HARVARD

John A. Paulson

School of Engineering
and Applied Sciences

CS153: Compilers
Lecture 23:
Static Single Assignment Form

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

Pre-class Puzzle

* Suppose we want to compute an analysis over
CFGs. We have two possible algorithms.

Algorithm A is simple but has worst-case O(N2)
where a CFG has N nodes and E edges

Algorithm B is more complicated but has worst-
case complexity O(N + log(E))

Which algorithm should we use? Why?

Announcements

*Project 6 due today

*Project 7 out
e Due Thursday Nov 29 (9 days)

*Project 8 out
e Due Saturday Dec 8 (18 days)

e Final exam: Wed December 12, 9am-12pm, Emerson 305

» Covers everything except guest lectures
» Lec 1-21, 23, 24, and all projects are fair game!

* 30 multiple choice questions
* Open book, open note, open laptop
* No internet (except to look up notes, etc.),

» No looking up answers, no communicating with anyone

e Static Single Assignment form
*What and why
*SSA to CFG
*CFG to SSA

« Dominance frontiers

e Optimization algorithms using SSA

Stephen Chong, Harvard University 4

Pure vs Imperative

e Consider CFG available expression analysis

Stmt

Gen

Kill

Xe=V

{ v}

{e | xin e}

e|f variables are immutable (i.e., are assigned

exactly once) analysis simplifies!

Stmt

Gen

Kill

Xe=V

LV}

e Empty kill set!

Pure vs.

Imperative

* Almost all data flow analyses simplity when
variables are defined once.

eno kills in dataflow analysis

ecan interpret as either functional or imperative

e Our monadic form had

his property, which made

many of the optimizatio

ns simpler.

ee.g., just keep around a set of available definitions that we

keep adding to

* On the other hand imperative form (i.e., CFGs)
allowed us to have control-flow graphs, not just trees

Best of Both Worlds

o Static Single Assignment (SSA)

e CFGs but with immutable variables

*Plus a slight “hack” to make graphs work out
e Now widely used (e.g., LLVM)

*|ntra-procedural representation only

* An SSA representation for whole program is possible (i.e.,
each global variable and memory location has static single
assignment), but difficult to compute

Idea Behin

e Start with CFG code

e Give each definition a fresh name

e Propagate fresh name to subsequent uses

X ¢= n
y := I

X ¢ = X + Yy
return X

Stephen Chong, Harvard University

X0 :=n

y0 :=m

x1l := x0 + yO
return x1

The

*\What about control flow merges?

Stephen Chong, Harvard University

P4

X

_|.

N

X = 1N
y := m
if x < vy
1
1

N\

X

.|.

e

return 2z

z = X *y

The P

*\What about control flow merges?

X0:= n
y0:= m
1f x0< yO
xl:= x0+ 1 \
yli= y0- 1 y2:= x0+ 2

N

z0:= x?2*y?
return z0

Stephen Chong, Harvard University 10

The Soluti

e|nsert “phony” expressions for the merge

e A phi node is a
phony “use” of a

e As if an oracle / \

chooses
to set x2 X1:= X0+ 1 y2:= x0+ 2
to either Y17~ ¥0- 1

x0 or x1 based \ /

on which control |x2:= ¢ (x1,x0)
flow edge was y3:= @(yl,y2)

used to get to here [20:= x2*y3
return z0

Stephen Chong, Harvard University 11

Wait, Remind Me Why Is This Useful

e Data-flow analysis and optimizations become simpler if each
variable has 1 definition

e Compilers often build def-use chains
e Connects definitions of variables with uses of them

e Propagate dataflow facts directly from defs to uses, rather than through
control flow graph

[n SSA form, def-use chains are linear in size of original program; in non-
SSA form may be quadratic

e [s relationship between SSA form and dominator structure of CFG
e Simplifies algs such as interference graph construction
* More info soon....

e Unrelated uses of same variable becomes different variables

e Unrelated uses of same variable:

s := s + B[i]
i :=1i+1 s2 := s2+B[16]
i5 := 16 + 1

Stephen Chong, Harvard University

A[i] := 0 1 :=0 = 0
1 := 1+ 1 s =0 =0
. P (14,15)
1 <N P(sl,s2)
16 < N

13

Remaining |

e How do we generate SSA from CFG
representation?

*|n order to get benefits of SSA form
* How do we generate CFG (or MIPS) from SSA?

e|n order to take SSA form and continue with code
generation

Stephen Chong, Harvard University 14

SSA Back to

e Simply insert assignments corresponding to phi nodes on the edges

e Coalescing register allocation will get rid of

copies... x0:= n
y0:= m
x0:= n 1f x0<y0
y0:= m g(\\
1f x0<y0 x1:= x0+1
/ \ oliz y0-1 y2 := x0+2
x1l:= x0+1 x2 := x1 x2 := x0
vli= v0-1 y2 := x0+2 v3 := yl y3 := y2
N Y N/
x2 = (x1,x0) X2— =150}
y3 = @(yl,y2) y3—+—P{yiryZ)

z0 = x2*%y3
return zO0

Stephen Chong,

z0 = x2*%y3
return zO0

15

CFG to SSA, Naively

*|nsert phi nodes in each basic block except the start

node.

e Could limit insertion to nodes with >1 predecessor, but for
simplicity we will insert phi nodes everywhere.

e Calculate the dominator tree.

e Traverse the dominator tree in a breadth-first fashion:

°gjve eac

N definition of x a fres

*propaga

e each use of x that is not ki

‘e that index to all of t

N index

1€ USES

led by a subsequent definition.

» propagate the last definition of x to the successors’ phi nodes.

I ST
Il

t— o 38 B

if x> 0

Stephen Chong, Harvard University

z = a-+ty
return 2z

D

17

e|nsert phi nodes

O oKX
Il

X o=

Stephen Chong, Harvard University

P (x)
©(y)
P(a)
= a +ty
return z

N O N X
Il

18

e Dominators:

O oKX
Il

X o=

Stephen Chong, Harvard University

P(x)
P(y)
P(a)

N O N X
Il

return 2z

C

A
|
B

/ \

D

19

eIn breadth-first order: |x :=n *
egive each definition of |¥ = I
var a fresh index a =0
epropagate that index l
to each use within X = P(X,X) B
plock Yy := @©(Y,Y)
e propagate to & = @(a,a)
SUCCesSor’s it x>0
phi node / \
= C
. CP(Z) y 1= @(y)
R, a := @(a)
X = x -1 ’ zimary
: return z

Stephen Chong, Harvard University

20

eIn breadth-first order: |x0:= n

egive each definition of ~|[¥0:= M

var a fresh index AVas L

epropagate that index l

to each use within /" |x := @(x0,x) P

block y = p(y0,vy)

*propagate to a := @(alb,a)

suCCessor’s it x>0

phi node / \
1= @) © X 1= @(x)
. $g; y 1= @(y)
a = a +y a = @(a)
X := x -1 z i=aty

return z

Stephen Chong, Harvard University

21

e|n breadth-first order: |x0:=

egive each definition of
var a fresh index AWa= / \

epropagate that index

to each use within xl:= @ (x0,x) £
block yl:= @(y0,y)
*propagate to aLe= @lata)
SUCCesSor’s L > 0
phi node / \
x i O(x1) © x 1= @(x1) D
y = @y y := @(yl)
a := @(al) a := @(al)
a :=a +y z 1= a+y
x = x -1 return =z

Stephen Chong, Harvard University 22

eIn breadth-first order: |x0:= n

egive each definition of ~|[¥0:= M

var a fresh index AVas L

epropagate that index l

to each use within /" |x1:= @(x0,x) P

plock yl:= @(y0,y)

*propagate to aLe= @lata)

suCCessor’s L sel>

phi node / \
X2:= @(x1) C X 1= @(x1)
yz:= @(yl) y = @(yl)
az:= @(al) a := @(al)
al3:= a2 + y2 z i=a + vy
G E= w0l return z

Stephen Chong, Harvard University

23

eIn breadth-first order: x0:=n

egive each definition of ~|[¥0:= M

var a fresh index a:= 0

epropagate that index l

to each use within /" |x1:= @(x0,x3) °

plock yl:= @(y0,y2)

e propagate to als= Qlal e8]

SUCCessor’s 1t x1> 0

phi node / \
X2:= @(x1) C X 1= @(x1)
yz:= @(yl) y = @(yl)
az2:= P(al) a := @(al)
al3:= a2 + y2 z i=a + vy
ES el return z

Stephen Chong, Harvard University

24

e|n breadth-first order:

egive each definition of
var a fresh index

epropagate that index
to each use within

xXl:= @(x0,x3)

yl:= @(y0,y2)
al:= p(ad,al)

if x1> 0

plock

*propagate to

suCcessor’s

phi node
X2:= @(x1) C
y2:= @(yl)
az2:= P(al)
aj3:= a2 + y2
xX3:= x2-1

Stephen Chong, Harvard University

N\

Xd:= @(x1)
y3:= @(yl)
ad:= P(al)
z0:= a4+ y3
return z0

D

25

e Could clean up
using copy

propagation and

dead code
elimination

x0:= n
y0:=m
al:= 0

x1> 0

QP (x0,x3)

©O(y0,y2)
Pp(ald,a3)

xX2:= @(x1)
y2:= @(yl)
az2:= P(al)
al:= a2 + y2
x3:= x2-1

Stephen Chong, Harvard Universi

=
<

N\

Xd:= @(x1)
y3:= @(yl)
ad:= P(al)
z0:= a4+ y3
return z0

D

26

A
eCould cleanup [x0:=n
. y0:= m
using copy 20:= 0
propagation and |
dead code B
. xl:= @(x0,x3)
elimination al:= ©(a0,a3)
if x1> 0
e D
al3:= al + yO0 20:= al+ yl
x3:= x1-1

return z0

Stephen Chong, Harvard University 27

Smarter Algorithm for CFG to SSA

e Compute the dominance frontier
e Use dominance frontier to place phi nodes

*Whenever block n defines x, put a phi node for x in
every block in the dominance frontier of n

* Do renaming pass using dominator tree

Dominance Frontier

* Definition: d dominates n if every path from the
start node to n must go through d

* Definition: if d dominates n and d#n, we say d
strictly dominates n

e Definition: the dominance frontier of n is the set
of all nodes w such that

*1. n dominates a predecessor of w

2. n does not strictly dominate w

e Node 5 a
edominates 5,6,7,8

estrictly dominates 6,7,8 e
e Dominance @ m
frontier of 5 is

4,5,12,13

e Targets of edges
from nodes dominated
to nodes not strictly
dominated
e Dominance frontier of n: where we

transition from being dominated by n to
being not strictly dominated

30

Example

e Recall alg: x0:= n A
*Whenever block n defines x, put a Yoo o
phi node for x in every block in the l
dominance frontier of n
. = P (x0,x3) 5
*Block B strictly ‘= ©(a0.a3)
dominates C,D '

e Dominance frontier
of Bis B

z0:= al+ yl

return z0
Stephen Chong, Harvard University

Notes

e Adding a phi node for variable x is a new definition of x
* Need to iterate until we satisfy the dominance frontier criterion:

* Whenever block n defines x, put a phi node for x in every block in the
dominance frontier of n

* Algorithm does work proportional to number of edges in control
flow graph + size of the dominance frontiers.
e Pathological cases can lead to quadratic behavior.
*|n practice, linear

e Computing dominator tree using iterative dataflow algorithm

e With careful engineering, worst case complexity is quadratic, but in
practice linear

*See “A Simple, Fast Dominance Algorithm” by Cooper, Harvey, and
Kennedy, Software Practice & Experience 4, 2001

* Faster than an O(N+log(E)) algorithm for CFGs with <30,000 nodes

Optimization Algorithms Using SSA

*\We promised some optimization algorithms were
simpler in SSA! Let’s look at some...

e Assume that our compiler data structures
include:

e Statement

eVariable: has definition site (statement) and list of use
sites

e Block: has list of statements, ordered list of
hredecessors, successor(s)

Dead-Code Elimination

*Recall: Variable x is live at program point p is
there is a path from p to a use of variable x

* A variable is live at its definition site if and only

if its list of uses is non empty

e Thanks SSA! Definition site dominates all uses, so

there is a path from definition site to use site

e |terative alg for removing dead code:

e\While there is a variable x with no uses ano

the

statement that defines x has no other side effects:

* Delete the statement that defines x

Work-list Algorithm for DCE

W « all variables in SSA program
while W is not empty:
remove some v from W
if v's list of uses is empty:
let S be v’s statement of definition
if S has no side effects other than assignment to v:
delete S from program
for each x; used by S:
delete S from list of uses of x;

W Wuix}

More Agressiv

* Consider program a0 := 0
10 = 0
a := 0;
for (int 1 = 0; 1 < N; 1++) { l
a := a+i;
} = P (al,a2)
= @(i0,1i2)
return 1 o1 4 i1

eVariables are live at definition
site, but doesn’t contribute to
result of program! &

return 1

Stephen Chong, Harvard University 36

More Agressive DCE

e Mark live any statement that: 20 :2 0
10 :=
e 1. stores into mem, performs 1/O,
returns from function, calls function l
that may have side effects ©(a0,a2)
o). defines variable that is used P (1i0,12)
. . . . al + i1l
in a live statement 141
*3. is a conditional branch that < N
affects whether a live statement is X
executed (i.e., live statement is
control dependent on the branch) return 1

e Remove all unmarked statements

More Agressive DCE

e Mark live any statement that:

e 1. stores into mem, performs 1/O,
returns from function, calls function
that may have side effects

e). defines variable that is used

in a live sta

3. is acono

Itiona

‘ement

affects whe

her a

branch that
Ive statement Is

executed (i.e., live statement is
control dependent on the branch)

e Remove all unmarked statements

return 1

Simple Constant Propagation

* Any statement x :=c for constant c: can replace uses of x with c

* Any phi node x:=@(c, ...,c) can be replaced with x:=c
e Easy to detect and implement with SSA form!

W « all statements in SSA program
while W is not empty:
remove some S from W
if Sis of formx:=@(c,...,C):
replace S with x:=c
if S is of form x:=c:
delete S from program
for each statement T that uses x

substitute c forxin T
We— Wul{Tl}

