack:

- g
- h
- k
- d
- j
- e
- f
- b
- c
- m
Select (4 registers)

Graph is now empty!

Stack:
- g
- h
- k
- d
- j
- e
- f
- b
- c
- m

Color nodes in order of stack

$g = t_1$

$e = t_2$

$b = t_3$

$m = t_4$

Graph is now empty!
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
k := m + 4
j := b
$t2 := *(t4+12)$
$t1 := t1 - 1$
$t2 := t2 * t1$
$t3 := *(t4+8)$
$t1 := *(t4+16)$
$t2 := *(t2+0)$
$t3 := t3 + 8$
$t3 := t3$
$t1 := t1 + 4$
$t4 := t2$

Some moves might subsequently be simplified...
Spilling

• This example worked out nicely!
• Always had nodes with degree \(<k\)
• Let’s try again, but now with only 3 registers...
From Appel

{live-in: j, k}

g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
k := m + 4
j := b

{live-out: d, j, k}
Simplification (3 registers)

Choose any node with degree <3

Stack:
- h
Simplification (3 registers)

Choose any node with degree <3

Stack:
- h
- c
Choose any node with degree <3

Stack:

- h
- c
- g
Simplification (3 registers)

Choose any node with degree <3

Stack:

- h
- c
- g

Now we are stuck! No nodes with degree <3

Pick a node to potentially spill
Which Node to Spill?

• Want to pick a node (i.e., temp variable) that will make it likely we’ll be able to \(k \) color graph
 • High degree (≈ live at many program points)
 • Not used/defined very often (so we don’t need to access stack very often)
• E.g., compute **spill priority** of node

\[
\text{spill priority} = \frac{\text{Uses+defs outside loop} + \text{Uses+defs in loop} \times 10}{\text{degree of node}}
\]
Which Node to Spill?

\{\text{live-in: } j, k\}
\begin{align*}
g &:= *(j+12) \\
h &:= k - 1 \\
f &:= g \times h \\
e &:= *(j+8) \\
m &:= *(j+16) \\
b &:= *(f+0) \\
c &:= e + 8 \\
d &:= c \\
k &:= m + 4 \\
j &:= b \\
\end{align*}
\{\text{live-out: } d, j, k\}

Spill priority = \frac{\text{Uses+defs outside loop} + \text{Uses+defs in loop} \times 10}{\text{degree of node}}
Simplification (3 registers)

Choose any node with degree <3

Stack:

- h
- c
- g
- d

spill?

Pick a node with small spill priority degree to potentially spill
Simplification (3 registers)

Choose any node with degree <3

Stack:

- h
- c
- g
- d \textit{spill?}
- k
Simplification (3 registers)

Choose any node with degree <3

Stack:
- h
- c
- g
- d spill?
- k
- j
Simplification (3 registers)

Choose any node with degree <3

Stack:

h
c
g
d spill?
k
j
b
Simplification (3 registers)

Choose any node with degree <3

Stack:

h
c
g
d spill?
k
j
b
e
Simplification (3 registers)

Choose any node with degree <3

Stack:

h
c
g
d
k
j
b
e
f

spill?
Simplification (3 registers)

Choose any node with degree <3

Stack:

h
c
g
d spill?
k
j
b
e
f
m
Select (3 registers)

Graph is now empty!

Stack:

Color nodes in order of stack

Spill?

= t1

= t2

= t3
Select (3 registers)

Stack:
- h
- c
- g
- d spill?

We got unlucky!

In some cases a potential spill node is still colorable, and the Select phase can continue.

But in this case, we need to rewrite...
Select (3 registers)

• Spill d

{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
k := m + 4
j := b
{live-out: d,j,k}

{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
*<fp+doff>:=d
k := m + 4
j := b
d2:=*<fp+doff>
{live-out: d2,j,k}
\{\text{live-in: } j, k\} \\
g := *(j+12) \\
h := k - 1 \\
f := g \ast h \\
e := *(j+8) \\
m := *(j+16) \\
b := *(f+0) \\
c := e + 8 \\
d := c \\
*<fp+doff>:=d \\
k := m + 4 \\
j := b \\
d2: =*<fp+doff> \\
\{\text{live-out: } d2,j,k\}
Simplification (3 registers)

Choose any node with degree <3

Stack:

This time we succeed and will be able to complete Select phase successfully!
Register Pressure

• Some optimizations increase live-ranges:
 • Copy propagation
 • Common sub-expression elimination
 • Loop invariant removal

• In turn, that can cause the allocator to spill

• Copy propagation isn't that useful anyway:
 • Let register allocator figure out if it can assign the same register to two temps!
 • Then the copy can go away.
 • And we don't have to worry about register pressure.
Coalescing Register Allocation

• If we have \(x := y\) and \(x\) and \(y\) have no edge in the interference graph, we might be able to assign them the same color.
 • This would translate to \(ri := ri\) which would then be removed

• One idea is to optimistically coalesce nodes in the interference graph
 • Just take the edges to be the union
E.g., the following nodes could be coalesced:

- d and c
- j and b

```plaintext
{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
k := m + 4
j := b
{live-out: d, j, k}
```