HARVARD

John A. Paulson

School of Engineering
and Applied Sciences

CS153: Compilers
Lecture 21:
Register Allocation II

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

Pre-clas

e Can you write programs that have the following
interference graphs?

Stephen Chong, Harvard University 2

f(a,b) {
c := by
d := c;
e := d;
f := e;
g := £;
a = atgj;
return a;
}

Stephen Chong, Harvard University

g(a) {
if a then goto L1 else goto L2
Ll: ¢ := a;
a := a + c;
d := a;
d :=d + c;
goto L3
L2: b := a;
a := a + b;
d := a;
d :=d + b;
L3: return d

}

Announc

*Project 5 due today!

*Project 6 out
e Due Tuesday Nov 20 (7 days)

*Project 7 out
e Due Thursday Nov 29 (16 days)

*Project 8 will be released today
e Due Saturday Dec 8 (25 days)

Stephen Chong, Harvard University 4

*Register allocation continued
e Coalescing

* Coloring with coalescing

* Pre-colored nodes to handle callee-save, caller-save, and
special purpose registers

Stephen Chong, Harvard University 5

Recall Last Lecture’s Algorithm

| Build ;4>\[Simplify / Spill Select |

*Build: construct interference graph, using dataflow analysis to find for each
program point vars that are live at the same time

* Simplify: color based on simple heuristic
e|f graph G has node n with k-1 edges, then G-{n} is k-colorable iff G is k-colorable
* So remove nodes with degree <k
Spill: if graph has only nodes with degree >k, choose one to potentially spill
(i.e., that may need to be saved to stack)
e Then continue with Simplify
*Select: when graph is empty, start restoring nodes in reverse order and color
them

*\When we encounter a potential spill node, try coloring it. If we can’t, rewrite program to
store it to stack after definition and load before use. Try again!

Register Pressure

* Some optimizations increase live-ranges:
* Copy propagation
e Common sub-expression elimination
e Loop invariant removal

*|n turn, that can cause the allocator to spill

e Copy propagation isn't that useful anyway:

e et register allocator figure out if it can assign the same
register to two temps!

* Then the copy can go away.
e And we don't have to worry about register pressure.

Coalescing Register Allocation

°|f we have “x := y” and x and y have no edge
in the interference graph, we might be able to
assign them the same color.

*This would translate to “ri := ri” which would
then be removec

*One idea is to optimistically coalesce nodes in
the interference graph

eJust take the edges to be the union

Example

°E.g., the following nodes could be coalesced

°d and c
°*jandb
{live-in: j, k}
g = *(j+12)
h :=k -1
f (=g * h
e := *(J+8)
m := *(J+16)
b := *(£+0)
c := e + 8
d := cC
K :=m + 4
j = b
{live-out: d,3j,k}

Coalescing Heuristics

* But coalescing may make a k-colorable graph
uncolorable!

*Briggs: safe to coalesce x and y if the resulting node
will have fewer than k neighbors with degree >k.

* George: safe to coalesce x and y if for every
neighbor t of x, either t already interferes with y or
t has degree < k

* These strategies are conservative: will not turn a k-
colorable graph into a non-k-colorable graph

*\Why?

Coloring with Coalescing

Build: construct interference graph

e Categorize nodes as move-related (if src or dest of move) or non-move-related
e Simplify: Remove non-move-related nodes with degree <k
*Coalesce: Coalesce nodes using Briggs’ or George’s heuristic

e Possibly re-mark coalesced nodes as non-move-related
e Continue with Simplify if there are nodes with degree <k

*Freeze: if some low-degree (<k) move-related node, freeze it
ei.e., make it non-move-related, i.e., give up on coalescing that node
e Continue with Simplify

*Spill: choose node with degree >k to potentially spill
e Then continue with simplify

*Select: when graph is empty, start restoring nodes in reverse order and color them
e Potential spill node: try coloring it; if not rewrite program to use stack and try again!

(Build (Slmphfy@(ioalww[Splll Select)—»

Example (4 registers)

Stack:

Example (4 registers)

Example (4 registers)

(Bundl—@@@alisce/j—{w[spiu/]::[Select J»

Example (4 registers)

(Bundl—@@@alisce/j—{w[spiu/]::[Select J»

Example (4 registers)

j and b, and d and ¢
are move related

Stack:

Hh &~ 5 Q

(Bundl—@@@alisce/j—{w[spiu/]::[Select J»

Example (4 registers)

j and b, and d and ¢
Stack: are move related

O Hh ~ 5 Q

(Bundl—@@@alisce/j—{w[spiu/]::[Select J»

Example (4 registers)

j and b, and d and ¢
Stack: are move related

5 O H X D Q

(Bundl—@@@alisce/j—{w[spiu/]::[Select J»

Example (4 registers)

j and b, and d and ¢
Stack: are move related

5 O H X D Q

Remaining nodes are move related, so coalesce

(Buildw@Coalww spiu/]::[Select J»

Example (4 registers)

d and c
Stack: are move related

5 O H X D Q

Remaining nodes are move related, so coalesce

(Buildw@Coalww spiu/]::[Select J»

Example (4 re

Stack: are movedr:zlll;?e(czl
g
h
k
f
e
m
jb

(Build (Simpliff@Coalesce/)—»[Fr%[S@ Select)—»
= 21

Stephen Chong, Harvard University

Example (4 re

d and c
Stack: are move related
g
h
k
f
e
m
" ® ©

(Build (Simpliff@Coalesce/)—»[Fr%[S@ Select)—»
\ 22

Stephen Chong, Harvard University

Example (4 r

Stack:

9
h
k
f
e
m

jb
dc

(Build (Simpliff@Coalesce/]—»[Frﬁ S@ Select)—»
\ 23

Stephen Chong, Harvard University

O=

=t4

Example (4 regis"
Q- @-

Q-1 @-

k}<>=t3 ‘=t4

{live-1in: j,
g := *(J+12)
h :=k -1

f := g * h
e := *(3+8)
m := *(J+16)
b := *(£+0)
c := e + 8
d := ¢ T—@ 7
K :=m + 4

J := Db

{live-out: d,3j,k}

Stephen Chong, Harvard University 25

{live-in: $t4,<;2f?
St2
Stl
St3 :
Stl
St2
Std4
St3 :

St3
Stl
std

:= St3 «
e= St2 + 4
:= St4 «
{live-out: S$t3,S$t4,Stl}

Example (4 register‘
Q-1 @-

=t4

*(St4+12)
stl -1
st2 * Stl
*(St4+8)
*(St4+16)
*(£+0)
Stl + 8

This is the result of coalescing!

26

Pre-colored Temps

* The IR often includes machine registers
°e.g., Sfp, $al-5a3, $v0-$vl

eallows us to expose issues of calling convention over
which we don't have control.

*\We can treat the machine registers as pre-colored
temps.

e Their assignment to a physical register is already
determined

e But note that Select and Coalesce phases may put a
different temp in the same physical register, as long as it
doesn't interfere

Using Physical Registers

*Within a procedure:

*Move arguments from $a0-$a3 (and Mem[$fp+toffset])
into fresh temps, move results into $v0-$v1

e Manipulate the temps directly within the procedure body
instead of the physical registers, giving the register
allocation maximum freedom in assignment, and
minimizing the lifetimes of pre-colored nodes

*Register allocation will hopefully coalesce the argument
registers with the temps, eliminating the moves

eldeally, if we end up spilling a temp corresponding to an
argument, we should write it back in the already reserved
space on the stack...

Note

*\We cannot simplify a pre-colored node:

eRemoving a node during simplification happens
pecause we expect to be able to assign it any color
that doesn't conflict with the neighbors

e But we don't have a choice for pre-colored nodes

eSimilarly, we cannot spill a pre-colored node

Callee-Save Registers

*Callee-Save register r:
e|s “defined” upon entry to the procedure
e|s “used” upon exit from the procedure.
eTrick: move it into a fresh temp

e|deally, the temp will be coalesced with the callee-
saves register (getting rid of the move)

e Otherwise, we have the freedom to spill the temp.

e (Example of this soon)

Caller-Save Registers

*\Want to assign a temp to a caller-save register
only when it’s not live across a function call

e Since then we have to save/restore it

*So treat a function call as “defining” all caller-
save registers.

* Callee might move values into them

* Now any temps that are live across the call will
interfere, and register assignment will find different
registers to assign the temps

Exam

e Compile the following C function

* Assume target machine has 3 registers f:

eSrl and $r2 are caller-save

eSr3is callee-save

int f(lnt

int d

int e

do {
d =
e =

O o W

d+b;
e-1;

int b) {

} while (e > 0);
return d;

}

Stephen Chong, Harvard University

c := Sr3 ; preserve callee
a := Srl ; move argl into a
b := Sr2 ; move arg2 into b
d :=0
e := a

loop:
d :=d+ b
e : = e -1

if e > 0 loop else end

end:
rl :=d ; return d
r3 := C ; restore callee
return ; Sr3,S8rl1 live out

32

Example

Sr3

Srl
Sr2 r3 @
Loon: (2, \

: + Db 6

® & O 9 Q
i
o

Il
Q

d :=d
e := e -1 1
1f e > 0 loop else end
end
rl :=d
r3 := C
return

Simplify (C Select)—»

Stack:

c spill?

No simplify, coalesce, or freeze is possible...
c is a good candidate for spilling...

Simplify (CO Spl” Select)—}
Stephen Chong, Harvard University

34

Stack:

c spill?

No simplify is possible...

Coalesce a and e

Simplify CO Spl” Select)—}
Stephen Chong, Harvard University

35

Stack:

c spill?

36

Stack:

c spill?

No simplify is possible...

Coalesce b and r2

Simplify CO Spl” Select)—-}
Stephen Chong, Harvard University

37

Stack:

c spill?

No simplify is possible...

Coalesce b and r2

Simplify CO Spl” Select)—-}
Stephen Chong, Harvard University

38

Stack:

c spill?

No simplify is possible...

Coalesce r1 and ae

Simplify CO Spl” Select)—-}
Stephen Chong, Harvard University

39

Stack:

c spill?

rlae

No simplify is possible...
Coalesce r1 and ae

Simplify CO Spl” Select)—-}
Stephen Chong, Harvard University

40

Stack:

c spill?

rlae

Simplify d

Simplify CO Spl” Select)—-}
Stephen Chong, Harvard University

41

Stack:

c spill?

rlae

Only pre-colored nodes left, so start Select phase...

Simplify CO Spl” Select)—-}
Stephen Chong, Harvard University

42

Stack:

c spill?

Pop d and color it

Simplify (CO Spl” Select)—}
Stephen Chong, Harvard University

43

Stack:

c spill?

~

~

We can’t color ¢, so we must do an actual spill, -
i.e., rewrite code and try again!

Simplify (CO Spl” Select)—}
Stephen Chong, Harvard University

44

f: cl := Sr3

f: ¢ := $r3 Mem[fp+i] := cl

a := Srl a := Srl

b := Sr2 b := Sr2

d := 0 d := 0

e := a e := a
loop: loop:

d :=d + Db d :=d + b

e (= e -1 e (= e -1

if e > 0 loop else end if e > 0 loop else end
end: end:

rl := d rl := d

r3 := c c2 := Mem[fp+i]

return r3 := c2

return

Simplify CO Spl” Select)—}
Stephen Chong, Harvard University 45

f: cl := Sr3

Mem[fp+i] := cl
:= Srl
t= Sr2
:= 0

= a

:=d + b
= e -1
1f e > 0 loop else end

rl := d

c2 := Mem[fp+1i]
r3 := c2
return

Simplify (CO Spl” Select)—}
Stephen Chong, Harvard University 46

Coalesce c¢1 and r3, and then ¢2 and r3

Simplify CO Spl” Select)—}
Stephen Chong, Harvard University

47

Coalesce c¢1 and r3, and then ¢2 and r3

Simplify CO Spl” Select)—-}
Stephen Chong, Harvard University

48

As before, coalesce a and e, and then b and r2

Simplify CO Spl” Select)—-}
Stephen Chong, Harvard University

49

As before, coalesce a and e, and then b and r2

Simplify CO Spl” Select)—-}
Stephen Chong, Harvard University

50

As before, coalesce ae and r1

Simplify CO Spl” Select)—-}
Stephen Chong, Harvard University

51

As before, coalesce ae and r1 e

Simplify CO Spl” Select)—-}
Stephen Chong, Harvard University

52

Stack:

Simplify d

Simplify CO Spl” Select)—-}
Stephen Chong, Harvard University

53

Stack:

Only pre-colored nodes left, we're ready to move to Select phase!

Simplify CO Spl” Select)—-}
Stephen Chong, Harvard University

54

Stack:

"
—’
-

Due to coalescing, c1, c2, b, a, and e are already colored "---.
Pop d and color

Simplify CO Spl” Select)—}
Stephen Chong, Harvard University

55

f: cl := Sr3
Mem[fp+i] := cl

a := Srl

b := Sr2

d := 0

e := a
loop:

d :=d + b

e := e -1

if e > 0 loop else end
end:

rl := d

c2 := Mem[fp+1i]

r3 := c2

return

Simplify CO Spl” Select)—}
Stephen Chong, Harvard University 56

f: Sr3 := Sr3

Sr3

+ Sr2
-1
loop else end

Mem[fp+1]
Srl := Srl
Sr2 := Sr2
Sr3 := 0
Srl := Srl
loop:
Sr3 := S$r3
Srl := Srl
if sSrl > 0
end:
Srl := Sr3
Sr3 := Mem|[fp+i]
Sr3 := $r3
return

(Build | Simplify C?ffj:ffqﬁgﬂt::i Spill
Stephen Chong, Harvard University

Select)—>

f: Mem[fp+i] := Sr3

Sr3 := 0
loop:

Sr3 := Sr3 + Sr2

Srl := Srl -1

if Srl > 0 loop else end
end:

-
-
-
-

Srl := Sr3
Sr3 := Mem[fp+1] ~ \xrl)---___
return

Only one non-coalesced move remains!

(Build | Simplify C?ffj:zf!ﬁgﬂk::i Spill
Stephen Chong, Harvard University

"
—’
-

Select)—>

