CS153: Compilers
Lecture 26:
The Economics of Programming Languages
Guest Lecturer: Evan Czaplicki

Stephen Chong
https://www.seas.harvard.edu/courses/cs153
Announcements

• HW6: Optimization and Data Analysis
 • Due today (Tue Dec 3)
The Economics of Programming Languages

- Evan Czaplicki ’12
 - Creator of the Elm programming language
 - https://elm-lang.org/
What is this course about?

Source Code

Expressive, high-level/abstract

Compiler!

Low-level, hard to read, not much ambiguity or redundancy

Target Code
Basic Architecture

Source Code

Parsing

Elaboration

Lowering

Optimization

Code Generation

Target Code

Front end

Back end
Topics

• Lectures 2 + 3: Assembly
 • Turning C into machine code
 • Intel x86
 • x86lite
 • C memory layout
 • Calling convention

• Lecture 4,5,6: Intermediate Representation
 • Compiling expressions directly to assembly
 • Motivating Intermediate Representations (IRs)
 • Simple Let Language
 • Basic blocks
 • Control-flow graphs

• Lecture 7: LLVM, Structured Data in LLVM
 • Arrays
 • Tagged datatypes (and switches)
 • Datatypes in LLVM

• Lecture 8: Lexing
 • Tokens
 • Regular Expressions
 • Deterministic Finite Automata
 • Nondeterministic Finite Automata
 • NFA to DFA
 • Lexer Generator

• Lecture 9: Recursive Parsing
 • Context-free grammars
 • Derivations
 • Parse trees
 • Ambiguous grammars
 • Recursive descent parsing
 • Parser combinators

• Lecture 10: LL Parsing
 • Nullable, First, Follow sets
 • Constructing an LL parsing table

• Lecture 11: LR Parsing
 • Constructing a DFA and LR parsing table
 • Using Menhir

• Lecture 12: First-class Functions
 • Nested functions
 • Substitution semantics
 • Environment semantics and closures

• Lecture 13: Compiling Functions
 • Closure conversion
 • Implementing environments and variables
 • DeBruijn indices
 • Nested environments vs flat environments
• Lecture 14: Type Checking
 • Judgments and inference rules

• Lecture 15, 16: Subtyping
 • Types as sets of values
 • Subtyping
 • Subsumption
 • Downcasting
 • Functions
 • Records
 • References

• Lecture 17, 18: Compiling Objects
 • What is object oriented programming
 • Dynamic dispatch
 • Code generation for methods and method calls
 • Fields
 • Creating objects
 • Extensions
 • Type system

• Lecture 19: Optimizations
 • Safety
 • Constant folding
 • Algebraic simplification
 • Strength reduction
 • Constant propagation
 • Copy propagation
 • Dead code elimination
 • Inlining and specialization
 • Recursive function inlining
 • Tail call elimination
 • Common subexpression elimination

• Lecture 20: Dataflow Analysis
 • Liveness analysis
 • Worklist algorithm
 • Generalizing dataflow analysis
 • Available expressions
 • Reaching definitions
Topics

- Lecture 21, 22: Register allocation
 - Graph coloring by simplification
 - Coalescing
 - Coloring with coalescing
 - Pre-colored nodes to handle callee-save, caller-save, and special purpose registers

- Lecture 23: Loop Optimizations
 - Examples
 - Identifying loops
 - Dominators
 - Loop-invariant removal
 - Induction variable reduction
 - Loop fusion
 - Loop fission
 - Loop unrolling
 - Loop interchange
 - Loop peeling
 - Loop tiling
 - Loop parallelization

- Lecture 24: Embedded EthiCS module
 - Ethics of Open Source
 - Free/Open Source Software
 - Short History
 - Argument from Freedom
 - Economic Arguments
 - Identifying Possible Ethical Concerns
 - Philosophical Tools: Compensation of Maintainers

- Lecture 25: Garbage Collection
 - Key idea
 - Mark and sweep
 - Stop and copy
 - Generational collection
 - Reference counting
 - Incremental collection, concurrent collection
 - Boehm collector
What Next?

• Exam
 • Will release some practice questions later this week
 • Will arrange review session, likely Monday Dec 16

• Other courses
 • CS152: Programming Languages
 • Spring. Prof Nada Amin
 • CS252r: Advanced Topics in PL
 • Spring 2020: Building a Verified Compiler

• Research
 • Come and chat!