
CS153: Compilers
Lecture 23:
Static Single Assignment Form

Stephen Chong
https://www.seas.harvard.edu/courses/cs153

https://www.seas.harvard.edu/courses/cs153

Stephen Chong, Harvard University

Pre-class Puzzle

•Suppose we want to compute an analysis over
CFGs. We have two possible algorithms.  
 
Algorithm A is simple but has worst-case O(N2) 
where a CFG has N nodes and E edges 
 
Algorithm B is more complicated but has worst-
case complexity O(N + log(E)) 
 
Which algorithm should we use? Why?

 2

Stephen Chong, Harvard University

Announcements

•Project 6 due today
•Project 7 out

•Due Thursday Nov 29 (9 days)

•Project 8 out
•Due Saturday Dec 8 (18 days)

•Final exam: Wed December 12, 9am-12pm, Emerson 305
•Covers everything except guest lectures

‣ Lec 1-21, 23, 24, and all projects are fair game!

• 30 multiple choice questions

•Open book, open note, open laptop

•No internet (except to look up notes, etc.),
‣No looking up answers, no communicating with anyone

 3

Stephen Chong, Harvard University

Today

•Static Single Assignment form
•What and why
•SSA to CFG
•CFG to SSA
•Dominance frontiers

•Optimization algorithms using SSA

 4

Stephen Chong, Harvard University

Pure vs Imperative

•Consider CFG available expression analysis

•If variables are immutable (i.e., are assigned
exactly once) analysis simplifies!

•Empty kill set!

 5

Stmt Gen Kill
x:=v { v } {e | x in e}

Stmt Gen Kill
x:=v { v }

Stephen Chong, Harvard University

Pure vs. Imperative

•Almost all data flow analyses simplify when
variables are defined once.
•no kills in dataflow analysis
•can interpret as either functional or imperative

•Our monadic form had this property, which made
many of the optimizations simpler.
•e.g., just keep around a set of available definitions that we

keep adding to

•On the other hand imperative form (i.e., CFGs)
allowed us to have control-flow graphs, not just trees

 6

Stephen Chong, Harvard University

Best of Both Worlds

•Static Single Assignment (SSA)
•CFGs but with immutable variables
•Plus a slight “hack” to make graphs work out
•Now widely used (e.g., LLVM)
•Intra-procedural representation only
•An SSA representation for whole program is possible (i.e.,
each global variable and memory location has static single
assignment), but difficult to compute

 7

Stephen Chong, Harvard University

Idea Behind SSA

•Start with CFG code
•Give each definition a fresh name
•Propagate fresh name to subsequent uses

 8

x := n
y := m
x := x + y
return x

x0 := n
y0 := m
x1 := x0 + y0
return x1

Stephen Chong, Harvard University

The Problem...

•What about control flow merges?

 9

x := n
y := m
if x < y

x := x + 1
y := y - 1 y := x + 2

z := x * y
return z

Stephen Chong, Harvard University

The Problem...

•What about control flow merges?

 10

x0:= n
y0:= m
if x0< y0

x1:= x0+ 1
y1:= y0- 1 y2:= x0+ 2

z0:= x?*y?
return z0

Stephen Chong, Harvard University

The Solution

•Insert “phony” expressions for the merge
•A phi node is a  

phony “use” of a  
variable
•As if an oracle 

chooses 
to set x2  
to either 
x0 or x1 based 
on which control  
flow edge was  
used to get to here

 11

x0:= n
y0:= m
if x0<y0

x1:= x0+ 1
y1:= y0- 1 y2:= x0+ 2

x2:= φ(x1,x0)
y3:= φ(y1,y2)
z0:= x2*y3
return z0

Stephen Chong, Harvard University

Wait, Remind Me Why Is This Useful

•Data-flow analysis and optimizations become simpler if each
variable has 1 definition

•Compilers often build def-use chains
•Connects definitions of variables with uses of them

•Propagate dataflow facts directly from defs to uses, rather than through
control flow graph

•In SSA form, def-use chains are linear in size of original program; in non-
SSA form may be quadratic

•Is relationship between SSA form and dominator structure of CFG
•Simplifies algs such as interference graph construction

•More info soon....

•Unrelated uses of same variable becomes different variables

 12

Stephen Chong, Harvard University

Example

•Unrelated uses of same variable:

 13

i := 0

i < N

A[i] := 0
i := i + 1

i := 0
s := 0

i < N

s := s + B[i]
i := i + 1

i1 := 0

i3 := φ(i1,i2)
i3 < N

A[i3] := 0
i2 := i3 + 1

i4 := 0
s1 := 0

i6 := φ(i4,i5)
s3 := φ(s1,s2)

i6 < N

s2 := s2+B[i6]
i5 := i6 + 1

Stephen Chong, Harvard University

Remaining Issues

•How do we generate SSA from CFG
representation?
•In order to get benefits of SSA form

•How do we generate CFG (or MIPS) from SSA?
•In order to take SSA form and continue with code

generation

 14

Stephen Chong, Harvard University

SSA Back to CFG

•Simply insert assignments corresponding to phi nodes on the edges
•Coalescing register allocation will get rid of  

copies...

 15

x0:= n
y0:= m
if x0<y0

x1:= x0+1
y1:= y0-1 y2 := x0+2

x2 := φ(x1,x0)
y3 := φ(y1,y2)
z0 := x2*y3
return z0

x0:= n
y0:= m
if x0<y0

x1:= x0+1
y1:= y0-1
x2 := x1
y3 := y1

y2 := x0+2
x2 := x0
y3 := y2

x2 := φ(x1,x0)
y3 := φ(y1,y2)
z0 := x2*y3
return z0

Stephen Chong, Harvard University

CFG to SSA, Naively

•Insert phi nodes in each basic block except the start
node.
•Could limit insertion to nodes with >1 predecessor, but for

simplicity we will insert phi nodes everywhere.

•Calculate the dominator tree.
•Traverse the dominator tree in a breadth-first fashion:

•give each definition of x a fresh index
•propagate that index to all of the uses
• each use of x that is not killed by a subsequent definition.

• propagate the last definition of x to the successors’ phi nodes.

 16

Stephen Chong, Harvard University

Example

 17

x := n
y := m
a := 0

A

if x > 0
B

a := a + y
x := x -1

C
z := a + y
return z

D

Stephen Chong, Harvard University

Example

•Insert phi nodes

 18

x := n
y := m
a := 0

A

x := φ(x,x)
y := φ(y,y)
a := φ(a,a)
if x > 0

B

x := φ(x)
y := φ(y)
a := φ(a)
a := a + y
x := x -1

C
x := φ(x)
y := φ(y)
a := φ(a)
z := a + y
return z

D

Stephen Chong, Harvard University

Example

•Dominators:

 19

x := n
y := m
a := 0

A

x := φ(x,x)
y := φ(y,y)
a := φ(a,a)
if x > 0

B

x := φ(x)
y := φ(y)
a := φ(a)
a := a + y
x := x -1

C
x := φ(x)
y := φ(y)
a := φ(a)
z := a + y
return z

D

A

B

C D

Stephen Chong, Harvard University

Example

 20

x := n
y := m
a := 0

A

x := φ(x,x)
y := φ(y,y)
a := φ(a,a)
if x > 0

B

x := φ(x)
y := φ(y)
a := φ(a)
a := a + y
x := x -1

C
x := φ(x)
y := φ(y)
a := φ(a)
z := a + y
return z

D

A

B

C D

•In breadth-first order:
•give each definition of

var a fresh index
•propagate that index

to each use within 
block

•propagate to  
successor’s 
phi node

Stephen Chong, Harvard University

Example

 21

x0:= n
y0:= m
a0:= 0

A

x := φ(x0,x)
y := φ(y0,y)
a := φ(a0,a)
if x > 0

B

x := φ(x)
y := φ(y)
a := φ(a)
a := a + y
x := x -1

C
x := φ(x)
y := φ(y)
a := φ(a)
z := a + y
return z

D

A

B

C D

•In breadth-first order:
•give each definition of

var a fresh index
•propagate that index

to each use within 
block

•propagate to  
successor’s 
phi node

Stephen Chong, Harvard University

Example

 22

x0:= n
y0:= m
a0:= 0

A

x1:= φ(x0,x)
y1:= φ(y0,y)
a1:= φ(a0,a)
if x1> 0

B

x := φ(x1)
y := φ(y1)
a := φ(a1)
a := a + y
x := x -1

C
x := φ(x1)
y := φ(y1)
a := φ(a1)
z := a + y
return z

D

A

B

C D

•In breadth-first order:
•give each definition of

var a fresh index
•propagate that index

to each use within 
block

•propagate to  
successor’s 
phi node

Stephen Chong, Harvard University

Example

 23

x0:= n
y0:= m
a0:= 0

A

x1:= φ(x0,x)
y1:= φ(y0,y)
a1:= φ(a0,a)
if x1> 0

B

x2:= φ(x1)
y2:= φ(y1)
a2:= φ(a1)
a3:= a2 + y2
x3:= x2-1

C
x := φ(x1)
y := φ(y1)
a := φ(a1)
z := a + y
return z

D

A

B

C D

•In breadth-first order:
•give each definition of

var a fresh index
•propagate that index

to each use within 
block

•propagate to  
successor’s 
phi node

Stephen Chong, Harvard University

Example

 24

x0:= n
y0:= m
a0:= 0

A

x1:= φ(x0,x3)
y1:= φ(y0,y2)
a1:= φ(a0,a3)
if x1> 0

B

x2:= φ(x1)
y2:= φ(y1)
a2:= φ(a1)
a3:= a2 + y2
x3:= x2-1

C
x := φ(x1)
y := φ(y1)
a := φ(a1)
z := a + y
return z

D

A

B

C D

•In breadth-first order:
•give each definition of

var a fresh index
•propagate that index

to each use within 
block

•propagate to  
successor’s 
phi node

Stephen Chong, Harvard University

Example

 25

x0:= n
y0:= m
a0:= 0

A

x1:= φ(x0,x3)
y1:= φ(y0,y2)
a1:= φ(a0,a3)
if x1> 0

B

x2:= φ(x1)
y2:= φ(y1)
a2:= φ(a1)
a3:= a2 + y2
x3:= x2-1

C
x4:= φ(x1)
y3:= φ(y1)
a4:= φ(a1)
z0:= a4+ y3
return z0

D

A

B

C D

•In breadth-first order:
•give each definition of

var a fresh index
•propagate that index

to each use within 
block

•propagate to  
successor’s 
phi node

Stephen Chong, Harvard University

Example

 26

x0:= n
y0:= m
a0:= 0

A

x1:= φ(x0,x3)
y1:= φ(y0,y2)
a1:= φ(a0,a3)
if x1> 0

B

x2:= φ(x1)
y2:= φ(y1)
a2:= φ(a1)
a3:= a2 + y2
x3:= x2-1

C
x4:= φ(x1)
y3:= φ(y1)
a4:= φ(a1)
z0:= a4+ y3
return z0

D

•Could clean up
using copy
propagation and
dead code
elimination

Stephen Chong, Harvard University

Example

 27

x0:= n
y0:= m
a0:= 0

A

x1:= φ(x0,x3)
a1:= φ(a0,a3)
if x1> 0

B

a3:= a1 + y0
x3:= x1-1

C

z0:= a1+ y1
return z0

D

•Could clean up
using copy
propagation and
dead code
elimination

Stephen Chong, Harvard University

Smarter Algorithm for CFG to SSA

•Compute the dominance frontier
•Use dominance frontier to place phi nodes

•Whenever block n defines x, put a phi node for x in
every block in the dominance frontier of n

•Do renaming pass using dominator tree

 28

Stephen Chong, Harvard University

Dominance Frontier

•Definition: d dominates n if every path from the
start node to n must go through d

•Definition: if d dominates n and d≠n, we say d
strictly dominates n

•Definition: the dominance frontier of n is the set
of all nodes w such that
•1. n dominates a predecessor of w
•2. n does not strictly dominate w

 29

•Node 5
•dominates 5,6,7,8
•strictly dominates 6,7,8

•Dominance  
frontier of 5 is  
4,5,12,13
•Targets of edges  

from nodes dominated  
to nodes not strictly
dominated

• Dominance frontier of n: where we
transition from being dominated by n to
being not strictly dominated

Stephen Chong, Harvard University

Example

 30

1

2

3

4
8

6 7

13

12

1110

9
5

Stephen Chong, Harvard University

Example

•Recall alg:
•Whenever block n defines x, put a

phi node for x in every block in the
dominance frontier of n

•Block B strictly  
dominates C,D

•Dominance frontier  
of B is B

 31

x0:= n
y0:= m
a0:= 0

A

x1:= φ(x0,x3)
a1:= φ(a0,a3)
if x1> 0

B

a3:= a1 + y0
x3:= x1-1

C

z0:= a1+ y1
return z0

D

Stephen Chong, Harvard University

Notes

•Adding a phi node for variable x is a new definition of x
•Need to iterate until we satisfy the dominance frontier criterion:
•Whenever block n defines x, put a phi node for x in every block in the
dominance frontier of n

•Algorithm does work proportional to number of edges in control
flow graph + size of the dominance frontiers.

•Pathological cases can lead to quadratic behavior.
•In practice, linear

•Computing dominator tree using iterative dataflow algorithm
•With careful engineering, worst case complexity is quadratic, but in

practice linear
•See “A Simple, Fast Dominance Algorithm” by Cooper, Harvey, and

Kennedy, Software Practice & Experience 4, 2001
• Faster than an O(N+log(E)) algorithm for CFGs with <30,000 nodes

 32

Stephen Chong, Harvard University

Optimization Algorithms Using SSA

•We promised some optimization algorithms were
simpler in SSA! Let’s look at some...

•Assume that our compiler data structures
include:
•Statement
•Variable: has definition site (statement) and list of use

sites
•Block: has list of statements, ordered list of

predecessors, successor(s)

 33

Stephen Chong, Harvard University

Dead-Code Elimination

•Recall: Variable x is live at program point p is
there is a path from p to a use of variable x

•A variable is live at its definition site if and only
if its list of uses is non empty
•Thanks SSA! Definition site dominates all uses, so

there is a path from definition site to use site

•Iterative alg for removing dead code:
•While there is a variable x with no uses and the

statement that defines x has no other side effects:
•Delete the statement that defines x

 34

Stephen Chong, Harvard University

Work-list Algorithm for DCE

 35

W ⟵ all variables in SSA program
while W is not empty:
 remove some v from W
 if v’s list of uses is empty:
 let S be v’s statement of definition
 if S has no side effects other than assignment to v:
 delete S from program
 for each xi used by S:
 delete S from list of uses of xi
 W ⟵ W ∪ { xi }

Stephen Chong, Harvard University

More Agressive DCE

•Consider program  
a := 0;  
for (int i = 0; i < N; i++) {  
 a := a+i;  
}  
return 1

•Variables are live at definition  
site, but doesn’t contribute to  
result of program!

 36

a0 := 0
i0 := 0

a1 := φ(a0,a2)
i1 := φ(i0,i2)
a2 := a1 + i1
i2 := i1 + 1
if i2 < N

return 1

Stephen Chong, Harvard University

More Agressive DCE

•Mark live any statement that:
•1. stores into mem, performs I/O,

returns from function, calls function
that may have side effects

•2. defines variable that is used  
in a live statement

•3. is a conditional branch that
affects whether a live statement is
executed (i.e., live statement is
control dependent on the branch)

•Remove all unmarked statements
 37

a0 := 0
i0 := 0

a1 := φ(a0,a2)
i1 := φ(i0,i2)
a2 := a1 + i1
i2 := i1 + 1
if i2 < N

return 1

Stephen Chong, Harvard University

More Agressive DCE

•Mark live any statement that:
•1. stores into mem, performs I/O,

returns from function, calls function
that may have side effects

•2. defines variable that is used  
in a live statement

•3. is a conditional branch that
affects whether a live statement is
executed (i.e., live statement is
control dependent on the branch)

•Remove all unmarked statements
 38

return 1

Stephen Chong, Harvard University

Simple Constant Propagation

•Any statement x:=c for constant c: can replace uses of x with c
•Any phi node x:=φ(c,...,c) can be replaced with x:=c
•Easy to detect and implement with SSA form!

 39

W ⟵ all statements in SSA program
while W is not empty:
 remove some S from W
 if S is of form x:=φ(c,...,c):
 replace S with x:=c
 if S is of form x:=c:
 delete S from program
 for each statement T that uses x
 substitute c for x in T
 W ⟵ W ∪ { T }

