
Dataflow analysis

CS252r Spring 2011
(Based on lecture notes by Jeff Foster)

© 2010 Stephen Chong, Harvard University

Control flow graph

•A control flow graph is a representation of a
program that makes certain analyses (including
dataflow analyses) easier

•A directed graph where
•Each node represents a statement

•Edges represent control flow

•Statements may be
•Assignments: x := y or x := y op z or x := op y

•Branches: goto L or if b then goto L
•etc.

2

© 2010 Stephen Chong, Harvard University

Control-flow graph example

3

x := a + b;
y := a * b;
while (y > a) {
 a := a + 1;
 x := a + b
}

x := a + b;

y := a * b;

y > a

a := a + 1;

x := a + b

© 2010 Stephen Chong, Harvard University

Variations on CFGs

•Usually don’t include declarations (e.g., int x;) in
the CFG
•But there’s usually something in the implementation

•May want a unique entry and exit node
•Won’t matter for the examples we give

•May group statements into basic blocks
•A sequence of instructions with no branches into or

out of the block

4

© 2010 Stephen Chong, Harvard University

Control-flow graph with basic blocks

5

x := a + b;
y := a * b;
while (y > a) {
 a := a + 1;
 x := a + b
}

x := a + b;
y := a * b;

y > a

a := a + 1;
x := a + b

•Can lead to more efficient
implementations

•More complicated to
explain, so for the meantime
we’ll use single statement
blocks

© 2010 Stephen Chong, Harvard University

Graph example with entry and exit

6

x := a + b;
y := a * b;
while (y > a) {
 a := a + 1;
 x := a + b
}

x := a + b;

y := a * b;

y > a

a := a + 1;

x := a + b

exit

entry

•All nodes without a normal
predecessor should be
pointed to by entry

•All nodes with a successor
should point to exit

© 2010 Stephen Chong, Harvard University

CFG vs AST

•CFGs are much simpler than ASTs

•Fewer forms, less redundancy, only simple
expressions

•But AST is a more faithful representation
•CFGs introduce temporaries

•Lose block structure of program

•ASTs are
•Easier to report error + other messages

•Easier to explain to programmer
•Easier to unparse to produce readable code

7

© 2010 Stephen Chong, Harvard University

Dataflow analysis

•A framework for proving facts about programs
•Reasons about lots of little facts
•Little or no interaction between facts

•Works best on properties about how program
computes

•Based on all paths through program
•Including infeasible paths

•Let’s consider some dataflow analyses

8

© 2010 Stephen Chong, Harvard University

Available expressions

• An expression e is available at program point p if
•e is computed on every path to p,and
•the value of e has not changed since the last time e was

computed on the paths to p

•Available expressions can be used to optimize
code
•If an expression is available, don’t need to recompute it

(provided it is stored in a register somewhere)

9

© 2010 Stephen Chong, Harvard University

Data flow facts

•Is expression e available?
•Facts

•“a + b is available”
•“a * b is available”
•“a + 1 is available”

•For each program
point, we will
compute which facts
hold.

10

x := a + b;

y := a * b;

y > a

a := a + 1;

x := a + b

exit

entry

© 2010 Stephen Chong, Harvard University

Gen and Kill

•What is the effect of each
statement on the facts?

11

x := a + b;

y := a * b;

y > a

a := a + 1;

x := a + b

exit

entry

Stmt Gen Kill

x := a + b a + b

y := a * b a * b

y > a

a := a + 1
a + 1
a + b
a * b

© 2010 Stephen Chong, Harvard University

Computing available expressions

12

x := a + b;

y := a * b;

y > a

a := a + 1;

x := a + b

exit

entry
∅

∅

{a+b}

{a+b}

{a+b, a*b}
{a+b, a*b}

{a+b, a*b}
{a+b, a*b}

∅

∅

{a+b}

{a+b}

{a+b}

{a+b}

© 2010 Stephen Chong, Harvard University

Terminology

•A join point is a program point where two or
more branches meet

•Available expressions is a forward must analysis
•Forward = Data flow from in to out
•Must = At join points, only keep facts that hold on all

paths that are joined

13

© 2010 Stephen Chong, Harvard University

Data flow equations

•Let s be a statement
•succs(s) = { immediate successor stmts of s }
•preds(s) = { immediate predecessor stmts of s }
•In(s) = program point just before executing s
•Out(s) = program point just after executing s

•In(s) = ∩s’∈preds(s) Out(s’)

•Out(s) = Gen(s) ∪ (In(S) - Kill(s))

14

© 2010 Stephen Chong, Harvard University

Liveness analysis

•A variable v is live at program point p if
•v will be used on some execution path originating

from p before v is overwritten

•Optimization
•If a variable is not live, no need to keep it in a register
•If variable is dead at assignment, can eliminate

assignment

15

© 2010 Stephen Chong, Harvard University

Data flow equations

•Available expressions is a forward must analysis
•Propagate facts in same direction as control flow

•Expression is available only if available on all paths

•Liveness is a backwards may analysis
•To know if a variable is live, we need to look at the future

uses of it. We propagate facts backwards, from Out to In

•Variable is live if it is used on some path

•Out(s) = ∪s’∈succs(s) In(s’)

•In(s) = Gen(s) ∪ (Out(S) - Kill(s))

16

© 2010 Stephen Chong, Harvard University

Gen and Kill

•What is the effect of each
statement on the facts?

17

x := a + b;

y := a * b;

y > a

a := a + 1;

x := a + b

exit

entry

Stmt Gen Kill

x := a + b a, b x

y := a * b a, b y

y > a a, y

a := a + 1 a a

© 2010 Stephen Chong, Harvard University

Computing live variables

18

x := a + b;

y := a * b;

y > a

a := a + 1;

x := a + b

x

x
x, y, a

x, y, a

x, a, b

x, a, b

a, b

x, y, a

y, a, b

y, a, b

y, a, b

x, y, a, b

x, y, a, b

x, y, a, b

x, y, a, b

© 2010 Stephen Chong, Harvard University

Very busy expressions

•An expression e is very busy at point p if
•On every path from p, expression e is evaluated before

the value of e is changed

•Optimization
•Can hoist very busy expression computation

•What kind of problem?
•Forward or backward?
•May or must?

19

© 2010 Stephen Chong, Harvard University

Reaching definitions

•A definition of a variable v is an assignment to v
•A definition of variable v reaches point p if

•There is no intervening assignment to v
•Also called def-use information

•What kind of problem?
•Forward or backward?
•May or must?

20

© 2010 Stephen Chong, Harvard University

Space of data flow analyses

•Most dataflow analyses can be categorized in
this way
•A few don’t fit, need bidrectional flow

•Lots of literature on data flow analyses
21

May Must

Forward Reaching
definitions

Available
expressions

Backward Live variables Very busy
expressions

© 2010 Stephen Chong, Harvard University

Data flow facts and lattices

•Typically, data flow facts form lattices
•E.g., available expressions

22

a+b, a*b, a+1

a*b, a+1

a+b, a+1

a+b, a*b

a*b

a+1 a+b

∅

⊤ “top”

⊥ “bottom”

© 2010 Stephen Chong, Harvard University

Partial orders and lattices

•A partial order is a pair (P,≤) such that
•≤ is a relation over P (≤ ⊆ P×P)

•≤ is reflexive, anti-symmetric, and transitive

•A partial order is a lattice if every two elements of P have
a unique least upper bound and greatest lower bound.
•⊓ is the meet operator: x ⊓ y is the greatest lower bound of x and y
• x ⊓ y ≤ x and x ⊓ y ≤ y

• if z ≤ x and z ≤ y then z ≤ x ⊓ y

•⊔ is the join operator: x ⊔ y is the least upper bound of x and y
• x ≤ x ⊔ y and y ≤ x ⊔ y

• if x ≤ z and y ≤ z then x ⊔ y ≤ z

• A join semi-lattice (meet semi-lattice) has only the join (meet) operator defined
23

© 2010 Stephen Chong, Harvard University

Complete lattices

•A partially ordered set is a complete lattice if
meet and join are defined for all subsets (i.e., not
just for all pairs)

•A complete lattice always has a bottom element
and a top element

•A finite lattice always has a bottom element and
a top element

24

© 2010 Stephen Chong, Harvard University

Useful lattices

•(2S, ⊆) forms a lattice for any set S
•2S is powerset of S, the set of all subsets of S.

•If (S, ≤) is a lattice, so is (S, ≥)
•i.e., can “flip” the lattice

•Lattice for constant propagation

25

1 2 3 4 ...

⊤

⊥

© 2010 Stephen Chong, Harvard University

Forward must data flow algorithm

26

Out(s) = ⊤ for all statements s
W := { all statements } (worklist)
repeat {

Take s from W

In(s) := ∩s′ ∊ pred(s) Out(s′)
temp := Gen(s) ∪ (In(s) - Kill(s))
if (temp != Out(s)) {

Out(s) := temp
W := W ∪ succ(s)

}
} until W = ∅

© 2010 Stephen Chong, Harvard University

Monotonicity

•A function f on a partial order is monotonic if
•if x ≤ y then f(x) ≤ f(y)

•Functions for computing In(s) and Out(s) are
monotonic

•In(s) := ∩s′ ∊ pred(s) Out(s′)
•temp := Gen(s) ∪ (In(s) - Kill(s))

• Putting them together: temp := fs(∩s′ ∊ pred(s) Out(s′))

27

A function fs of In(s)

© 2010 Stephen Chong, Harvard University

Termination

•We know the algorithm
terminates

•In each iteration, either
W gets smaller, or Out(s)
decreases for some s
•Since function is monotonic

•Lattice has only finite
height, so for each s,
Out(s) can decrease only
finitely often

28

Out(s) = ⊤ for all statements s
W := { all statements }
repeat {

Take s from W

In(s) := ∩s′ ∊ pred(s) Out(s′)
temp := Gen(s) ∪ (In(s) - Kill(s))
if (temp != Out(s)) {

Out(s) := temp
W := W ∪ succ(s)

}
} until W = ∅

© 2010 Stephen Chong, Harvard University

Termination

•A descending chain in a lattice is a sequence
x0 < x1 < ...

•The height of a lattice is the length of the longest
descending chain in the lattice

•Then, dataflow must terminate in O(nk) time
•n = # of statements in program
•k = height of lattice
•assumes meet operation and transfer function takes

O(1) time

29

© 2010 Stephen Chong, Harvard University

Fixpoints

•Dataflow tradition: Start with Top, use meet
•To do this, we need a meet semilattice with top
• complete meet semilattice = meets defined for any set
• finite height ensures termination

•Computes greatest fixpoint

•Denotational semantics tradition: Start with
Bottom, use join
•Computes least fixpoint

30

© 2010 Stephen Chong, Harvard University

Forward must data flow algorithm

31

Out(s) = ⊤ for all statements s
W := { all statements } (worklist)
repeat {

Take s from W

In(s) := ∩s′ ∊ pred(s) Out(s′)
temp := Gen(s) ∪ (In(s) - Kill(s))
if (temp != Out(s)) {

Out(s) := temp
W := W ∪ succ(s)

}
} until W = ∅

Transfer function for
statement s

© 2010 Stephen Chong, Harvard University

Forward data flow again

32

Out(s) = ⊤ for all statements s
W := { all statements }
repeat {

Take s from W

temp := fs(⊓s′ ∊ pred(s) Out(s′))
if (temp != Out(s)) {

Out(s) := temp
W := W ∪ succ(s)

}
} until W = ∅

© 2010 Stephen Chong, Harvard University

Which lattice to use?

•Available expressions
•P = sets of expressions
•Meet operation ⊓ is set intersection ∩

•⊤ is set of all expressions

•Reaching definitions
•P = sets of definitions (assignment statements)
•Meet operation ⊓ is set union ∪

•⊤ is empty set

•Monotonic transfer function fs is defined based on
gen and kill sets.

33

© 2010 Stephen Chong, Harvard University

Distributive data flow problems

•If f is monotonic, then we have
 f(x ⊓ y) ≤ f(x) ⊓ f(y)

•If f is distributive then we have
 f(x ⊓ y) = f(x) ⊓ f(y)

34

© 2010 Stephen Chong, Harvard University

Benefit of distributivity

•Joins lose no information

• k(h(f(⊤) ⊓ g(⊤)))
= k(h(f(⊤)) ⊓ h(g(⊤)))
= k(h(f(⊤))) ⊓ k(h(g(⊤))))

35

f

h

k

g

© 2010 Stephen Chong, Harvard University

Accuracy of data flow analysis

•Ideally we would like to compute the meet over all
paths (MOP) solution:
•Let fs be the transfer function for statement s

•If p is a path s1,…,sn, let fp = fsn;...fs1
•Let paths(s) be the set of paths from the entry to s

•MOP(s) = ⊓p∈paths(s) fp(⊤)

•If the transfer functions are distributive, then solving
using the data flow equations in the standard way
produces the MOP solution

36

© 2010 Stephen Chong, Harvard University

What problems are distributive?

•Analyses of how the program computes
•E.g.,
• Live variables
•Available expressions
•Reaching definitions
•Very busy expressions

•All Gen/Kill problems are distributive

37

© 2010 Stephen Chong, Harvard University

Non-distributive example

•Constant propagation

•In general, analysis of what the program computes is
not distributive

•Thm: MOP for In(s) will always be ⊑ iterative dataflow
solution

38

y := 1;

z := x + y

y := 2;

x := 2; x := 1;

1 2 3 4 ...

⊤

⊥

© 2010 Stephen Chong, Harvard University

Practical implementation

•Data flow facts are assertions that are true or
false at a program point

•Can represent set of facts as bit vector
•Fact i represented by bit i
•Intersection=bitwise and, union=bitwise or, etc

•“Only” a constant factor speedup
•But very useful in practice

39

© 2010 Stephen Chong, Harvard University

Basic blocks

•A basic block is a sequence of statements such
that
•No branches to any statement except the first
•No statement in the block branches except the last

•In practical data flow implementations
•Compute Gen/Kill for each basic block
•Compose transfer functions

•Store only In/Out for each basic block
•Typical basic block is about 5 statements

40

© 2010 Stephen Chong, Harvard University

Order is important

•Assume forward data flow problem
•Let G=(V,E) be the CFG
•Let k be the height of the lattice

•If G acyclic, visit in topological order
•Visit head before tail of edge

•Running time O(|E|)
•No matter what size the lattice

41

© 2010 Stephen Chong, Harvard University

Order is important

• If G has cycles, visit in reverse postorder
•Order from depth-first search

•Let Q = max # back edges on cycle-free path
•Nesting depth
•Back edge is from node to ancestor on DFS tree

•Then if ∀x. f(x) ≤ x (sufficient, but not necessary)

•Running time is O((Q + 1)|E|)

42

© 2010 Stephen Chong, Harvard University

Flow sensitivity

•Data flow analysis is flow sensitive
•The order of statements is taken into account
• I.e., we keep track of facts per program point

•Alternative: Flow-insensitive analysis
•Analysis the same regardless of statement order
•Standard example: types describe facts that are true at

all program points
• /*x:int*/ x:=… /*x:int*/

43

© 2010 Stephen Chong, Harvard University

A problem...

•Consider following program

•Can pFile be NULL when used for fputs?
•What dataflow analysis could we use to

determine if it is?
44

FILE *pFile = NULL;
if (debug) {
 pFile = fopen(“debuglog.txt”, “a”)
}
…
if (debug) {
 fputs(“foo”, pFile);
}

© 2010 Stephen Chong, Harvard University

Path sensitivity

45

pFile = ...

...

fputs(pFile)

...

debug

debug

pFile ≠ NULL∅

∅

∅

© 2010 Stephen Chong, Harvard University

Path sensitivity

• A path-sensitive analysis tracks data flow facts depending on
the path taken
• Path often represented by which branches of conditionals taken

• Can reason more accurately about correlated conditionals (or
dependent conditionals) such as in previous example

• How can we make a path sensitive analysi
• Could do a dataflow analysis where we track facts for each possible path

• But exponentially many paths make it difficult to scale

• Some research on scalable path sensitive analyses. We will
discuss one next week

46

© 2010 Stephen Chong, Harvard University

Terminology review

•Must vs. May
•(Not always followed in literature)

•Forwards vs. Backwards
•Flow-sensitive vs. Flow-insensitive
•Path-sensitive vs Path-insensitive
•Distributive vs. Non-distributive

47

© 2010 Stephen Chong, Harvard University

Dataflow analysis and the heap

•Data Flow is good at analyzing local variables
•But what about values stored in the heap?
•Not modeled in traditional data flow

•In practice: *x := e
•Assume all data flow facts killed (!)
•Or, assume write through x may affect any variable

whose address has been taken

•In general, hard to analyze pointers

48

