CS153: Compilers
 Lecture 20: Register Allocation I

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

Pre-class Puzzle

-What's the minimum number of colors needed to color a map of the USA?

- Every state is assigned one color
- Adjacent states must be given different colors

Pre-class Puzzle Answer

- 4
- Four-color theorem says ≤ 4
- Must be at least 4:
- Suppose we had only 3 colors
- Pick some colors for CA and OR
(Red and Green)
- NV must be Blue
- ID must be Red
- AZ must be Green
- UT!!!!!!

Announcements

- Project 5 out
- Due Tuesday Nov 13 (5 days)
- Project 6 out
- Due Tuesday Nov 20 (12 days)
- Project 7 out
-Due Thursday Nov 29 (21 days)
- Project 8 will be released on Tuesday
- Due Saturday Dec 8

Today

- Register allocation
- Graph coloring by simplification - Coalescing

Register Allocation

- From an intermediate representation with unlimited number of "temporary"/local variables
- Assign temporary variables to the (small) number of machine registers

Register Allocation

- Register allocation is in generally an NP-complete problem
- Can we allocate all these n temporaries to k registers?
- But we have a heuristic that is linear in practice!
- Based on graph coloring
- Given a graph, can we assign one of k colors to each node such that connected nodes have different colors?
- Here, nodes are temp variables, an edge between t1 and t2 means that $t 1$ and $t 2$ are live at the same time. Colors are registers.
- But graph coloring is also NP-complete! How does that work?

Coloring by Simplification

- Four phases
- Build: construct interference graph, using dataflow analysis to find for each program point vars that are live at the same time
- Simplify: color based on simple heuristic
- If graph G has node n with k - 1 edges, then G - $\{\mathrm{n}\}$ is k-colorable iff G is k-colorable
- So remove nodes with degree $<k$
- Spill: if graph has only nodes with degree $\geq k$, choose one to potentially spill (i.e., that may need to be saved to stack)
-Then continue with Simplify
-Select: when graph is empty, start restoring nodes in reverse order and color them -When we encounter a potential spill node, try coloring it. If we can't, rewrite program to store it to stack after definition and load before use. Try again!

Example

From Appel
\{live-in: j, k\}
$\mathrm{g}:=$ *(j+12)
h := k - 1
f : = g * h
e : = * ${ }^{j+8 \text {) }}$
$m:=$ * $(j+16)$
b : $=$ * $(\mathrm{f}+0)$
c $:=e+8$
d := c
$\mathrm{k}:=\mathrm{m}+4$
j := b
\{live-out: d,j,k\}

Interference graph

Simplification (4 registers)

Choose any node with degree <4

Stack:
g

Simplification (4 registers)

Choose any node with degree <4

Stack:

g
 h

Simplification (4 registers)

Choose any node with degree <4

Stack:

g
 h
 k

Simplification (4 registers)

Choose any node with degree <4

Stack:
g
h
k
d

Simplification (4 registers)

Choose any node with degree <4
Stack:
g
h
k
d

Simplification (4 registers)

Choose any node with degree <4

Stack:

g
 h
 k
 d
 j
 e

Simplification (4 registers)

Choose any node with degree <4
Stack:
g
h
k
d
j
e
f

Simplification (4 registers)

Choose any node with degree <4
Stack:

g
 h
 k
 d
 j
 e
 f
 b

Simplification (4 registers)

Choose any node with degree <4
Stack:

g
 h
 k
 d
 j
 e
 f
 b
 C

Simplification (4 registers)

Choose any node with degree <4
Stack:

Select (4 registers)

Graph is now empty!
Stack:
Color nodes in order of stack
g
h
k
d
j
e
f
b

c

Select (4 registers)

$$
\begin{aligned}
g & :=*(j+12) \\
h & :=k-1 \\
f & :=g * h \\
e & :=*(j+8) \\
m & :=*(j+16) \\
b & :=*(f+0) \\
c & :=e+8 \\
d & :=c \\
k & :=m+4 \\
j & :=b
\end{aligned}
$$

Select (4 registers)

$$
\begin{aligned}
& \$ t 2:=*(t 4+12) \\
& \$ t 1:=\$ t 1-1 \\
& \$ t 2:=\$ t 2 * \$ t 1 \\
& \$ t 3:=*(\$ t 4+8) \\
& \$ t 1:=*(\$ t 4+16) \\
& \$ t 2:=*(\$ t 2+0) \\
& \$ t 3:=\$ t 3+8 \\
& \$ t 3:=\$ t 3 \\
& \$ t 1:=\$ t 1+4) \\
& \$ t 4:=\$ t 2
\end{aligned}
$$

Some moves might subsequently be simplified...

Spilling

-This example worked out nicely!

- Always had nodes with degree $<k$
- Let's try again, but now with only 3 registers...

Example

From Appel
\{live-in: j, k\}
$\mathrm{g}:=$ *(j+12)
h := k - 1
f : = g * h
e : = * ${ }^{j+8 \text {) }}$
$m:=$ * $(j+16)$
b : = * $\mathrm{f}+0$)
c $:=e+8$
d := c
$\mathrm{k}:=\mathrm{m}+4$
j := b
\{live-out: d,j,k\}

Interference graph

Simplification (3 registers)

Choose any node with degree <3

Stack:
h

Simplification (3 registers)

Choose any node with degree <3

Stack:
h
C

Simplification (3 registers)

Choose any node with degree <3

Stack:
h
C
g

Simplification (3 registers)

Choose any node with degree <3
Stack:
h
C
g

Now we are stuck! No nodes with degree <3
Pick a node to potentially spill

Which Node to Spill?

-Want to pick a node (i.e., temp variable) that will make it likely we'll be able to k color graph

- High degree (\approx live at many program points)
- Not used/defined very often (so we don't need to access stack very often)
very often)
- .g., compute spill
priority of node
$\begin{gathered}\text { Uses }+ \text { defs } \\ \text { outside loop }\end{gathered}+\begin{gathered}\text { Uses+defs } \\ \text { in loop }\end{gathered} \times 10$
very often)
- .g., compute spill
priority of node

Which Node to Spill?

\{live-in: j, k\}

$$
\begin{aligned}
g & :=*(j+12) \\
h & :=k-1 \\
f & :=g * h \\
e & :=*(j+8) \\
m & :=*(j+16) \\
b & :=*(f+0) \\
c & :=e+8 \\
d & :=c \\
k & :=m+4 \\
j & :=b
\end{aligned}
$$

\{live-out: d,j,k\}

$$
\begin{aligned}
& \text { Uses+defs } \\
& \text { outside loop }
\end{aligned}+\begin{gathered}
\text { Uses+defs } \\
\text { in loop }
\end{gathered} \times 10
$$

Spill priority =

Simplification (3 registers)

Choose any node with degree <3
Stack:
h
C
g
d spill?

Pick a node with small spill priority degree to potentially spill

Simplification (3 registers)

Choose any node with degree <3
Stack:
h
C
g
d spill?
k

Simplification (3 registers)

Choose any node with degree <3
Stack:
h
C
g
d spill?
k

j

Simplification (3 registers)

Choose any node with degree <3

Stack:
h
C
9
d spill?
k

j
b

Simplification (3 registers)

Choose any node with degree <3
Stack:
h
C
g
d spill?

k
j
b
e

Simplification (3 registers)

Choose any node with degree <3
Stack:
h
C
g
d spill?

k
j
b
e
f

Simplification (3 registers)

Choose any node with degree <3
Stack:
h
C
g
d spill?
k
j
b
e
f
m

Select (3 registers)

Graph is now empty!
Stack:
h
C h
c
g
d spill? h
c
g
d spill?
k
j
b
e
f
m
Color nodes in order of stack

$$
\circlearrowleft=t 1 \circlearrowleft=t 2 \circlearrowleft=t 3
$$

Select (3 registers)

Stack:

C

We got unlucky!
In some cases a potential spill node is still colorable, and the Select phase can continue.

But in this case, we need to rewrite...

$$
\circlearrowleft=t 1 \circlearrowleft=t 2 \Omega=t 3
$$

Select (3 registers)

- Spill d

\{live-in: j, k\}
$\mathrm{g}:=$ *(j+12)
h := k - 1
f := g * h
e : = *(j+8)
$m:=$ * $(j+16)$
b : $=$ * $(\mathrm{f}+0)$
c $:=e+8$
d := c
$\mathrm{k}:=\mathrm{m}+4$
j := b
\{live-out: d,j,k\}
\{live-in: j, k\}
$\mathrm{g}:=$ *(j+12)
h : $=\mathrm{k}$ - 1
f : $=\mathrm{g}$ * h
e : $=$ * $(j+8)$
$m:=$ *(j+16)
b : $=$ *(f+0)
c : $=$ e + 8
d := c
*<fp+doff>:=d
k := m + 4
j : = b
d2:=*<fp+doff>
\{live-out: d2,j,k\}

Build

\{live-in: j, k\}
g := *(j+12)
$\mathrm{h}:=\mathrm{k}-1$
f := g * h
e : = * (j+8)
m := *(j+16)
b : $=$ *(f+0)
c $:=e+8$
d := c
*<fp+doff>:=d
k := m + 4
j $:=\mathrm{b}$
d2:=*<fp+doff>
\{live-out: d2,j,k\}

Simplification (3 registers)

Choose any node with degree <3 Stack:
h
C
g
d
d2
k
b
m

This time we succeed and will be able to complete Select phase successfully!

Register Pressure

- Some optimizations increase live-ranges:
- Copy propagation
-Common sub-expression elimination
- Loop invariant removal
- In turn, that can cause the allocator to spill
- Copy propagation isn't that useful anyway:
- Let register allocator figure out if it can assign the same register to two temps!
-Then the copy can go away.
- And we don't have to worry about register pressure.

Coalescing Register Allocation

- If we have " $x:=y$ " and x and y have no edge in the interference graph, we might be able to assign them the same color.
-This would translate to "ri := ri" which would then be removed
- One idea is to optimistically coalesce nodes in the interference graph
-Just take the edges to be the union

Example

- E.g., the following nodes could be coalesced -d and c
- j and b

$$
\begin{aligned}
& \{\text { live-in: j, k\} } \\
& \mathrm{g}:=*(j+12) \\
& \mathrm{h}:=\mathrm{k}-1 \\
& \mathrm{f}:=\mathrm{g} * \mathrm{~h} \\
& \mathrm{e}:=*(\mathrm{j}+8) \\
& \mathrm{m}:=*(\mathrm{j}+16) \\
& \mathrm{b}:=*(\mathrm{f}+0) \\
& \mathrm{c}:=\mathrm{e}+8 \\
& \mathrm{~d}:=\mathrm{c} \\
& \mathrm{k}:=\mathrm{m}+4 \\
& \mathrm{j}:=\mathrm{b} \\
& \{\mathrm{live-out}: \mathrm{d}, \mathrm{j}, \mathrm{k}\}
\end{aligned}
$$

