CS153: Compilers Lecture 23: Static Single Assignment Form

Stephen Chong

https://www.seas.harvard.edu/courses/cs153

Pre-class Puzzle

- Suppose we want to compute an analysis over CFGs. We have two possible algorithms.

Algorithm A is simple but has worst-case $O\left(N^{2}\right)$ where a CFG has N nodes and E edges

Algorithm B is more complicated but has worstcase complexity $O(N+\log (E))$

Which algorithm should we use? Why?

Announcements

- Project 6 due today
- Project 7 out
- Due Thursday Nov 29 (9 days)
- Project 8 out
-Due Saturday Dec 8 (18 days)
- Final exam: Wed December 12, 9am-12pm, Emerson 305
- Covers everything except guest lectures
- Lec 1-21, 23, 24, and all projects are fair game!
- 30 multiple choice questions
- Open book, open note, open laptop
- No internet (except to look up notes, etc.),
- No looking up answers, no communicating with anyone

Today

- Static Single Assignment form
-What and why
- SSA to CFG
- CFG to SSA
- Dominance frontiers
- Optimization algorithms using SSA

Pure vs Imperative

- Consider CFG available expression analysis

Stmt	Gen	Kill
$\mathrm{x}:=\mathrm{v}$	$\{\mathrm{v}\}$	$\{\mathrm{e} \mid \mathrm{x}$ in $\}$

- If variables are immutable (i.e., are assigned exactly once) analysis simplifies!

Stmt	Gen	Kill
$\mathrm{x}:=\mathrm{v}$	$\{\mathrm{v}\}$	

- Empty kill set!

Pure vs. Imperative

- Almost all data flow analyses simplify when variables are defined once.
- no kills in dataflow analysis
- can interpret as either functional or imperative
- Our monadic form had this property, which made many of the optimizations simpler.
-e.g., just keep around a set of available definitions that we keep adding to
- On the other hand imperative form (i.e., CFGs) allowed us to have control-flow graphs, not just trees

Best of Both Worlds

- Static Single Assignment (SSA)
-CFGs but with immutable variables
- Plus a slight "hack" to make graphs work out
-Now widely used (e.g., LLVM)
- Intra-procedural representation only
- An SSA representation for whole program is possible (i.e., each global variable and memory location has static single assignment), but difficult to compute

Idea Behind SSA

- Start with CFG code
- Give each definition a fresh name
- Propagate fresh name to subsequent uses

$$
\begin{aligned}
& x:=n \\
& y:=m \\
& x:=x+y \\
& \text { return } x
\end{aligned}
$$

$$
\mathrm{x} 0:=\mathrm{n}
$$

$$
\text { y0 }:=m
$$

$$
x 1:=x 0+y 0
$$

return x1

The Problem...

-What about control flow merges?

The Problem...

-What about control flow merges?

The Solution

- Insert "phony" expressions for the merge
- A phi node is a phony "use" of a variable
- As if an oracle chooses to set x 2 to either $\mathrm{y} 1:=\mathrm{y} 0-1$ x0 or x1 based on which control flow edge was used to get to here

$$
\begin{aligned}
& \mathrm{x} 2:=\varphi(\mathrm{x} 1, \mathrm{x} 0) \\
& \mathrm{y} 3:=\varphi\left(\mathrm{y} 1, \mathrm{y}^{2}\right) \\
& \mathrm{z0}:=\mathrm{x} 2 * \mathrm{y} 3 \\
& \text { return } \mathrm{z} 0
\end{aligned}
$$

Wait, Remind Me Why Is This Useful

- Data-flow analysis and optimizations become simpler if each variable has 1 definition
- Compilers often build def-use chains
- Connects definitions of variables with uses of them
- Propagate dataflow facts directly from defs to uses, rather than through control flow graph
- In SSA form, def-use chains are linear in size of original program; in nonSSA form may be quadratic
- Is relationship between SSA form and dominator structure of CFG
- Simplifies algs such as interference graph construction
- More info soon....
- Unrelated uses of same variable becomes different variables

Example

- Unrelated uses of same variable:

$$
\text { i1 }:=0
$$

Remaining Issues

- How do we generate SSA from CFG representation?
- In order to get benefits of SSA form
- How do we generate CFG (or MIPS) from SSA?
- In order to take SSA form and continue with code generation

SSA Back to CFG

- Simply insert assignments corresponding to phi nodes on the edges
- Coalescing register allocation will get rid of copies...

CFG to SSA, Naively

- Insert phi nodes in each basic block except the start node.
- Could limit insertion to nodes with >1 predecessor, but for simplicity we will insert phi nodes everywhere.
- Calculate the dominator tree.
- Traverse the dominator tree in a breadth-first fashion:
-give each definition of x a fresh index
- propagate that index to all of the uses
- each use of x that is not killed by a subsequent definition.
- propagate the last definition of x to the successors' phi nodes.

Example

Example

- Insert phi nodes

| x | $:=\mathrm{n}$ | |
| :--- | :--- | :--- | :--- |
| y | $:=$ | m |
| a | $:=$ | 0 |

Example

Example

- In breadth-first order:
- give each definition of var a fresh index - propagate that index to each use within block
- propagate to successor's phi node

$$
\begin{aligned}
& \mathrm{x}:=\varphi(\mathrm{x}) \\
& \mathrm{y}:=\varphi(\mathrm{y}) \\
& \mathrm{a}=\varphi(\mathrm{a}) \\
& \mathrm{a}:=\mathrm{a}+\mathrm{y} \\
& \mathrm{x} \quad:=\mathrm{x}-1
\end{aligned}
$$

x	$:=$	n	A
y	$:=$	m	
a	$:=$	0	

Example

- In breadth-first order:
- give each definition of var a fresh index - propagate that index to each use within block
- propagate to successor's phi node

$$
\begin{aligned}
\mathrm{x} & :=\varphi(\mathrm{x}) \\
\mathrm{y} & :=\varphi(\mathrm{y}) \\
\mathrm{a} & :=\varphi(\mathrm{a}) \\
\mathrm{a} & :=\mathrm{a}+\mathrm{y} \\
\mathrm{x} & :=\mathrm{x}-1
\end{aligned}
$$

$\mathrm{x} 0:=\mathrm{n}$
$\mathrm{y} 0:=\mathrm{m}$
$\mathrm{a} 0:=0$

D

$$
\begin{aligned}
& \mathrm{x}:=\varphi(\mathrm{x}) \quad D \\
& \mathrm{y}:=\varphi(\mathrm{y}) \\
& \mathrm{a}:=\varphi(\mathrm{a}) \\
& \mathrm{z}:=\mathrm{a}+\mathrm{y} \\
& \text { return } \mathrm{z}
\end{aligned}
$$

Example

- In breadth-first order:
- give each definition of var a fresh index - propagate that index to each use within block
- propagate to successor's phi node

$$
\begin{aligned}
& \mathrm{x}:=\varphi(\mathrm{x} 1) \quad C \\
& y:=\varphi(y 1) \\
& a:=\varphi(a 1) \\
& \mathrm{a}:=\mathrm{a}+\mathrm{y} \\
& \mathrm{x}:=\mathrm{x}-1
\end{aligned}
$$

$\mathrm{x} 0:=\mathrm{n} \quad A$
$\mathrm{y} 0:=\mathrm{m}$
$\mathrm{a} 0:=0$

$$
\begin{aligned}
& \mathrm{x}:=\varphi(\mathrm{x} 1) \quad D \\
& \mathrm{y}:=\varphi(\mathrm{y} 1) \\
& \mathrm{a}:=\varphi(\mathrm{al}) \\
& \mathrm{z}:=\mathrm{a}+\mathrm{y} \\
& \text { return } \mathrm{z}
\end{aligned}
$$

Example

- In breadth-first order:
- give each definition of var a fresh index - propagate that index to each use within block
- propagate to successor's phi node
$\mathrm{x} 2:=\varphi(\mathrm{x} 1)$
$\mathrm{y} 2:=\varphi(\mathrm{y} 1)$
$\mathrm{a} 2:=\varphi(\mathrm{a} 1)$
$\mathrm{a} 3:=\mathrm{a} 2+\mathrm{y}^{2}$
$\mathrm{x} 3:=\mathrm{x} 2-1$

$\mathrm{x} 1:=\varphi(\mathrm{x} 0, \mathrm{x}) \quad B$
$\mathrm{y} 1:=\varphi(\mathrm{y} 0, \mathrm{y})$
$\mathrm{a} 1:=\varphi(\mathrm{a} 0, \mathrm{a})$
if $\mathrm{x} 1>0$

$$
\begin{aligned}
& \mathrm{x}:=\varphi(\mathrm{x} 1) \quad D \\
& \mathrm{y}:=\varphi(\mathrm{y} 1) \\
& \mathrm{a}:=\varphi(\mathrm{al}) \\
& \mathrm{z}:=\mathrm{a}+\mathrm{y} \\
& \text { return } \mathrm{z}
\end{aligned}
$$

Example

- In breadth-first order:
- give each definition of var a fresh index - propagate that index to each use within block
- propagate to successor's phi node
$\mathrm{x} 2:=\varphi(\mathrm{x} 1)$
$\mathrm{y} 2:=\varphi(\mathrm{y} 1)$
$\mathrm{a} 2:=\varphi(\mathrm{a} 1)$
$\mathrm{a} 3:=\mathrm{a} 2+\mathrm{y} 2$
$\mathrm{x} 3:=\mathrm{x} 2-1$

$\mathrm{x} 1:=\varphi(\mathrm{x} 0, \mathrm{x} 3)^{B}$
$\mathrm{y} 1:=\varphi(\mathrm{y} 0, \mathrm{y} 2)$
$\mathrm{a} 1:=\varphi(\mathrm{a} 0, \mathrm{a} 3)$
if $\mathrm{x} 1>0$

$$
\begin{aligned}
& \mathrm{x}:=\varphi(\mathrm{x} 1) \quad D \\
& \mathrm{y}:=\varphi(\mathrm{y} 1) \\
& \mathrm{a}:=\varphi(\mathrm{al}) \\
& \mathrm{z}:=\mathrm{a}+\mathrm{y} \\
& \text { return } \mathrm{z}
\end{aligned}
$$

Example

- In breadth-first order:
- give each definition of var a fresh index - propagate that index to each use within block
- propagate to successor's phi node
$\mathrm{x} 2:=\varphi(\mathrm{x} 1)$
$\mathrm{y} 2:=\varphi(\mathrm{y} 1)$
$\mathrm{a} 2:=\varphi(\mathrm{a} 1)$
$\mathrm{a} 3:=\mathrm{a} 2+\mathrm{y} 2$
$\mathrm{x} 3:=\mathrm{x} 2-1$

$\mathrm{x} 1:=\varphi(\mathrm{x} 0, \mathrm{x} 3)^{B}$
$\mathrm{y} 1:=\varphi(\mathrm{y} 0, \mathrm{y} 2)$
$\mathrm{a} 1:=\varphi(\mathrm{a} 0, \mathrm{a} 3)$
if $\mathrm{x} 1>0$

$$
\begin{aligned}
& \mathrm{x} 4:=\varphi(\mathrm{x} 1) \quad D \\
& \mathrm{y} 3:=\varphi(\mathrm{y} 1) \\
& \mathrm{a} 4:=\varphi(\mathrm{a} 1) \\
& \mathrm{z} 0:=\mathrm{a} 4+\mathrm{y} 3 \\
& \text { return } \mathrm{z} 0
\end{aligned}
$$

Example

- Could clean up
$\mathrm{x} 0:=\mathrm{n}$
$\mathrm{y} 0:=\mathrm{m}$
$\mathrm{a} 0:=0$ propagation and dead code elimination

$$
\begin{aligned}
& \mathrm{x} 1:=\varphi(\mathrm{x} 0, \mathrm{x} 3) \\
& \mathrm{y} 1:=\varphi(\mathrm{y} 0, \mathrm{y} 2) \\
& \mathrm{a} 1:=\varphi(\mathrm{a} 0, \mathrm{a} 3) \\
& \text { if } \mathrm{x} 1>0
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{x} 4:=\varphi(\mathrm{x} 1) \\
& \mathrm{y} 3:=\varphi(\mathrm{y} 1) \\
& \mathrm{a} 4:=\varphi(\mathrm{al}) \\
& \mathrm{z} 0:=\mathrm{a} 4+\mathrm{y} 3 \\
& \text { return } \mathrm{z} 0
\end{aligned}
$$

Example

- Could clean up

$$
\begin{aligned}
& \mathrm{x} 0:=\mathrm{n} \\
& \mathrm{y} 0:=\mathrm{m} \\
& \mathrm{a} 0:=0
\end{aligned}
$$ propagation and dead code elimination

$$
\begin{aligned}
& \mathrm{x} 1:=\varphi(\mathrm{x} 0, \mathrm{x} 3) \\
& \mathrm{a} 1:=\varphi(\mathrm{a} 0, \mathrm{a} 3) \\
& \text { if } \mathrm{x} 1>0
\end{aligned}
$$

$$
z 0:=a 1+y 1
$$

return z0

Smarter Algorithm for CFG to SSA

- Compute the dominance frontier
- Use dominance frontier to place phi nodes
-Whenever block n defines x , put a phi node for x in every block in the dominance frontier of n
- Do renaming pass using dominator tree

Dominance Frontier

- Definition: \boldsymbol{d} dominates \boldsymbol{n} if every path from the start node to n must go through d
- Definition: if d dominates n and $d \neq n$, we say \boldsymbol{d} strictly dominates \boldsymbol{n}
-Definition: the dominance frontier of n is the set of all nodes w such that
-1. n dominates a predecessor of w
-2. n does not strictly dominate w

Example

- Node 5
-dominates 5,6,7,8 - strictly dominates 6,7,8
- Dominance frontier of 5 is 4,5,12,13
- Targets of edges from nodes dominated to nodes not strictly dominated
- Dominance frontier of n : where we transition from being dominated by n to being not strictly dominated

Example

- Recall alg:
-Whenever block n defines x, put a phi node for x in every block in the dominance frontier of n
- Block B strictly dominates C, D
- Dominance frontier of B is B

$$
\begin{aligned}
& \mathrm{a} 3:=\mathrm{a} 1+\mathrm{y} 0 \\
& \mathrm{x} 3:=\mathrm{x} 1-1
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{x} 0:=\mathrm{n} \\
\mathrm{y} 0:=\mathrm{m} \\
\mathrm{a} 0:=0
\end{array} \\
& \begin{array}{l}
\mathrm{x} 1:=\varphi(\mathrm{x} 0, \mathrm{x} 3) \\
\mathrm{a} 1:=\varphi(\mathrm{a} 0, \mathrm{a} 3) \\
\text { if } \mathrm{x} 1>0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{z} 0:=\mathrm{a} 1+\mathrm{y} 1 \\
& \text { return } \mathrm{z} 0
\end{aligned}
$$

Notes

- Adding a phi node for variable x is a new definition of x
- Need to iterate until we satisfy the dominance frontier criterion:
-Whenever block n defines x, put a phi node for x in every block in the dominance frontier of n
- Algorithm does work proportional to number of edges in control flow graph + size of the dominance frontiers.
- Pathological cases can lead to quadratic behavior.
- In practice, linear
- Computing dominator tree using iterative dataflow algorithm
- With careful engineering, worst case complexity is quadratic, but in practice linear
- See "A Simple, Fast Dominance Algorithm" by Cooper, Harvey, and Kennedy, Software Practice \& Experience 4, 2001
- Faster than an $O(N+\log (E))$ algorithm for CFGs with $<30,000$ nodes

Optimization Algorithms Using SSA

-We promised some optimization algorithms were simpler in SSA! Let's look at some...

- Assume that our compiler data structures include:
- Statement
- Variable: has definition site (statement) and list of use sites
- Block: has list of statements, ordered list of predecessors, successor(s)

Dead-Code Elimination

- Recall: Variable \mathbf{x} is live at program point p is there is a path from p to a use of variable \mathbf{x}
- A variable is live at its definition site if and only if its list of uses is non empty
-Thanks SSA! Definition site dominates all uses, so there is a path from definition site to use site
- Iterative alg for removing dead code:
-While there is a variable x with no uses and the statement that defines x has no other side effects:
- Delete the statement that defines x

Work-list Algorithm for DCE

$W \leftarrow$ all variables in SSA program while W is not empty:
remove some v from W
if v 's list of uses is empty:
let S be v 's statement of definition
if S has no side effects other than assignment to v : delete S from program for each x_{i} used by S : delete S from list of uses of x_{i} $W \leftarrow W \cup\left\{x_{i}\right\}$

More Agressive DCE

- Consider program
a $:=0$; for (int $i=0 ; i<N ; i++)$ \{ $a:=a+i ;$
\}
return 1
- Variables are live at definition

Variables are live at definition
site, but doesn't contribute to result of program!

$$
\begin{aligned}
& \mathrm{a} 0:=0 \\
& \text { io }:=0
\end{aligned}
$$

More Agressive DCE

- Mark live any statement that:
-1. stores into mem, performs I/O,

$$
\begin{aligned}
& \mathrm{a} 0 \\
& \mathrm{i} 0 \\
& \mathrm{i} 0 \\
& := \\
& =0 \\
& 0
\end{aligned}
$$ returns from function, calls function that may have side effects

-2. defines variable that is used in a live statement
-3. is a conditional branch that affects whether a live statement is executed (i.e., live statement is control dependent on the branch)

- Remove all unmarked statements

More Agressive DCE

- Mark live any statement that:
-1. stores into mem, performs I/O, returns from function, calls function that may have side effects
-2. defines variable that is used in a live statement

```
return 1
```

$\bullet 3$. is a conditional branch that affects whether a live statement is executed (i.e., live statement is control dependent on the branch)

- Remove all unmarked statements

Simple Constant Propagation

- Any statement $\mathrm{x}:=\mathrm{c}$ for constant c : can replace uses of x with c
\bullet Any phi node $x:=\varphi(c, \ldots, c)$ can be replaced with $x:=c$
- Easy to detect and implement with SSA form!
$W \leftarrow$ all statements in SSA program while W is not empty:
remove some S from W
if S is of form $\mathrm{x}:=\varphi(\mathrm{c}, \ldots, \mathrm{c})$: replace S with $\mathrm{x}:=\mathrm{c}$
if S is of form $\mathrm{x}:=\mathrm{c}$: delete S from program for each statement T that uses x substitute c for x in T $W \leftarrow W \cup\{T\}$

