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Pre-class Puzzle

•Suppose we want to compute an analysis over 
CFGs. We have two possible algorithms.  
 
Algorithm A is simple but has worst-case O(N2) 
where a CFG has N nodes and E edges 
 
Algorithm B is more complicated but has worst-
case complexity O(N + log(E)) 
 
Which algorithm should we use? Why?
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Announcements

•Project 6 due today 
•Project 7 out 

•Due Thursday Nov 29 (9 days) 

•Project 8 out 
•Due Saturday Dec 8 (18 days) 

•Final exam: Wed December 12, 9am-12pm, Emerson 305 
•Covers everything except guest lectures  

‣ Lec 1-21, 23, 24, and all projects are fair game! 

• 30 multiple choice questions  

•Open book, open note, open laptop 

•No internet (except to look up notes, etc.), 
‣No looking up answers, no communicating with anyone
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Today

•Static Single Assignment form 
•What and why 
•SSA to CFG 
•CFG to SSA 
•Dominance frontiers 

•Optimization algorithms using SSA
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Pure vs Imperative

•Consider CFG available expression analysis 

•If variables are immutable (i.e., are assigned 
exactly once) analysis simplifies! 

•Empty kill set!

 5

Stmt Gen Kill
x:=v { v } {e | x in e}

Stmt Gen Kill
x:=v { v }
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Pure vs. Imperative

•Almost all data flow analyses simplify when 
variables are defined once. 
•no kills in dataflow analysis 
•can interpret as either functional or imperative 

•Our monadic form had this property, which made 
many of the optimizations simpler. 
•e.g., just keep around a set of available definitions that we 

keep adding to 

•On the other hand imperative form (i.e., CFGs) 
allowed us to have control-flow graphs, not just trees
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Best of Both Worlds

•Static Single Assignment (SSA) 
•CFGs but with immutable variables 
•Plus a slight “hack” to make graphs work out 
•Now widely used (e.g., LLVM) 
•Intra-procedural representation only 
•An SSA representation for whole program is possible (i.e., 
each global variable and memory location has static single 
assignment), but difficult to compute
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Idea Behind SSA

•Start with CFG code 
•Give each definition a fresh name 
•Propagate fresh name to subsequent uses
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x := n
y := m
x := x + y
return x

x0 := n
y0 := m
x1 := x0 + y0
return x1
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The Problem...

•What about control flow merges?

 9

x := n
y := m
if x < y

x := x + 1
y := y - 1 y := x + 2

z := x * y
return z
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The Problem...

•What about control flow merges?

 10

x0:= n
y0:= m
if x0< y0

x1:= x0+ 1
y1:= y0- 1 y2:= x0+ 2

z0:= x?*y?
return z0
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The Solution

•Insert “phony” expressions for the merge 
•A phi node is a  

phony “use” of a  
variable 
•As if an oracle 

chooses 
to set x2  
to either 
x0 or x1 based 
on which control  
flow edge was  
used to get to here
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x0:= n
y0:= m
if x0<y0

x1:= x0+ 1
y1:= y0- 1 y2:= x0+ 2

x2:= φ(x1,x0)
y3:= φ(y1,y2)
z0:= x2*y3
return z0
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Wait, Remind Me Why Is This Useful

•Data-flow analysis and optimizations become simpler if each 
variable has 1 definition 

•Compilers often build def-use chains 
•Connects definitions of variables with uses of them 

•Propagate dataflow facts directly from defs to uses, rather than through 
control flow graph 

•In SSA form, def-use chains are linear in size of original program; in non-
SSA form may be quadratic 

•Is relationship between SSA form and dominator structure of CFG 
•Simplifies algs such as interference graph construction 

•More info soon.... 

•Unrelated uses of same variable becomes different variables
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Example

•Unrelated uses of same variable:
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i := 0

i < N

A[i] := 0
i := i + 1

i := 0
s := 0

i < N

s := s + B[i]
i := i + 1

i1 := 0

i3 := φ(i1,i2)
i3 < N

A[i3] := 0
i2 := i3 + 1

i4 := 0
s1 := 0

i6 := φ(i4,i5)
s3 := φ(s1,s2)

i6 < N

s2 := s2+B[i6]
i5 := i6 + 1
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Remaining Issues

•How do we generate SSA from CFG 
representation? 
•In order to get benefits of SSA form 

•How do we generate CFG (or MIPS) from SSA? 
•In order to take SSA form and continue with code 

generation
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SSA Back to CFG

•Simply insert assignments corresponding to phi nodes on the edges 
•Coalescing register allocation will get rid of  

copies...
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x0:= n
y0:= m
if x0<y0

x1:= x0+1
y1:= y0-1 y2 := x0+2

x2 := φ(x1,x0)
y3 := φ(y1,y2)
z0 := x2*y3
return z0

x0:= n
y0:= m
if x0<y0

x1:= x0+1
y1:= y0-1
x2 := x1
y3 := y1

y2 := x0+2
x2 := x0
y3 := y2

x2 := φ(x1,x0)
y3 := φ(y1,y2)
z0 := x2*y3
return z0
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CFG to SSA, Naively

•Insert phi nodes in each basic block except the start 
node. 
•Could limit insertion to nodes with >1 predecessor, but for 

simplicity we will insert phi nodes everywhere. 

•Calculate the dominator tree. 
•Traverse the dominator tree in a breadth-first fashion: 

•give each definition of x a fresh index 
•propagate that index to all of the uses 
• each use of x that is not killed by a subsequent definition. 

• propagate the last definition of x to the successors’ phi nodes.
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Example
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x := n
y := m
a := 0

A

if x > 0
B

a := a  + y
x := x -1

C
z := a + y
return z

D
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Example

•Insert phi nodes
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x := n
y := m
a := 0

A

x := φ(x,x)
y := φ(y,y)
a := φ(a,a)
if x > 0

B

x := φ(x)
y := φ(y)
a := φ(a)
a := a  + y
x := x -1

C
x := φ(x)
y := φ(y)
a := φ(a)
z := a + y
return z

D
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Example

•Dominators:

 19

x := n
y := m
a := 0

A

x := φ(x,x)
y := φ(y,y)
a := φ(a,a)
if x > 0

B

x := φ(x)
y := φ(y)
a := φ(a)
a := a  + y
x := x -1

C
x := φ(x)
y := φ(y)
a := φ(a)
z := a + y
return z

D

A

B

C D
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Example

 20

x := n
y := m
a := 0

A

x := φ(x,x)
y := φ(y,y)
a := φ(a,a)
if x > 0

B

x := φ(x)
y := φ(y)
a := φ(a)
a := a  + y
x := x -1

C
x := φ(x)
y := φ(y)
a := φ(a)
z := a + y
return z

D

A

B

C D

•In breadth-first order: 
•give each definition of 

var a fresh index 
•propagate that index 

to each use within 
block 

•propagate to  
successor’s 
phi node
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Example
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x0:= n
y0:= m
a0:= 0

A

x := φ(x0,x)
y := φ(y0,y)
a := φ(a0,a)
if x > 0

B

x := φ(x)
y := φ(y)
a := φ(a)
a := a  + y
x := x -1

C
x := φ(x)
y := φ(y)
a := φ(a)
z := a + y
return z

D

A

B

C D

•In breadth-first order: 
•give each definition of 

var a fresh index 
•propagate that index 

to each use within 
block 

•propagate to  
successor’s 
phi node
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Example

 22

x0:= n
y0:= m
a0:= 0

A

x1:= φ(x0,x)
y1:= φ(y0,y)
a1:= φ(a0,a)
if x1> 0

B

x := φ(x1)
y := φ(y1)
a := φ(a1)
a := a  + y
x := x -1

C
x := φ(x1)
y := φ(y1)
a := φ(a1)
z := a + y
return z

D

A

B

C D

•In breadth-first order: 
•give each definition of 

var a fresh index 
•propagate that index 

to each use within 
block 

•propagate to  
successor’s 
phi node
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Example

 23

x0:= n
y0:= m
a0:= 0

A

x1:= φ(x0,x)
y1:= φ(y0,y)
a1:= φ(a0,a)
if x1> 0

B

x2:= φ(x1)
y2:= φ(y1)
a2:= φ(a1)
a3:= a2 + y2
x3:= x2-1

C
x := φ(x1)
y := φ(y1)
a := φ(a1)
z := a + y
return z

D

A

B

C D

•In breadth-first order: 
•give each definition of 

var a fresh index 
•propagate that index 

to each use within 
block 

•propagate to  
successor’s 
phi node
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Example
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x0:= n
y0:= m
a0:= 0

A

x1:= φ(x0,x3)
y1:= φ(y0,y2)
a1:= φ(a0,a3)
if x1> 0

B

x2:= φ(x1)
y2:= φ(y1)
a2:= φ(a1)
a3:= a2 + y2
x3:= x2-1

C
x := φ(x1)
y := φ(y1)
a := φ(a1)
z := a + y
return z

D

A

B

C D

•In breadth-first order: 
•give each definition of 

var a fresh index 
•propagate that index 

to each use within 
block 

•propagate to  
successor’s 
phi node
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Example
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x0:= n
y0:= m
a0:= 0

A

x1:= φ(x0,x3)
y1:= φ(y0,y2)
a1:= φ(a0,a3)
if x1> 0

B

x2:= φ(x1)
y2:= φ(y1)
a2:= φ(a1)
a3:= a2 + y2
x3:= x2-1

C
x4:= φ(x1)
y3:= φ(y1)
a4:= φ(a1)
z0:= a4+ y3
return z0

D

A

B

C D

•In breadth-first order: 
•give each definition of 

var a fresh index 
•propagate that index 

to each use within 
block 

•propagate to  
successor’s 
phi node
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Example
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x0:= n
y0:= m
a0:= 0

A

x1:= φ(x0,x3)
y1:= φ(y0,y2)
a1:= φ(a0,a3)
if x1> 0

B

x2:= φ(x1)
y2:= φ(y1)
a2:= φ(a1)
a3:= a2 + y2
x3:= x2-1

C
x4:= φ(x1)
y3:= φ(y1)
a4:= φ(a1)
z0:= a4+ y3
return z0

D

•Could clean up 
using copy 
propagation and 
dead code 
elimination
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Example

 27

x0:= n
y0:= m
a0:= 0

A

x1:= φ(x0,x3)
a1:= φ(a0,a3)
if x1> 0

B

a3:= a1 + y0
x3:= x1-1

C

z0:= a1+ y1
return z0

D

•Could clean up 
using copy 
propagation and 
dead code 
elimination
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Smarter Algorithm for CFG to SSA

•Compute the dominance frontier 
•Use dominance frontier to place phi nodes 

•Whenever block n defines x, put a phi node for x in 
every block in the dominance frontier of n 

•Do renaming pass using dominator tree

 28
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Dominance Frontier

•Definition: d dominates n if every path from the 
start node to n must go through d 

•Definition: if d dominates n and d≠n, we say d 
strictly dominates n 

•Definition: the dominance frontier of n is the set 
of all nodes w such that 
•1. n dominates a predecessor of w 
•2. n does not strictly dominate w

 29



•Node 5 
•dominates 5,6,7,8 
•strictly dominates 6,7,8 

•Dominance  
frontier of 5 is  
4,5,12,13 
•Targets of edges  

from nodes dominated  
to nodes not strictly 
dominated 

• Dominance frontier of n: where we 
transition from being dominated by n to 
being not strictly dominated

Stephen Chong, Harvard University

Example

 30
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Example

•Recall alg: 
•Whenever block n defines x, put a 

phi node for x in every block in the 
dominance frontier of n 

•Block B strictly  
dominates C,D 

•Dominance frontier  
of B is B

 31

x0:= n
y0:= m
a0:= 0

A

x1:= φ(x0,x3)
a1:= φ(a0,a3)
if x1> 0

B

a3:= a1 + y0
x3:= x1-1

C

z0:= a1+ y1
return z0

D
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Notes

•Adding a phi node for variable x is a new definition of x 
•Need to iterate until we satisfy the dominance frontier criterion: 
•Whenever block n defines x, put a phi node for x in every block in the 
dominance frontier of n  

•Algorithm does work proportional to number of edges in control 
flow graph + size of the dominance frontiers. 

•Pathological cases can lead to quadratic behavior. 
•In practice, linear 

•Computing dominator tree using iterative dataflow algorithm 
•With careful engineering, worst case complexity is quadratic, but in 

practice linear 
•See “A Simple, Fast Dominance Algorithm” by Cooper, Harvey, and 

Kennedy, Software Practice & Experience 4, 2001 
• Faster than an O(N+log(E)) algorithm for CFGs with <30,000 nodes 
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Optimization Algorithms Using SSA

•We promised some optimization algorithms were 
simpler in SSA! Let’s look at some... 

•Assume that our compiler data structures 
include: 
•Statement 
•Variable: has definition site (statement) and list of use 

sites 
•Block: has list of statements, ordered list of 

predecessors, successor(s)

 33
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Dead-Code Elimination

•Recall: Variable x is live at program point p is 
there is a path from p to a use of variable x

•A variable is live at its definition site if and only 
if its list of uses is non empty 
•Thanks SSA! Definition site dominates all uses, so 

there is a path from definition site to use site 

•Iterative alg for removing dead code: 
•While there is a variable x with no uses and the 

statement that defines x has no other side effects: 
•Delete the statement that defines x

 34
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Work-list Algorithm for DCE

 35

W ⟵ all variables in SSA program 
while W is not empty: 
    remove some v from W 
    if v’s list of uses is empty: 
        let S be v’s statement of definition 
        if S has no side effects other than assignment to v: 
            delete S from program 
            for each xi used by S: 
                delete S from list of uses of xi 
                W ⟵ W ∪ { xi } 
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More Agressive DCE

•Consider program  
a := 0;  
for (int i = 0; i < N; i++) {  
  a := a+i;  
}  
return 1 

•Variables are live at definition  
site, but doesn’t contribute to  
result of program!

 36

a0 := 0
i0 := 0

a1 := φ(a0,a2)
i1 := φ(i0,i2)
a2 := a1 + i1
i2 := i1 + 1
if i2 < N

return 1



Stephen Chong, Harvard University

More Agressive DCE

•Mark live any statement that: 
•1. stores into mem, performs I/O, 

returns from function, calls function 
that may have side effects 

•2. defines variable that is used  
in a live statement 

•3. is a conditional branch that 
affects whether a live statement is 
executed (i.e., live statement is 
control dependent on the branch) 

•Remove all unmarked statements
 37

a0 := 0
i0 := 0

a1 := φ(a0,a2)
i1 := φ(i0,i2)
a2 := a1 + i1
i2 := i1 + 1
if i2 < N

return 1
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More Agressive DCE

•Mark live any statement that: 
•1. stores into mem, performs I/O, 

returns from function, calls function 
that may have side effects 

•2. defines variable that is used  
in a live statement 

•3. is a conditional branch that 
affects whether a live statement is 
executed (i.e., live statement is 
control dependent on the branch) 

•Remove all unmarked statements
 38

return 1
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Simple Constant Propagation

•Any statement x:=c for constant c: can replace uses of x with c
•Any phi node x:=φ(c,...,c) can be replaced with x:=c
•Easy to detect and implement with SSA form!
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W ⟵ all statements in SSA program 
while W is not empty: 
    remove some S from W 
    if S is of form x:=φ(c,...,c): 
        replace S with x:=c 
    if S is of form x:=c: 
        delete S from program 
        for each statement T that uses x 
               substitute c for x in T 
               W ⟵ W ∪ { T }


