CS153: Compilers
Lecture 14: Type Checking

Stephen Chong
https://www.seas.harvard.edu/courses/cs153
Contains content from lecture notes by Steve Zdancewic and Greg Morrisett
Announcements

• HW4 Oat v1 out
 • Due Tuesday Oct 29 (12 days)
Today

• Type checking
• Judgments and inference rules
Undefined Programs

- After parsing, we have AST
- We can interpret AST, or compile it and execute
- But: not all programs are well defined
 - E.g., $3/0$, "hello" - 7, $42(19)$, using a variable that isn’t in scope, ...

- **Types** allow us to rule out many of these undefined behaviors
 - Types can be thought of as an approximation of a computation
 - E.g., if expression e has type `int`, then it means that e will evaluate to some integer value
 - E.g., we can ensure we never treat an integer value as if it were a function
Type Soundness

• Key idea: a well-typed program when executed does not attempt any undefined operation

• Make a model of the source language
 • i.e., an interpreter, or other semantics
 • This tells us which operations are partial
 • Partiality is different for different languages
 • E.g., “Hi” + “ world” and “na”*16 may be meaningful in some languages

• Construct a function to check types: $\text{tc} : \text{AST} \rightarrow \text{bool}$
 • AST includes types (or type annotations)
 • If $\text{tc } e$ returns true, then interpreting e will not result in an undefined operation

• Prove that tc is correct
Simple Language

type tipe =
 Int_t
| Arrow_t of tipe*tipe
| Pair_t of tipe*tipe

type exp =
 Var of var | Int of int
| Plus_i of exp*exp
| Lambda of var * tipe * exp
| App of exp*exp
| Pair of exp * exp
| Fst of exp | Snd of exp

Note: function arguments have type annotation
let rec interp (env: var->value) (e: exp) =
 match e with
 | Var x -> env x
 | Int i -> Int_v i
 | Plus_i(e1, e2) ->
 (match interp env e1, interp env e2 of
 | Int_v i, Int_v j -> Int_v(i+j)
 | _, _ -> failwith "Bad operands!"
)
 | Lambda(x, t, e) -> Closure_v{env=env, code=(x, e)}
 | App(e1, e2) ->
 (match (interp env e1, interp env e2) with
 | Closure_v{env=cenv, code=(x, e)}, v ->
 interp (extend cenv x v) e
 | _, _ -> failwith "Bad operands!"
)
let rec tc (env:var->tipe) (e:exp) =
 match e with
 | Var x -> env x
 | Int _ -> Int_t
 | Plus_i(e1,e2) ->
 (match tc env e1, tc env e with
 | Int_t, Int_t -> Int_t
 | _,_,_ -> failwith "...")
 | Lambda(x,t,e) -> Arrow_t(t,tc (extend env x t) e)
 | App(e1,e2) ->
 (match (tc env e1, tc env e2) with
 | Arrow_t(t1,t2), t ->
 if (t1 != t) then failwith "..." else t2
 | _,_,_ -> failwith "...")
• Type checker is almost like an approximation of the interpreter!
 • But interpreter evaluates function body only when function applied
 • Type checker always checks body of function
• We needed to assume the input of a function had some type τ_1, and reflect this in type of function ($\tau_1 \rightarrow \tau_2$)
• At call site ($e_1 e_2$), we don’t know what closure e_1 will evaluate to, but can calculate type of e_1 and check that e_2 has type of argument
Growing the Language

• Adding booleans...

```ocaml
type tipe = ... | Bool_t

type exp = ... | True | False | If of exp*exp*exp

let rec interp env e = ...
    | True -> True_v
    | False -> False_v
    | If(e1,e2,e3) -> (match interp env e1 with
                        True_v -> interp env e2
                        | False_v -> interp env e3
                        | _ -> failwith "...")
```
let rec tc (env:var->tipe) (e:exp) =
 match e with
 ...
 | True -> Bool_t
 | False -> Bool_t
 | If(e1,e2,e3) ->
 (let (t1,t2,t3) = (tc env e1,tc env e2,tc env e3)
 in
 match t1 with
 | Bool_t ->
 if (t2 != t3) then error() else t2
 | _ -> failwith "...")
Type Inference

• Type checking is great if we already have enough type annotations
 • For our simple functional language, sufficient to have type annotations for function arguments

• But what about if we tried to infer types?
 • Reduce programmer burden!

• Efficient algorithms to do this: Hindley-Milner
 • Essentially build constraints based on how expressions are used and try to solve constraints
 • Error messages for non-well-typed programs can be challenging!
Polymorphism and Type Inference

- **Polymorphism** is the ability of code to be used on values of different types.
 - E.g., polymorphic function can be invoked with arguments of different types
 - Polymorph means “many forms”
- OCaml has polymorphic types
 - E.g., `val swap : 'a ref -> 'a -> 'a = ...`
- But type inference for full polymorphic types is undecidable...
- OCaml has restricted form of polymorphism that allows type inference: **let-polymorphism** aka prenex polymorphism
 - Allow let expressions to be typed polymorphically, i.e., used at many types
 - Doesn’t require copying of let expressions
 - Requires clear distinction between polymorphic types and non-polymorphic types...
Type Safety

• “Well typed programs do not go wrong.”
 – Robin Milner, 1978

• Note: this is a very strong property.
 • Well-typed programs cannot “go wrong” by trying to execute undefined code (such as 3 + (fun x -> 2))
 • Simply-typed lambda calculus is guaranteed to terminate! (i.e. it isn't Turing complete)

• Depending on language, will not rule out all possible undefined behavior
 • E.g., 3/0, *NULL, ...
 • More sophisticated type systems can rule out more kinds of possible runtime errors
Judgements and Inference Rules

• We saw type checking algorithm in code
• Can express type-checking rules compactly and clearly using a type judgment and inference rules
Type Judgments

• In the judgment: \(E \vdash e : t \)
 • \(E \) is a typing environment or a type context
 • \(E \) maps variables to types. It is just a set of bindings of the form:
 \(x_1 : t_1, x_2 : t_2, \ldots, x_n : t_n \)
 • If \(E \vdash e : t \) then expression \(e \) has type \(t \) under typing environment \(E \)
 • \(E \vdash e : t \) can be thought of as a set or relation
 • For example:
 \(x : \text{int}, b : \text{bool} \vdash \text{if (b) 3 else x} : \text{int} \)

• What do we need to know to decide whether “if (b) 3 else x” has type \(\text{int} \) in the environment \(x : \text{int}, b : \text{bool} \)?
 • \(b \) must be a bool
 i.e.
 \(x : \text{int}, b : \text{bool} \vdash b : \text{bool} \)
 • \(3 \) must be an int
 i.e.
 \(x : \text{int}, b : \text{bool} \vdash 3 : \text{int} \)
 • \(x \) must be an int
 i.e.
 \(x : \text{int}, b : \text{bool} \vdash x : \text{int} \)
Recall Inference Rules

- Inference rule
 - If the premises are true, then the conclusion is true
 - An **axiom** is a rule with no premises
 - Inference rules can be **instantiated** by replacing **metavariables** (e, e1, e2, x, i, ...) with expressions, program variables, integers, as appropriate.
Why Inference Rules?

• Compact, precise way of specifying language properties.
 • E.g. ~20 pages for full Java vs. 100’s of pages of prose Java Language Spec.
• Inference rules correspond closely to the recursive AST traversal that implements them.
• Type checking (and type inference) is nothing more than attempting to prove a different judgment \((E \vdash e : t) \) by searching backwards through the rules.
• Compiling in a context is nothing more than a collection of inference rules specifying yet a different judgment \((E \vdash \text{src} \Rightarrow \text{target}) \)
 • Moreover, the compilation rules are very similar in structure to the typechecking rules.
• Strong mathematical foundations
 • The “Curry-Howard correspondence”: Programming Language ~ Logic, Program ~ Proof, Type ~ Proposition
 • See CS152 if you’re interested in type systems!
Simply-typed Lambda Calculus

• Note how these rules correspond to the code.
Type Checking Derivations

• A **derivation** or **proof tree** is a tree where nodes are instantiations of inference rules and edges connect a premise to a conclusion.

• Leaves of the tree are axioms (i.e. rules with no premises).

• Goal of the typechecker: verify that such a tree exists.

• Example: Find a tree for the following program using the inference rules on the previous slide:

\[\vdash (\text{fun (x:int) -\(\to\) x + 3})\ 5\ :\ \text{int} \]
Example Derivation Tree
Example Derivation Tree

```
VAR  x : int ∈ x : int
ADD  x : int ⊢ x : int
     x : int ⊢ 3 : int
     ⊢ x + 3 : int
FUN  ⊢ (fun (x:int) -> x + 3) : int -> int
APP  ⊢ 5 : int
     ⊢ (fun (x:int) -> x + 3) 5 : int
```

• Note: the OCaml function typecheck verifies the existence of this tree. The structure of the recursive calls when running τ_c is same shape as this tree!

• Note that $x : \text{int} \in E$ is implemented by the function lookup
Theorem: (simply typed lambda calculus with integers)

If $\vdash e : t$ then there exists a value v such that $e \Downarrow v$.
Arrays

• Array constructs are not hard
• First: add a new type constructor: \(T[] \)

\[
\text{NEW} \\
\frac{E \vdash e_1 : \text{int} \quad E \vdash e_2 : T}{E \vdash \text{new } T[e_1](e_2) : T[]}
\]

\[
\text{INDEX} \\
\frac{E \vdash e_1 : T[] \quad E \vdash e_2 : \text{int}}{E \vdash e_1[e_2] : T}
\]

\[
\text{UPDATE} \\
\frac{E \vdash e_1 : T[] \quad E \vdash e_2 : \text{int} \quad E \vdash e_3 : T}{E \vdash e_1[e_2] = e_3 \text{ ok}}
\]

\(e_1 \) is the size of the newly allocated array. \(e_2 \) initializes the elements of the array.

Note: These rules don’t ensure that the array index is in bounds – that should be checked \textit{dynamically}.
Tuples

• ML-style tuples with statically known number of products
• First: add a new type constructor: $T_1 \times \ldots \times T_n$

\[
\begin{align*}
\text{TUPLE} & \quad E \vdash e_1 : T_1 \quad \ldots \quad E \vdash e_n : T_n \\
& \quad \quad \quad E \vdash (e_1, \ldots, e_n) : T_1 \times \ldots \times T_n \\
\text{PROJ} & \quad E \vdash e : T_1 \times \ldots \times T_n \quad 1 \leq i \leq n \\
& \quad \quad \quad E \vdash \#i \ e : T_i
\end{align*}
\]
• ML-style references (note that ML uses only expressions)
• First, add a new type constructor: \(T \text{ ref} \)

\[
\begin{array}{c}
\text{REF} \\
E \vdash e : T \\
\hline
E \vdash \text{ref } e : T \text{ ref}
\end{array}
\]

\[
\begin{array}{c}
\text{DEREF} \\
E \vdash e : T \text{ ref} \\
\hline
E \vdash !e : T
\end{array}
\]

\[
\begin{array}{c}
\text{ASSIGN} \\
E \vdash e_1 : T \text{ ref} \quad E \vdash e_2 : T \\
\hline
E \vdash e_1 := e_2 : \text{ unit}
\end{array}
\]

Note the similarity with the rules for arrays…
Oat Type Checking

• For HW5 we will add typechecking to Oat
 • And some other features
• Some of Oat’s features
 • Imperative (update variables, like references)
 • Distinction between statements and expressions
 • More complicated control flow
 • Return
 • While, For, ...
• What does a type system look like for Oat?
Some Oat Judgments

- Split environment E into Globals and Locals
- Expression e has type t under context $G;L$
 - $G; L \vdash e : t$
- Statement s is well typed under context $G;L$. If it returns, it returns a value of type rt. After s, the local context is L'.
 - $G; L; rt \vdash s \Rightarrow L'$
- Where does G come from?
- Program is a list of global variable declarations and function declarations
- Use judgment to gather up global variable declarations
 - $\vdash_g \text{prog} \Rightarrow G$
Example Derivation

```
var x1 = 0;
var x2 = x1 + x1;
x1 = x1 - x2;
return(x1);
```

\[
\frac{D_1 \ D_2 \ D_3 \ D_4}{\text{PROG}}
\]

\[
\frac{G_0; \vdash \text{var } x_1 = 0; \text{ var } x_2 = x_1 + x_1; x_1 = x_1 - x_2; \text{ return } x_1; \Rightarrow \cdot, x_1 : \text{int}, x_2 : \text{int}}{\text{STMTS}}
\]

\[
\vdash \text{var } x_1 = 0; \text{ var } x_2 = x_1 + x_1; x_1 = x_1 - x_2; \text{ return } x_1;
\]
Example Derivation

\[
\begin{align*}
&\text{var } x_1 = 0; \\
&\text{var } x_2 = x_1 + x_1; \\
&x_1 = x_1 - x_2; \\
&\text{return}(x_1);
\end{align*}
\]

\[
D_1 = \frac{\frac{G_0; \vdash 0 : \text{int}}{[\text{INT}]}}{G_0; \vdash 0 : \text{int}} \frac{G_0; \vdash \text{var } x_1 = 0 \Rightarrow \cdot \cdot x_1 : \text{int}}{[\text{DECL}]}
\]

\[
D_2 = \frac{\frac{\frac{\vdash + : (\text{int}, \text{int}) \rightarrow \text{int}}{[\text{ADD}]}}{\frac{\frac{x_1 : \text{int} \in \cdot \cdot x_1 : \text{int}}{[\text{VAR}]}}{G_0; \cdot \cdot x_1 : \text{int} \vdash x_1 : \text{int}}}{\frac{\frac{x_1 : \text{int} \in \cdot \cdot x_1 : \text{int}}{[\text{VAR}]}}{G_0; \cdot \cdot x_1 : \text{int} \vdash x_1 : \text{int}}}{G_0; \cdot \cdot x_1 : \text{int}; \text{int} \vdash \text{var } x_2 = x_1 + x_1 \Rightarrow \cdot \cdot x_1 : \text{int}, x_2 : \text{int}}{[\text{DECL}]}
\]

\[
D_2 = \frac{\frac{\frac{\vdash + : (\text{int}, \text{int}) \rightarrow \text{int}}{[\text{ADD}]}}{\frac{\frac{x_1 : \text{int} \in \cdot \cdot x_1 : \text{int}}{[\text{VAR}]}}{G_0; \cdot \cdot x_1 : \text{int} \vdash x_1 : \text{int}}}{\frac{\frac{x_1 : \text{int} \in \cdot \cdot x_1 : \text{int}}{[\text{VAR}]}}{G_0; \cdot \cdot x_1 : \text{int} \vdash x_1 : \text{int}}}{G_0; \cdot \cdot x_1 : \text{int}; \text{int} \vdash \text{var } x_2 = x_1 + x_1 \Rightarrow \cdot \cdot x_1 : \text{int}, x_2 : \text{int}}{[\text{DECL}]}
\]

Stephen Chong, Harvard University
Example Derivation

\[D_3 = \frac{\vdash - : (\text{int}, \text{int}) \rightarrow \text{int}}{\frac{\vdash x_1 : \text{int} \in \cdot, x_1 : \text{int}, x_2 : \text{int}}{G_0 ; \cdot, x_1 : \text{int}, x_2 : \text{int} \vdash x_1 : \text{int}} [\text{ADD}] \quad \frac{\vdash x_2 : \text{int} \in \cdot, x_1 : \text{int}, x_2 : \text{int}}{G_0 ; \cdot, x_1 : \text{int}, x_2 : \text{int} \vdash x_2 : \text{int}} [\text{VAR}] \quad \frac{\vdash \cdot, x_1 : \text{int}, x_2 : \text{int} \vdash x_2 : \text{int}}{G_0 ; \cdot, x_1 : \text{int}, x_2 : \text{int} \vdash x_1 : \text{int}} [\text{VAR}] \] [\text{BOP}]
\]

\[\frac{\vdash \cdot, x_1 : \text{int}, x_2 : \text{int} \vdash x_1 = x_1 - x_2 ; \Rightarrow \cdot, x_1 : \text{int}, x_2 : \text{int}}{G_0 ; \cdot, x_1 : \text{int}, x_2 : \text{int} ; \text{int} \vdash x_1 = x_1 - x_2 ; \Rightarrow \cdot, x_1 : \text{int}, x_2 : \text{int}} [\text{ASSN}] \]

\[D_4 = \frac{\vdash x_1 : \text{int} \in \cdot, x_1 : \text{int}, x_2 : \text{int}}{G_0 ; \cdot, x_1 : \text{int}, x_2 : \text{int} \vdash x_1 : \text{int}} [\text{VAR}] \quad \frac{\vdash \cdot, x_1 : \text{int}, x_2 : \text{int} \vdash \text{return} x_1 ; \Rightarrow \cdot, x_1 : \text{int}, x_2 : \text{int}}{G_0 ; \cdot, x_1 : \text{int}, x_2 : \text{int} ; \text{int} \vdash \text{return} x_1 ; \Rightarrow \cdot, x_1 : \text{int}, x_2 : \text{int}} [\text{RET}] \]
Type Safety For General Languages

Theorem: (Type Safety)

If P is a well-typed program, then either:
(a) the program terminates in a well-defined way, or
(b) the program continues computing forever

• Well-defined termination could include:
 • halting with a return value
 • raising an exception

• Type safety rules out undefined behaviors:
 • abusing “unsafe” casts: converting pointers to integers, etc.
 • treating non-code values as code (and vice-versa)
 • breaking the type abstractions of the language

• What is “defined” depends on the language semantics…
Compilation As Translating Judgments

• Consider the source typing judgment for source expressions:

\[C \vdash e : t \]

• How do we interpret this information in the target language?

\[\llbracket C \vdash e : t \rrbracket = ? \]

• \(\llbracket C \rrbracket \) translates contexts

• \(\llbracket t \rrbracket \) is a target type

• \(\llbracket e \rrbracket \) translates to a (potentially empty) stream of instructions, that, when run, computes the result into some operand

• INVARIANT: if \(\llbracket C \vdash e : t \rrbracket = ty, \) operand, stream then the type (at the target level) of the operand is \(ty=\llbracket t \rrbracket \)
Example

- $C \vdash 37 + 5 : \text{int}$
- What is $\llbracket C \vdash 37 + 5 : \text{int} \rrbracket$?

\[
\begin{align*}
\llbracket C \vdash 37 : \text{int} \rrbracket &= \text{i64}, \text{Const 37}, []) \\
\llbracket C \vdash 5 : \text{int} \rrbracket &= \text{i64}, \text{Const 5}, []) \\
\llbracket C \vdash 37 + 5 : \text{int} \rrbracket &= (\text{i64}, \%\text{tmp}, [\%\text{tmp} = \text{add i64 (Const 37) (Const 5)}])
\end{align*}
\]
What about the Context?

• What is \([C]\)?

• Source level C has bindings like: \(x:\text{int}, y:\text{bool}\)
 • We think of it as a finite map from identifiers to types

• What is the interpretation of C at the target level?

• \([C]\) maps source identifiers, “x”, to target types and \([x]\)

• What is the interpretation of a variable \([x]\) at the target level?
 • How are the variables used in the type system?

\[
\frac{x : t \in L}{G; L \vdash x : t} \quad \text{TYP_VAR}
\]

as expressions
(which denote values)

\[
\frac{x : t \in L}{G; L \vdash exp : t} \quad \text{TYP_ASSN}
\]

\[
\frac{G; L; rt \vdash x = exp}{G; L \Rightarrow L}
\]

as addresses
(which can be assigned)
Interpretation of Contexts

- $\llbracket C \rrbracket$ = a map from source identifiers to types and target identifiers
- INVARIANT:
 - $x:t \in C$ means that

 1. $\text{lookup } \llbracket C \rrbracket x = (\llbracket t \rrbracket^*, \%id_x)$
 2. the (target) type of $\%id_x$ is $\llbracket t \rrbracket^*$ (a pointer to $\llbracket t \rrbracket$)
Interpretation of Variables

• Establish invariant for expressions:

\[
\frac{x : t \in L}{G; L \vdash x : t} \quad \text{TYP_VAR}
\]

as expressions (which denote values)

\[
\frac{G; L \vdash \text{exp} : t}{G; L; rt \vdash x = \text{exp}; \Rightarrow L} \quad \text{TYP_ASSN}
\]

as addresses (which can be assigned)

\[
\left(\%\text{tmp}, [\%\text{tmp} = \text{load i64} \times \%\text{id}_x] \right)
\]

where \((\text{id}_4, \%\text{id}_x) = \text{lookup} [L] x\)

• What about statements?

\[
\frac{x : t \in L}{G; L \vdash \text{exp} : t} \quad \text{TYP_ASSN}
\]

as addresses

\[
\left([\text{t}], \%\text{id}_x \right) = \text{lookup} [L] x
\]

and \([G; L \vdash \text{exp} : t] = ([\text{t}], \text{opn}, \text{stream})\)