
CS153: Compilers
Lecture 20: Register Allocation I

Stephen Chong
https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Pre-class Puzzle

•What’s the minimum number of colors needed to color a map
of the USA?

 2

•Every state is  
assigned one color

•Adjacent states must  
 be given different colors

https://printable-maps.blogspot.com/2011/12/blank-map-of-united-states.html

Stephen Chong, Harvard University

Pre-class Puzzle Answer

•4

•Four-color theorem says ≤4

•Must be at least 4:
•Suppose we had only 3 colors
•Pick some colors for CA and OR  

 (Red and Green)
•NV must be Blue
•ID must be Red
•AZ must be Green
•UT!!!!!!

 3

Red

Green

Blue

Red

Green

!!!

Stephen Chong, Harvard University

Announcements

•Project 5 out
•Due Tuesday Nov 13 (5 days)

•Project 6 out
•Due Tuesday Nov 20 (12 days)

•Project 7 out
•Due Thursday Nov 29 (21 days)

•Project 8 will be released on Tuesday
•Due Saturday Dec 8

 4

Stephen Chong, Harvard University

Today

•Register allocation
•Graph coloring by simplification
•Coalescing

 5

Stephen Chong, Harvard University

Register Allocation

•From an intermediate representation with unlimited number of
“temporary”/local variables

•Assign temporary variables to the (small) number of machine
registers

 6

Parsing

Source Code

Elaboration

Lowering

Optimization

Code Generation

Target Code

Back end

Front end

Stephen Chong, Harvard University

Register Allocation

•Register allocation is in generally an NP-complete
problem
•Can we allocate all these n temporaries to k registers?

•But we have a heuristic that is linear in practice!
•Based on graph coloring
•Given a graph, can we assign one of k colors to each node such that
connected nodes have different colors?

•Here, nodes are temp variables, an edge between t1 and t2
means that t1 and t2 are live at the same time. Colors are
registers.

•But graph coloring is also NP-complete! How does that
work?

 7

Stephen Chong, Harvard University

Coloring by Simplification

•Four phases

•Build: construct interference graph, using dataflow analysis to find for each
program point vars that are live at the same time

•Simplify: color based on simple heuristic
•If graph G has node n with k-1 edges, then G-{n} is k-colorable iff G is k-colorable
•So remove nodes with degree <k

•Spill: if graph has only nodes with degree ≥k, choose one to potentially spill (i.e.,
that may need to be saved to stack)

•Then continue with Simplify

•Select: when graph is empty, start restoring nodes in reverse order and color them
•When we encounter a potential spill node, try coloring it. If we can’t, rewrite program to

store it to stack after definition and load before use. Try again!

 8

Build Simplify Spill Select

Stephen Chong, Harvard University

Example

 9

{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
k := m + 4
j := b
{live-out: d,j,k}

f

e

m

b

cd

k
j

h

g

From Appel Interference graph

g

Stephen Chong, Harvard University

Simplification (4 registers)

 10

f

e

m

b

cd

k
j

h

g

Stack:

g

Choose any node with degree <4

h

Stephen Chong, Harvard University

Simplification (4 registers)

 11

f

e

m

b

cd

k
j

h

Stack:

g
h

Choose any node with degree <4

k

Stephen Chong, Harvard University

Simplification (4 registers)

 12

f

e

m

b

cd

k
j

Stack:

g
h
k

Choose any node with degree <4

d

Stephen Chong, Harvard University

Simplification (4 registers)

 13

f

e

m

b

cd

j

Stack:

g
h
k
d

Choose any node with degree <4

j

Stephen Chong, Harvard University

Simplification (4 registers)

 14

f

e

m

b

c

j

Stack:

g
h
k
d
j

Choose any node with degree <4

e

Stephen Chong, Harvard University

Simplification (4 registers)

 15

f

e

m

b

c

Stack:

g
h
k
d
j
e

Choose any node with degree <4

f

Stephen Chong, Harvard University

Simplification (4 registers)

 16

f

m

b

c

Stack:

g
h
k
d
j
e
f

Choose any node with degree <4

b

Stephen Chong, Harvard University

Simplification (4 registers)

 17

m

b

c

Stack:

g
h
k
d
j
e
f
b

Choose any node with degree <4

c

Stephen Chong, Harvard University

Simplification (4 registers)

 18

m

c

Stack:

g
h
k
d
j
e
f
b
c

Choose any node with degree <4

m

Stephen Chong, Harvard University

Simplification (4 registers)

 19

m

Stack:

g
h
k
d
j
e
f
b
c
m

Choose any node with degree <4

Stephen Chong, Harvard University

Select (4 registers)

 20

f

e

m

b

cd

k
j

h

g

Stack:

g
h
k
d
j
e
f
b
c
m

f

e

m

b

cd

k
j

h

g

Color nodes in order of stack

=t1 =t2 =t3 =t4

Graph is now empty!

Stephen Chong, Harvard University

Select (4 registers)

 21

f

e

m

b

cd

k
j

h

g

f

e

m

b

cd

k
j

h

g

g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
k := m + 4
j := b

=t1 =t2 =t3 =t4

Stephen Chong, Harvard University

Select (4 registers)

 22

f

e

m

b

cd

k
j

h

g

f

e

m

b

cd

k
j

h

g

=t1 =t2 =t3 =t4

$t2 := *(t4+12)
$t1 := $t1 - 1
$t2 := $t2 * $t1
$t3 := *($t4+8)
$t1 := *($t4+16)
$t2 := *($t2+0)
$t3 := $t3 + 8
$t3 := $t3
$t1 := $t1 + 4
$t4 := $t2

Some moves might subsequently be simplified...

Stephen Chong, Harvard University

Spilling

•This example worked out nicely!
•Always had nodes with degree <k
•Let’s try again, but now with only 3 registers...

 23

Stephen Chong, Harvard University

Example

 24

{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
k := m + 4
j := b
{live-out: d,j,k}

f

e

m

b

cd

k
j

h

g

From Appel Interference graph

Stephen Chong, Harvard University

Simplification (3 registers)

 25

f

e

m

b

cd

k
j

h

g

Stack:

h

Choose any node with degree <3

h

Stephen Chong, Harvard University

Simplification (3 registers)

 26

f

e

m

b

cd

k
j

g

Stack:

h

Choose any node with degree <3

c

c

Stephen Chong, Harvard University

Simplification (3 registers)

 27

f

e

m

b

d

k
j

g

Stack:

h

Choose any node with degree <3

g

c
g

Stephen Chong, Harvard University

Simplification (3 registers)

 28

f

e

m

b

d

k
j

Stack:

h

Now we are stuck! No nodes with degree <3

c
g

Pick a node to potentially spill

Choose any node with degree <3

Stephen Chong, Harvard University

Which Node to Spill?

•Want to pick a node
(i.e., temp variable)
that will make it
likely we’ll be able to
k color graph
•High degree (≈ live at

many program points)
•Not used/defined very

often (so we don’t
need to access stack
very often)

•E.g., compute spill
priority of node

 29

f

e

m

b

d

k
j

Uses+defs
outside loop

Uses+defs
in loop ×10 +

degree of node

Stephen Chong, Harvard University

Which Node to Spill?

 30

f

e

m

b

d

k
j

Uses+defs
outside loop

Uses+defs
in loop ×10 +

degree of node

Spill priority =

{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
k := m + 4
j := b
{live-out: d,j,k}

Stephen Chong, Harvard University

Simplification (3 registers)

 31

f

e

m

b

d

k
j

Stack:

h

Pick a node with small spill priority degree to potentially spill

c
g

Choose any node with degree <3

d spill?

d

Stephen Chong, Harvard University

Simplification (3 registers)

 32

f

e

m

bk
j

Stack:

h
c
g

Choose any node with degree <3

d spill?
kk

Stephen Chong, Harvard University

Simplification (3 registers)

 33

f

e

m

b
j

Stack:

h
c
g

Choose any node with degree <3

d spill? j
k
j

Stephen Chong, Harvard University

Simplification (3 registers)

 34

f

e

m

b

Stack:

h
c
g

Choose any node with degree <3

d spill?
bk

j
b

Stephen Chong, Harvard University

Simplification (3 registers)

 35

f

e

m

Stack:

h
c
g

Choose any node with degree <3

d spill?
e

k
j
b
e

Stephen Chong, Harvard University

Simplification (3 registers)

 36

f

m

Stack:

h
c
g

Choose any node with degree <3

d spill?

f

k
j
b
e
f

Stephen Chong, Harvard University

Simplification (3 registers)

 37

m

Stack:

h
c
g

Choose any node with degree <3

d spill? m

k
j
b
e
f
m

Stephen Chong, Harvard University

Select (3 registers)

 38

Stack:
f

e

m

b

cd

k
j

h

g

f

e

mj
b

Color nodes in order of stack

=t1 =t2 =t3

Graph is now empty!

h
c
g
d spill?
k
j
b
e
f
m

k

Stephen Chong, Harvard University

Select (3 registers)

 39

Stack:

h
c
g
d spill?

f

e

m

b

cd

k
j

h

g

f

e

m

=t1 =t2 =t3

We got unlucky!

In some cases a potential spill
node is still colorable, and the
Select phase can continue.

But in this case, we need to rewrite...

b
j

k

Stephen Chong, Harvard University

Select (3 registers)

•Spill d

 40

{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
k := m + 4
j := b
{live-out: d,j,k}

{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
*<fp+doff>:=d
k := m + 4
j := b
d2:=*<fp+doff>
{live-out: d2,j,k}

Stephen Chong, Harvard University

Build

 41

{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
*<fp+doff>:=d
k := m + 4
j := b
d2:=*<fp+doff>
{live-out: d2,j,k}

f

e

m

b

c
d

k
j

h

g d2

Stephen Chong, Harvard University

Simplification (3 registers)

 42

f

e

m

b

c
d

k
j

h

g d2

Stack:
Choose any node with degree <3

h
c
g
d
d2
k
b
m
e
f
j

This time we succeed and
will be able to complete Select phase successfully!

Stephen Chong, Harvard University

Register Pressure

•Some optimizations increase live-ranges:
•Copy propagation
•Common sub-expression elimination
•Loop invariant removal

•In turn, that can cause the allocator to spill

•Copy propagation isn't that useful anyway:
•Let register allocator figure out if it can assign the same

register to two temps!
•Then the copy can go away.
•And we don't have to worry about register pressure.

 43

Stephen Chong, Harvard University

Coalescing Register Allocation

•If we have “x := y” and x and y have no edge
in the interference graph, we might be able to
assign them the same color.
•This would translate to “ri := ri” which would

then be removed

•One idea is to optimistically coalesce nodes in
the interference graph
•Just take the edges to be the union

 44

Stephen Chong, Harvard University

Example

•E.g., the following nodes could be coalesced
•d and c

•j and b

 45

{live-in: j, k}
g := *(j+12)
h := k - 1
f := g * h
e := *(j+8)
m := *(j+16)
b := *(f+0)
c := e + 8
d := c
k := m + 4
j := b
{live-out: d,j,k}

f

e

m

b

cd

k
j

h

g

b
j

cd

