CS153: Compilers
Lecture 23:
Loop Optimization

Stephen Chong
https://www.seas.harvard.edu/courses/cs153
Contains content from lecture notes by Greg Morrisett
Pre-class Puzzle

• For each of these Control Flow Graphs (CFGs), what is a C program that corresponds to it?
Announcements

• HW5: Oat v.2 due today (Tue Nov 19)
• HW6: Optimization and Data Analysis
 • Due: Tue Dec 3 (in 2 weeks)
• Final exam
 • 9am-12pm Thursday December 19
 • Extension school: online exam, 24 hour window
 • Open book, open note, open laptop
 • No communication, no searching for answers on internet
 • ~30 multiple choice or short answer questions
 • Comprehensive exam (i.e., all material covered in course)
 • Won’t need to program, won’t depend on
 • We will release some study material in a few weeks
Announcements: Upcoming Lectures

• Thursday Nov 21: Embedded EthiCS module
 • Ethics of Open Source
 • Guest lecturer Meica Magnani
 • Pre-lecture viewing/thinking posted on Piazza
 • Will be a brief assignment posted on Piazza after lecture

• Tuesday Dec 3: The Economics of Programming Languages
 • Evan Czaplicki ’12, creator of the Elm programming language
 • https://elm-lang.org/
Today

• Loop optimization
 • Examples
 • Identifying loops
 • Dominators
 • Loop-invariant removal
 • Induction variable reduction
 • Loop fusion
 • Loop fission
 • Loop unrolling
 • Loop interchange
 • Loop peeling
 • Loop tiling
 • Loop parallelization
Loop Optimizations

- Vast majority of time spent in loops
- So we want techniques to improve loops!
 - Loop invariant removal
 - Induction variable elimination
 - Loop unrolling
 - Loop fusion
 - Loop fission
 - Loop peeling
 - Loop interchange
 - Loop tiling
 - Loop parallelization
 - Software pipelining
Example 1: Invariant Removal

L0: \(t := 0 \)

L1: \(i := i + 1 \)

\(t := a + b \)

\(*i := t \)

if \(i < N \) goto L1 else L2

L2: \(x := t \)
Example 1: Invariant Removal

L0: \(t := 0 \)

L0: \(t := a + b \)

L1: \(i := i + 1 \)

\(*i := t \)

if \(i < N \) goto L1 else L2

L2: \(x := t \)
Example 2: Induction Variable

L0: i := 0
 s := 0
 jump L2

L1: t1 := i*4
 t2 := a+t1
 t3 := *t2
 s := s + t3
 i := i+1

L2: if i < 100 goto L1 else goto L3

L3: ...
Example 2: Induction Variable

L0: i := 0
 s := 0
 jump L2
L1: t1 := i * 4
 t2 := a + t1
 t3 := *t2
 s := s + t3
 i := i + 1
L2: if i < 100 goto L1 else goto L3
L3: ...

*Notation: t1 is always equal to i*4!
Example 2: Induction Variable

L0: \(i := 0 \)

\(s := 0 \)

\(t1 := 0 \)

jump L2

L1: \(t2 := a + t1 \)

\(t3 := *t2 \)

\(s := s + t3 \)

\(i := i + 1 \)

\(t1 := t1 + 4 \)

L2: if \(i < 100 \) goto L1 else goto L3

L3: ...

\(t1 \) is always equal to \(i \times 4 \)!
Example 2: Induction Variable

L0: i := 0
 s := 0
 t1 := 0
 jump L2
L1: t2 := a+t1
 t3 := *t2
 s := s + t3
 i := i+1
 t1 := t1+4
L2: if i < 100 goto L1 else goto L3
L3: ...
Example 2: Induction Variable

$L0$: $i := 0$
$s := 0$
$t1 := 0$
jump L2

$L1$: $t2 := a + t1$
$t3 := *t2$
$s := s + t3$
i := i+1$
t1 := t1+4$

$L2$: if $i < 100$ goto L1 else goto L3

$L3$: ...
Example 2: Induction Variable

L0: i := 0
 s := 0
 t1 := 0
 t2 := a
 jump L2

L1: t3 := *t2
 s := s + t3
 i := i+1
 t2 := t2+4
 t1 := t1+4

L2: if i < 100 goto L1 else goto L3

L3: ...

T2 is always equal to a+t1 == a+i*4!
Example 2: Induction Variable

L0:
i := 0
s := 0

L1:
t1 := 0

t2 := a

jump L2

L2:
if i < 100 goto L1 else goto L3

L3:
...

L0:
i := 0
s := 0
t1 := 0
t2 := a

jump L2

L1:
t3 := *t2
s := s + t3
i := i+1
t2 := t2+4
t1 := t1+4

L2:
if i < 100 goto L1 else goto L3

L3: ...
Example 2: Induction Variable

L0: \(i := 0 \)
 \(s := 0 \)
 \(t2 := a \)
 jump L2

L1: \(t3 := *t2 \)
 \(s := s + t3 \)
 \(i := i + 1 \)
 \(t2 := t2 + 4 \)

L2: if \(i < 100 \) goto L1 else goto L3
L3: ...
Example 2: Induction Variable

L0: \(i := 0 \)
 \(s := 0 \)
 \(t2 := a \)
 jump L2

L1: \(t3 := \ast t2 \)
 \(s := s + t3 \)
 \(i := i+1 \)
 \(t2 := t2+4 \)

L2: if \(i < 100 \) goto L1 else goto L3
L3: ...

\(i \) is now used just to count 100 iterations.
But \(t2 = 4*i + a \)
so \(i < 100 \)
when \(t2 < a+400 \)
Example 2: Induction Variable

L0: i := 0
 s := 0
 t2 := a
 t5 := t2 + 400
 jump L2
L1: t3 := *t2
 s := s + t3
 i := i+1
 t2 := t2+4
 i is now used just to count 100 iterations.
 But t2 = 4*i + a
 so i < 100
 when
 t2 < a+400
L2: if t2 < t5 goto L1 else goto L3
L3: ...
Example 2: Induction Variable

L0: s := 0
 t2 := a
 t5 := t2 + 400
 jump L2

L1: t3 := *t2
 s := s + t3
 t2 := t2 + 4

L2: if t2 < t5 goto L1 else goto L3

L3: ...

i is now used just to count 100 iterations. But t2 = 4*i + a so i < 100 when t2 < a + 400
Loop Analysis

• How do we identify loops?
• What is a loop?
 • Can't just "look" at graphs
 • We're going to assume some additional structure
• Definition: a loop is a subset S of nodes where:
 • S is strongly connected:
 • For any two nodes in S, there is a path from one to the other using only nodes in S
 • There is a distinguished header node $h \in S$ such that there is no edge from a node outside S to $S \setminus \{h\}$
Examples
Examples
Examples
Non-example

• Consider the following:

 • a can’t be header
 • No path from b to a or c to a
 • b can’t be header
 • Has outside edge from a
 • c can’t be header
 • Has outside edge from a
 • So no loop...
 • But clearly a cycle!
Reducible Flow Graphs

• So why did we define loops this way?
• Loop header gives us a “handle” for the loop
 • e.g., a good spot for hoisting invariant statements
• Structured control-flow only produces reducible graphs
 • a graph where all cycles are loops according to our definition.
 • Java: only reducible graphs
 • C/C++: goto can produce irreducible graph
• Many analyses & loop optimizations depend upon having reducible graphs
Finding Loops

- **Definition:** node d *dominates* node n if every path from the start node to n must go through d

- **Definition:** an edge from n to a dominator d is called a *back-edge*

- **Definition:** a *loop* of a back edge $n \rightarrow d$ is the set of nodes x such that d dominates x and there is a path from x to n not including d

- So to find loops, we figure out dominators, and identify back edges
Example

- a dominates a,b,c,d,e,f,g,h
- b dominates b,c,d,e,f,g,h
- c dominates c,e
- d dominates d
- e dominates e
- f dominates f,g,h
- g dominates g,h
- h dominates h
- back-edges?
 - g→b
 - h→a
- loops?
Calculating Dominators

• $D[n]$: the set of nodes that dominate n

• $D[n] = \{n\} \cup (D[p_1] \cap D[p_2] \cap \ldots \cap D[p_m])$
 where $\text{pred}[n] = \{p_1,p_2,\ldots,p_m\}$

• It's pretty easy to solve this equation:
 • start off assuming $D[n]$ is all nodes.
 • except for the start node (which is dominated only by itself)
 • iteratively update $D[n]$ based on predecessors until you reach a fixed point
Representing Dominators

- Don’t actually need to keep set of all dominators for each node
- Instead, construct a **dominator tree**
 - Insight: if both d and e dominate n, then either d dominates e or vice versa
 - So that means that node n has a “closest” or **immediate dominator**
Example

- **CFG**
 - a dominates a, b, c, d, e, f, g, h
 - b dominates b, c, d, e, f, g, h
 - c dominates c, e
 - d dominates d
 - e dominates e
 - f dominates f, g, h
 - g dominates g, h
 - h dominates h

- **Immediate Dominator Tree**
 - a dominated by a
 - b dominated by b, a
 - c dominated by c, b, a
 - d dominated by d, b, a
 - e dominated by e, c, b, a
 - f dominated by f, b, a
 - g dominated by g, f, b, a
 - h dominated by h, g, f, b, a
Nested Loops

• If loops A and B have distinct headers and all nodes in B are in A (i.e., $B \subseteq A$), then we say B is **nested** within A.

• An **inner loop** is a nested loop that doesn’t contain any other loops.

• We usually concentrate our attention on nested loops first (since we spend most time in them).
Loop-Invariant Removal
Loop Invariants

• An assignment $x := v_1 \text{ op } v_2$ is **invariant** for a loop if for each operand v_1 and v_2 either
 • the operand is constant, or
 • all of the definitions that reach the assignment are outside the loop, or
 • only one definition reaches the assignment and it is a loop invariant
Example

L0: \(t := 0 \)
 \(a := x \)

L1: \(i := i + 1 \)
 \(b := 7 \)
 \(t := a + b \)
 \(*i := t \)
 \(\text{if } i < N \text{ goto L1 else L2} \)

L2: \(x := t \)
Hoisting

• We would like to **hoist** invariant computations out of the loop

• But this is trickier than it sounds:
 • We need to potentially introduce an extra node in the CFG, right before the header to place the hoisted statements (the **pre-header**)
 • Even then, we can run into trouble…
Valid Hoisting Example

L0: $t := 0$

L1: $i := i + 1$

$t := a + b$

*i := t

if $i < N$ goto L1 else L2

L2: $x := t$
Valid Hoisting Example

L0: \(t := 0 \)

\[
\begin{align*}
\text{t} & := \text{a} + \text{b} \\
\text{L1: } & i := i + 1 \\
*\text{i} & := \text{t} \\
\text{if } & i < N \text{ goto L1 else L2} \\
\text{L2: } & x := \text{t}
\end{align*}
\]
Invalid Hoisting Example

L0: t := 0

L1: i := i + 1
*i := t
 t := a + b
 if i < N goto L1 else L2

L2: x := t

Although t’s definition is loop invariant, hoisting conflicts with this use of t.
Conditions for Safe Hoisting

• An invariant assignment \(d: x := v_1 \text{ op } v_2 \) is safe to hoist if:
 • \(d \) dominates all loop exits at which \(x \) is live and
 • there is only one definition of \(x \) in the loop, and
 • \(x \) is not live at the entry point for the loop (the pre-header)
Induction Variable Reduction
Induction Variables

- Can express \(j \) and \(k \) as linear functions of \(i \) where the coefficients are either constants or loop-invariant
 - \(j = 4i + 0 \)
 - \(k = 4i + a \)

\[
\begin{align*}
 s & := 0 \\
 i & := 0 \\
 L1: \quad & \text{if } i \geq n \text{ goto } L2 \\
 j & := i \times 4 \\
 k & := j + a \\
 x & := *k \\
 s & := s + x \\
 i & := i + 1 \\
 L2: \quad & \text{...}
\end{align*}
\]
Induction Variables

s := 0
i := 0

L1: if i >= n goto L2
j := i*4
k := j+a
x := *k
s := s+x
i := i+1

L2: ...

• Note that i only changes by the same amount each iteration of the loop
• We say that i is a linear induction variable
• It’s easy to express the change in j and k
 • Since j = 4*i + 0 and k = 4*i + a, if i changes by c, j and k change by 4*c
Detecting Induction Variables

- **Definition:** \(i \) is a **basic induction variable** in a loop \(L \) if the only definitions of \(i \) within \(L \) are of the form \(i := i + c \) or \(i := i - c \) where \(c \) is loop invariant.

- **Definition:** \(k \) is a **derived induction variable** in loop \(L \) if:
 1. There is only one definition of \(k \) within \(L \) of the form \(k := j \cdot c \) or \(k := j + c \) where \(j \) is an induction variable and \(c \) is loop invariant; and
 2. If \(j \) is an induction variable in the family of \(i \) (i.e., linear in \(i \)) then:
 - the only definition of \(j \) that reaches \(k \) is the one in the loop; and
 - there is no definition of \(i \) on any path between the definition of \(j \) and the definition of \(k \).

- If \(k \) is a derived induction variable in the family of \(j \) and \(j = a \cdot i + b \) and, say, \(k := j \cdot c \), then \(k = a \cdot c \cdot i + b \cdot c \).
Strength Reduction

- For each derived induction variable \(j \) where \(j = e_1 \times i + e_0 \) make a fresh temp \(j' \)
- At the loop pre-header, initialize \(j' \) to \(e_0 \)
- After each \(i := i + c \), define \(j' := j' + (e_1 \times c) \)
 - note that \(e_1 \times c \) can be computed in the loop header (i.e., it's loop invariant)
- Replace the unique assignment of \(j \) in the loop with \(j := j' \)
Example

\[
\begin{align*}
&s := 0 \\
&i := 0 \\
&\text{L1: if } i \geq n \text{ goto L2} \\
&j := i \times 4 \\
&k := j + a \\
&x := k \\
&s := s + x \\
&i := i + 1 \\
\text{L2: ...}
\end{align*}
\]

- \(i\) is basic induction variable
- \(j\) is derived induction variable in family of \(i\)
- \(j = 4 \times i + 0\)
- \(k\) is derived induction variable in family of \(j\)
- \(k = 4 \times i + a\)
Example

- \(i\) is basic induction variable
- \(j\) is derived induction variable in family of \(i\)
 - \(j = 4*i + 0\)
- \(k\) is derived induction variable in family of \(j\)
 - \(k = 4*i + a\)

\[
\begin{align*}
\text{s} & := 0 \\
\text{i} & := 0 \\
\hline
\text{j'} & := 0 \\
\text{k'} & := a \\
\hline
\text{L1: } & \text{if } i \geq n \text{ goto L2} \\
\text{j} & := i*4 \\
\text{k} & := j+a \\
\text{x} & := \ast k \\
\text{s} & := s+x \\
\text{i} & := i+1 \\
\hline
\text{L2: } & \ldots
\end{align*}
\]
Example

\(\text{s := 0} \)
\(\text{i := 0} \)
\(j' := 0 \)
\(k' := a \)

L1:

- \(i \) is basic induction variable
- \(j \) is derived induction variable in family of \(i \)
 - \(j = 4 \cdot i + 0 \)
- \(k \) is derived induction variable in family of \(j \)
 - \(k = 4 \cdot i + a \)

\(\text{L1: if } i \geq n \text{ goto L2} \)
\(j := i \cdot 4 \)
\(k := j + a \)
\(x := *k \)
\(s := s + x \)
\(i := i + 1 \)

L2:

- \(j' := j' + 4 \)
- \(k' := k' + 4 \)
Example

\[s := 0 \]
\[i := 0 \]
\[j' := 0 \]
\[k' := a \]

L1: \textbf{if} i >= n \textbf{goto} L2
\[j := j' \]
\[k := k' \]
\[x := \ast k \]
\[s := s + x \]
\[i := i + 1 \]
\[j' := j' + 4 \]
\[k' := k' + 4 \]

L2: \ldots

- \(i \) is basic induction variable
- \(j \) is derived induction variable in family of \(i \)
 - \(j = 4 * i + 0 \)
- \(k \) is derived induction variable in family of \(j \)
 - \(k = 4 * i + a \)
Example

\[
\begin{align*}
 s & := 0 \\
 i & := 0 \\
 j' & := 0 \\
 k' & := a
\end{align*}
\]

L1: if \(i \geq n \) goto L2

\[
\begin{align*}
 x & := *k' \\
 s & := s+x \\
 i & := i+1 \\
 j' & := j'+4 \\
 k' & := k'+4
\end{align*}
\]

L2: ...

• \(i \) is basic induction variable

• \(j \) is derived induction variable in family of \(i \)
 \(j = 4*i + 0 \)

• \(k \) is derived induction variable in family of \(j \)
 \(k = 4*i + a \)
Useless Variables

- A variable is **useless** for L if it is dead at all exits from L and its only use is in a definition of itself.
- E.g., j' is useless
- Can delete useless variables

```plaintext
s := 0
i := 0
j' := 0
k' := a

L1: if i >= n goto L2
x := *k'
s := s+x
i := i+1
j' := j'+4
k' := k'+4

L2: ...
```
Useless Variables

- A variable is **useless** for \(L \) if it is dead at all exits from \(L \) and its only use is in a definition of itself
 - E.g., \(j' \) is useless
- Can delete useless variables

\[
\begin{align*}
 s & := 0 \\
 i & := 0 \\
 j' & := 0 \\
 k' & := a
\end{align*}
\]

\[
L1: \quad \text{if } i \geq n \text{ goto } L2 \\
 x & := *k' \\
 s & := s + x \\
 i & := i + 1 \\
 k' & := k' + 4
\]

\[
L2: \quad \ldots
\]
Useless Variables

- A variable is **useless** for L if it is dead at all exits from L and its only use is in a definition of itself.

 - E.g., j' is useless.

- Can delete useless variables.

```plaintext
s := 0
i := 0
k' := a

L1:  if i >= n goto L2
     x := *k'
     s := s + x
     i := i + 1
     k' := k' + 4

L2:   ...
```
Almost Useless Variables

• A variable is almost useless for L if it is used only in comparison against loop invariant values and in definitions of itself, and there is some other non-useless induction variable in same family
 • E.g., i is almost useless

• An almost-useless variable may be made useless by modifying comparison
 • See Appel for details
Loop Fusion and Loop Fission

- Fusion: combine two loops into one
- Fission: split one loop into two
Loop Fusion

• Before

```c
int acc = 0;
for (int i = 0; i < n; ++i) {
    acc += a[i];
    a[i] = acc;
}
for (int i = 0; i < n; ++i) {
    b[i] += a[i];
}
```

• After

```c
int acc = 0;
for (int i = 0; i < n; ++i) {
    acc += a[i];
    a[i] = acc;
    b[i] += acc;
}
```

• What are the potential benefits? Costs?

• Locality of reference
Loop Fission

• Before

```java
for (int i = 0; i < n; ++i) {
    a[i] = e1;
    b[i] = e2;  // e1 and e2 independent
}
```

• After

```java
for (int i = 0; i < n; ++i) {
    a[i] = e1;
}
for (int i = 0; i < n; ++i) {
    b[i] = e2;
}
```

• What are the potential benefits? Costs?

• Locality of reference
Loop Unrolling

- Make copies of loop body
- Say, each iteration of rewritten loop performs 3 iterations of old loop
Loop Unrolling

• Before
  ```c
  for (int i = 0; i < n; ++i) {
    a[i] = b[i] * 7 + c[i] / 13;
  }
  ```

• After
  ```c
  for (int i = 0; i < n % 3; ++i) {
    a[i] = b[i] * 7 + c[i] / 13;
  }
  for (; i < n; i += 3) {
    a[i] = b[i] * 7 + c[i] / 13;
    a[i + 1] = b[i + 1] * 7 + c[i + 1] / 13;
    a[i + 2] = b[i + 2] * 7 + c[i + 2] / 13;
  }
  ```

• What are the potential benefits? Costs?
• Reduce branching penalty, end-of-loop-test costs
• Size of program increased
Loop Unrolling

• If fixed number of iterations, maybe turn loop into sequence of statements!

• Before

```cpp
for (int i = 0; i < 6; ++i) {
    if (i % 2 == 0) foo(i); else bar(i);
}
```

• After

```cpp
foo(0);
bar(1);
foo(2);
bar(3);
foo(4);
bar(5);
```
Loop Interchange

• Change order of loop iteration variables
Loop Interchange

• Before

```c
for (int j = 0; j < n; ++j) {
    for (int i = 0; i < n; ++i) {
        a[i][j] += 1;
    }
}
```

• After

```c
for (int i = 0; i < n; ++i) {
    for (int j = 0; j < n; ++j) {
        a[i][j] += 1;
    }
}
```

• What are the potential benefits? Costs?
 • Locality of reference
Loop Peeling

• Split first (or last) few iterations from loop and perform them separately
Loop Peeling

• Before

```java
for (int i = 0; i < n; ++i) {
    b[i] = (i == 0) ? a[i] : a[i] + b[i-1];
}
```

• After

```java
b[0] = a[0];
for (int i = 1; i < n; ++i) {
    b[i] = a[i] + b[i-1];
}
```

• What are the potential benefits? Costs?
Loop Tiling

• For nested loops, change iteration order
Loop Tiling

• Before

```c
for (i = 0; i < n; i++) {
    c[i] = 0;
    for (j = 0; j < n; j++) {
        c[i] = c[i] + a[i][j] * b[j];
    }
}
```

• After:

```c
for (i = 0; i < n; i += 4) {
    c[i] = 0;
    c[i + 1] = 0;
    for (j = 0; j < n; j += 4) {
        for (x = i; x < min(i + 4, n); x++) {
            for (y = j; y < min(j + 4, n); y++) {
                c[x] = c[x] + a[x][y] * b[y];
            }
        }
    }
}
```

• What are the potential benefits? Costs?
Loop Parallelization

• Before

```c
for (int i = 0; i < n; ++i) {
    a[i] = b[i] + c[i]; // a, b, and c do not overlap
}
```

• After

```c
for (int i = 0; i < n % 4; ++i) a[i] = b[i] + c[i];
for (; i < n; i = i + 4) {
    __some4SIMDadd(a+i,b+i,c+i);
}
```

• What are the potential benefits? Costs?