HARVARD

John A. Paulson

School of Engineering
and Applied Sciences

CS153: Compilers
Lecture 20: Register Allocation I

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

Pre-class Puzzle

*\What's the minimum number of colors needed to color a map
of the USA?

°LEvery state Is
assigned one color e

* Adjacent states must
be given different colors

https://printable-maps.blogspot.com/2011/12/blank-map-of-united-states.html

Pre-class Puzzle Answer

o4

* Four-color theorem says <4 '

* Must be at least 4: a .
* Suppose we had only 3 colors Red

* Pick some colors for CA and OR Blue
(Red and Green) "

e NV must be Blue
e|D must be Red
e AZ must be Green

Green

Announce

*Project 5 out
e Due Tuesday Nov 13 (5 days)

*Project 6 out
e Due Tuesday Nov 20 (12 days)

*Project 7 out
* Due Thursday Nov 29 (21 days)

*Project 8 will be released on Tuesday
e Due Saturday Dec 8

Stephen Chong, Harvard University 4

* Register allocation
e Graph coloring by simplification
e Coalescing

Stephen Chong, Harvard University 5

Register Al

(SourceCod‘(ﬂ
[Parsing }

R

'\
[Optimization
é A
‘\ [Code Generationj

X
Teeal -{Target CodeJ

e From an intermediate representation with unlimited number of
“temporary”/local variables

* Assign temporary variables to the (small) number of machine
registers

Stephen Chong, Harvard University 6

Register Allocation

e Register allocation is in generally an NP-complete
problem

e Can we allocate all these n temporaries to k registers?

e But we have a heuristic that is linear in practice!

*Based on graph coloring

» Given a graph, can we assign one of k colors to each node such that
connected nodes have different colors?

e Here, nodes are temp variables, an edge between t1 and t2
means that t1 and t2 are live at the same time. Colors are
registers.

e But graph coloring is also NP-complete! How does that
work?

Coloring by Simplification

e Four phases

eBuild: construct interference graph, using dataflow analysis to find for each
program point vars that are live at the same time

e Simplify: color based on simple heuristic

*If graph G has node n with k-1 edges, then G-{n} is k-colorable iff G is k-colorable
*So remove nodes with degree <k

oSpill: if graph has only nodes with degree >k, choose one to potentially spill (i.e.,
that may need to be saved to stack)

e Then continue with Simplify

eSelect: when graph is empty, start restoring nodes in reverse order and color them

When we encounter a potential spill node, try coloring it. If we can’t, rewrite program to
store it to stack after definition and load before use. Try again!

| Build l—»\(Simpli@ Spm Select |

From Appel

{live-in: j, k}

g := *(J+12)
h := k -1

f := g * h
e := *(J+8)
m := *(J+16)
b := *(£+0)
c := e + 8
d := c

Kk :=m + 4

j = Db

{

live-out: d,3j,k}

Stephen Chong, Harvard University 9

Choose any node with degree <4
Stack:

9

Stephen Chong, Harvard University 10

Choose any node with degree <4
Stack:

g9
h

Stephen Chong, Harvard University 11

Simplifcation (¢ registers)

Choose any node with degree <4
Stack:

g9
h

k

Stephen Chong, Harvard University 12

Choose any node with degree <4
Stack:

Q. ~ VU \Q

Stephen Chong, Harvard University 13

Choose any node with degree <4
Stack:

9

h
k
d
]

Stephen Chong, Harvard University 14

Choose any node with degree <4

Stack:

O w. O ~ VU Q

Stephen Chong, Harvard University 15

Simplificatic

Choose any node with degree <4
Stack:

Hh O Q- O X~ B Q

Stephen Chong, Harvard University 16

Simplificati

Choose any node with degree <4
Stack:

O Hh 0w O ~ B Q

Stephen Chong, Harvard University 17

Simplific
Choose any node with degree <4
Stack:

Q O H O« O A~ 5 Q

Stephen Chong, Harvard University 18

Simplific
Choose any node with degree <4
Stack:

Q O H O« O A~ 5 Q

m

Stephen Chong, Harvard University 19

Select (4 re

Graph is now empty!
Stack: Color nodes in order of stack

Q O H O« O A~ 5 Q

m

Stephen Chong, Harvard University

Select (4 regi

g := *(J+12)
h :=k -1

f (= g * h
e := *(Jj+8)
m := *(jJ+16)
b := *(£+0)
c := e + 8
d := ¢

k :=m+ 4

j = Db

Stephen Chong, Harvard University

Select (4 regist

St2 := *(td+12)
Stl := Stl1l -1
St2 := $t2 * $tl
St3 := *($t4d+8)
Stl := *($td+16)
sSt2 := *($t2+0)
St3 := St3 + 8
St3 := St3

Stl := Stl + 4
St4d := St2

Some moves might subsequently be simplified...
@ @O @
y 22

Stephen Chong, Harvard Universit

Sp1

* This example worked out nicely!
* Always had nodes with degree <k
*et’s try again, but now with only 3 registers...

Stephen Chong, Harvard University 23

From Appel

{live-in: j, k}

g := *(J+12)
h := k -1

f := g * h
e := *(J+8)
m := *(J+16)
b := *(£+0)
c := e + 8
d := c

Kk :=m + 4

j = Db

{

live-out: d,j,k}

Stephen Chong, Harvard University 24

Choose any node with degree <3
Stack:

h

Stephen Chong, Harvard University 25

Choose any node with degree <3
Stack:

h
C

Stephen Chong, Harvard University 26

Choose any node with degree <3
Stack:

h
C

9

Stephen Chong, Harvard University 27

Simplification

Choose any node with degree <3
Stack:

h
C

9

Now we are stuck! No nodes with degree <3

Pick a node to potentially spill

Stephen Chong, Harvard University 28

Which Node to Spill?

*\Want to pick a node
(i.e., temp variable)
that will make it
likely we'll be able to
k color graph

*High degree (= live at
many program points)

*Not used/defined very
often (so we don’t
need to access stack
very often)

. Uses+defs n Uses+defs %10
¢ Eg, Compute Spl" outside loop in loop

priority of node

degree of node

Which Node to Spill?

{live-in: j, k}

g := *(J+12)
h := k -1

f :(= g * h
e := *(J+8)
m := *(J+16)
b := *(£+0)
c := e + 8
d := ¢

K :=m + 4

J := Db
{live-out: d4,3j,k}

Uses+defs n Uses+defs %10
outside loop in loop

Spill priority =

degree of node

Simplification

Choose any node with degree <3
Stack:

h
C

g9
d spill?

Pick a node with small spill priority degree to potentially spill

Stephen Chong, Harvard University 31

Simplificatio

Choose any node with degree <3
Stack:

h
C

g9
d spill?
k

Stephen Chong, Harvard University 32

Simplificati

Choose any node with degree <3
Stack:

h
C

g9
d spill?
k

J

Stephen Chong, Harvard University 33

Simplificatic

Choose any node with degree <3
Stack:

h (&

C
9 \
d spill? ‘@

k
]
b

Stephen Chong, Harvard University 34

Simplificatic

Choose any node with degree <3
Stack:

h
C

g9
d spill?
k

]
b
e

Stephen Chong, Harvard University 35

Simplificati

Choose any node with degree <3
Stack:

h
C

g9
d spill?
k

Hh O O 4.

Stephen Chong, Harvard University 36

Simplific
Choose any node with degree <3
Stack:

h
C

g9
d spill?
k

Hh O O 4.

=

Stephen Chong, Harvard University 37

Select (3 re

Graph is now empty!
Stack: Color nodes in order of stack

h
C

g9
d spill?
k

Hh O O 4.

=

Stephen Chong, Harvard University

Select (3 regis

Stack:

h
C

g9
d spill?

We got unlucky!

In some cases a potential spill
node is still colorable, and the
Select phase can continue.

But in this case, we need to rewrite...
@ @0

Stephen Chong, Harvard University

39

Select (3 regt

*Spill d
{live-in: j, k}
g := *(J+12)
h : =k -1

f := g * h
e := *(j+8)
m := *(J+16)
b := *(£+0)
c := e + 8
d := cC

K :=m+ 4

j = Db

{

live-out: d,3j,k}

Stephen Chong, Harvard University

{live-in: j, k}

g := *(J+12)
h := k -1

f := g * h
e := *(J+8)
m := *(J+16)
b := *(£+0)
c :(= e + 8
d := ¢

*<fp+doff> =d

K :=m+ 4

j = Db
d2:=*<fp+doff>
{live-out: d2,j,k}

40

{live-in: j, k} G
= *(3+12)
k -1

o O
:= *(J+8
@ Yo

‘ k b

:= *(£+4+0)

:= e + 8 ‘E’ ["‘
“\9 o

K :=m+ 4

j := Db
d2:=*<fp+doff>
{live-out: d2,j,k}

Stephen Chong, Harvard University 41

O Q O3 0O Hh oW

Simplification (3 registers)

Choose any node with degree <3
Stack:

RS
-

This time we succeed and
will be able to complete Select phase successfully!

Register Pressure

* Some optimizations increase live-ranges:
* Copy propagation
e Common sub-expression elimination
e Loop invariant removal

*|n turn, that can cause the allocator to spill

e Copy propagation isn't that useful anyway:

e et register allocator figure out if it can assign the same
register to two temps!

* Then the copy can go away.
e And we don't have to worry about register pressure.

Coalescing Register Allocation

°|f we have “x := y” and x and y have no edge
in the interference graph, we might be able to
assign them the same color.

*This would translate to “ri := ri” which would
then be removec

*One idea is to optimistically coalesce nodes in
the interference graph

eJust take the edges to be the union

Example

°E.g., the following nodes could be coalesced

°d and c
°*jandb
{live-in: j, k}
g = *(j+12)
h :=k -1
f (=g * h
e := *(J+8)
m := *(J+16)
b := *(£+0)
c := e + 8
d := cC
K :=m + 4
j = b
{live-out: d,3j,k}

