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Control flow graph

•A control flow graph is a representation of a 
program that makes certain analyses (including 
dataflow analyses) easier

•A directed graph where
•Each node represents a statement

•Edges represent control flow

•Statements may be
•Assignments: x := y  or  x := y op z or x := op y

•Branches: goto L or if b then goto L
•etc.
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Control-flow graph example
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x := a + b;
y := a * b;
while (y > a) {
  a := a + 1;
  x := a + b
}

x := a + b;

y := a * b;

y > a

a := a + 1;

x := a + b
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Variations on CFGs

•Usually don’t include declarations (e.g., int x;) in 
the CFG
•But there’s usually something in the implementation

•May want a unique entry and exit node 
•Won’t matter for the examples we give

•May group statements into basic blocks
•A sequence of instructions with no branches into or 

out of the block

4
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Control-flow graph with basic blocks
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x := a + b;
y := a * b;
while (y > a) {
  a := a + 1;
  x := a + b
}

x := a + b;
y := a * b;

y > a

a := a + 1;
x := a + b

•Can lead to more efficient 
implementations

•More complicated to 
explain, so for the meantime 
we’ll use single statement 
blocks
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Graph example with entry and exit
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x := a + b;
y := a * b;
while (y > a) {
  a := a + 1;
  x := a + b
}

x := a + b;

y := a * b;

y > a

a := a + 1;

x := a + b

exit

entry

•All nodes without a normal 
predecessor should be 
pointed to by entry

•All nodes with a successor 
should point to exit
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CFG vs AST

•CFGs are much simpler than ASTs 

•Fewer forms, less redundancy, only simple 
expressions

•But AST is a more faithful representation 
•CFGs introduce temporaries

•Lose block structure of program

•ASTs are
•Easier to report error + other messages

•Easier to explain to programmer
•Easier to unparse to produce readable code

7



© 2010 Stephen Chong, Harvard University

Dataflow analysis

•A framework for proving facts about programs
•Reasons about lots of little facts
•Little or no interaction between facts

•Works best on properties about how program 
computes

•Based on all paths through program
•Including infeasible paths

•Let’s consider some dataflow analyses
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Available expressions

• An expression e is available at program point p if
•e is computed on every path to p,and
•the value of e has not changed since the last time e was 

computed on the paths to p

•Available expressions can be used to optimize 
code
•If an expression is available, don’t need to recompute it 

(provided it is stored in a register somewhere)

9
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Data flow facts

•Is expression e available?
•Facts

•“a + b is available”
•“a * b is available”
•“a + 1 is available”

•For each program 
point, we will 
compute which facts
hold.
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x := a + b;

y := a * b;

y > a

a := a + 1;

x := a + b

exit

entry
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Gen and Kill

•What is the effect of each 
statement on the facts?
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x := a + b;

y := a * b;

y > a

a := a + 1;

x := a + b

exit

entry

Stmt Gen Kill

x := a + b a + b

y := a * b a * b

y > a

a := a + 1
a + 1
a + b
a * b
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Computing available expressions
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x := a + b;

y := a * b;

y > a

a := a + 1;

x := a + b

exit

entry
∅

∅

{a+b}

{a+b}

{a+b, a*b}
{a+b, a*b}

{a+b, a*b}
{a+b, a*b}

∅

∅

{a+b}

{a+b}

{a+b}

{a+b}
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Terminology

•A join point is a program point where two or 
more branches meet

•Available expressions is a forward must analysis
•Forward = Data flow from in to out
•Must = At join points, only keep facts that hold on all 

paths that are joined
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Data flow equations

•Let s be a statement
•succs(s) = { immediate successor stmts of s }
•preds(s) = { immediate predecessor stmts of s }
•In(s) = program point just before executing s
•Out(s) = program point just after executing s

•In(s) = ∩s’∈preds(s) Out(s’)

•Out(s) = Gen(s) ∪ (In(S) - Kill(s))

14
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Liveness analysis

•A variable v is live at program point p if 
•v will be used on some execution path originating 

from p before v is overwritten

•Optimization
•If a variable is not live, no need to keep it in a register
•If variable is dead at assignment, can eliminate 

assignment

15
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Data flow equations

•Available expressions is a forward must analysis
•Propagate facts in same direction as control flow

•Expression is available only if available on all paths

•Liveness is a backwards may analysis
•To know if a variable is live, we need to look at the future 

uses of it. We propagate facts backwards, from Out to In

•Variable is live if it is used on some path

•Out(s) = ∪s’∈succs(s) In(s’)

•In(s) = Gen(s) ∪ (Out(S) - Kill(s))

16
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Gen and Kill

•What is the effect of each 
statement on the facts?
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x := a + b;

y := a * b;

y > a

a := a + 1;

x := a + b

exit

entry

Stmt Gen Kill

x := a + b a, b x

y := a * b a, b y

y > a a, y

a := a + 1 a a
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Computing live variables
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x := a + b;

y := a * b;

y > a

a := a + 1;

x := a + b

x

x
x, y, a

x, y, a

x, a, b

x, a, b

a, b

x, y, a

y, a, b

y, a, b

y, a, b

x, y, a, b

x, y, a, b

x, y, a, b

x, y, a, b
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Very busy expressions

•An expression e is very busy at point p if 
•On every path from p, expression e is evaluated before 

the value of e is changed

•Optimization
•Can hoist very busy expression computation

•What kind of problem?
•Forward or backward?
•May or must?

19
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Reaching definitions

•A definition of a variable v is an assignment to v
•A definition of variable v reaches point p if

•There is no intervening assignment to v
•Also called def-use information

•What kind of problem?
•Forward or backward?
•May or must?

20
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Space of data flow analyses

•Most dataflow analyses can be categorized in 
this way
•A few don’t fit, need bidrectional flow

•Lots of literature on data flow analyses
21

May Must

Forward Reaching 
definitions

Available 
expressions

Backward Live variables Very busy 
expressions
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Data flow facts and lattices

•Typically, data flow facts form lattices
•E.g., available expressions

22

a+b, a*b, a+1

a*b, a+1

a+b, a+1

a+b, a*b

a*b

a+1 a+b

∅

⊤ “top”

⊥ “bottom”
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Partial orders and lattices

•A partial order is a pair (P,≤) such that
•≤ is a relation over P (≤  ⊆ P×P)

•≤ is reflexive, anti-symmetric, and transitive

•A partial order is a lattice if every two elements of P have 
a unique least upper bound and greatest lower bound.
•⊓ is the meet operator: x ⊓ y is the greatest lower bound of x and y
• x ⊓ y ≤ x    and   x ⊓ y ≤ y

• if z ≤ x and z ≤ y then z ≤ x ⊓ y

•⊔ is the join operator: x ⊔ y is the least upper bound of x and y
• x ≤ x ⊔ y    and   y ≤ x ⊔ y

• if x ≤ z and y ≤ z then x ⊔ y ≤ z

• A join semi-lattice (meet semi-lattice) has only the join (meet) operator defined
23
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Complete lattices

•A partially ordered set is a complete lattice if 
meet and join are defined for all subsets (i.e., not 
just for all pairs)

•A complete lattice always has a bottom element 
and a top element

•A finite lattice always has a bottom element and 
a top element

24
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Useful lattices

•(2S, ⊆) forms a lattice for any set S
•2S is powerset of S, the set of all subsets of S.

•If (S, ≤) is a lattice, so is (S, ≥)
•i.e., can “flip” the lattice

•Lattice for constant propagation

25

1 2 3 4 ...

⊤

⊥
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Forward must data flow algorithm
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Out(s) = ⊤ for all statements s
W := { all statements }                 (worklist) 
repeat {

Take s from W

In(s) := ∩s′ ∊ pred(s) Out(s′)
temp := Gen(s) ∪ (In(s) - Kill(s))
if (temp != Out(s)) { 

Out(s) := temp 
W := W ∪ succ(s)

}
} until W = ∅
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Monotonicity

•A function f on a partial order is monotonic if
•if x ≤ y then f(x) ≤ f(y)

•Functions for computing In(s) and Out(s) are 
monotonic

•In(s) := ∩s′ ∊ pred(s) Out(s′)
•temp := Gen(s) ∪ (In(s) - Kill(s))

• Putting them together:       temp := fs(∩s′ ∊ pred(s) Out(s′))

27

A function fs of In(s)
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Termination

•We know the algorithm 
terminates

•In each iteration, either 
W gets smaller, or Out(s) 
decreases for some s
•Since function is monotonic

•Lattice has only finite 
height, so for each s, 
Out(s) can decrease only 
finitely often

28

Out(s) = ⊤ for all statements s
W := { all statements } 
repeat {

Take s from W

In(s) := ∩s′ ∊ pred(s) Out(s′)
temp := Gen(s) ∪ (In(s) - Kill(s))
if (temp != Out(s)) { 

Out(s) := temp 
W := W ∪ succ(s)

}
} until W = ∅
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Termination

•A descending chain in a lattice is a sequence
x0 < x1 < ...

•The height of a lattice is the length of the longest 
descending chain in the lattice

•Then, dataflow must terminate in O(nk) time 
•n = # of statements in program
•k = height of lattice 
•assumes meet operation and transfer function takes 

O(1) time

29
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Fixpoints

•Dataflow tradition: Start with Top, use meet
•To do this, we need a meet semilattice with top
• complete meet semilattice = meets defined for any set
• finite height ensures termination

•Computes greatest fixpoint

•Denotational semantics tradition: Start with 
Bottom, use join
•Computes least fixpoint

30
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Forward must data flow algorithm
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Out(s) = ⊤ for all statements s
W := { all statements }                 (worklist) 
repeat {

Take s from W

In(s) := ∩s′ ∊ pred(s) Out(s′)
temp := Gen(s) ∪ (In(s) - Kill(s))
if (temp != Out(s)) { 

Out(s) := temp 
W := W ∪ succ(s)

}
} until W = ∅



Transfer function for
statement s

© 2010 Stephen Chong, Harvard University

Forward data flow again

32

Out(s) = ⊤ for all statements s
W := { all statements }
repeat {

Take s from W

temp := fs(⊓s′ ∊ pred(s) Out(s′))
if (temp != Out(s)) { 

Out(s) := temp 
W := W ∪ succ(s)

}
} until W = ∅
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Which lattice to use?

•Available expressions
•P = sets of expressions 
•Meet operation ⊓ is set intersection ∩

•⊤ is set of all expressions

•Reaching definitions
•P = sets of definitions (assignment statements) 
•Meet operation ⊓ is set union ∪

•⊤ is empty set

•Monotonic transfer function fs is defined based on 
gen and kill sets.

33
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Distributive data flow problems

•If f is monotonic, then we have
             f(x ⊓ y) ≤ f(x) ⊓ f(y)

•If f is distributive then we have
            f(x ⊓ y) = f(x) ⊓ f(y)

34
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Benefit of distributivity

•Joins lose no information

•   k(h(f(⊤) ⊓ g(⊤)))
= k(h(f(⊤)) ⊓ h(g(⊤)))
= k(h(f(⊤))) ⊓ k(h(g(⊤))))

35

f

h

k

g
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Accuracy of data flow analysis

•Ideally we would like to compute the meet over all 
paths (MOP) solution:
•Let fs be the transfer function for statement s

•If p is a path s1,…,sn, let fp = fsn;...fs1
•Let paths(s) be the set of paths from the entry to s

•MOP(s) = ⊓p∈paths(s) fp(⊤)

•If the transfer functions are distributive, then solving 
using the data flow equations in the standard way 
produces the MOP solution

36
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What problems are distributive?

•Analyses of how the program computes 
•E.g.,
• Live variables 
•Available expressions
•Reaching definitions
•Very busy expressions

•All Gen/Kill problems are distributive

37
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Non-distributive example

•Constant propagation

•In general, analysis of what the program computes is 
not distributive

•Thm: MOP for In(s) will always be ⊑ iterative dataflow 
solution

38

y := 1;

z := x + y

y := 2;

x := 2; x := 1;

1 2 3 4 ...

⊤

⊥
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Practical implementation

•Data flow facts are assertions that are true or 
false at a program point

•Can represent set of facts as bit vector
•Fact i represented by bit i
•Intersection=bitwise and, union=bitwise or, etc

•“Only” a constant factor speedup
•But very useful in practice

39
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Basic blocks

•A basic block is a sequence of statements such 
that
•No branches to any statement except the first
•No statement in the block branches except the last

•In practical data flow implementations
•Compute Gen/Kill for each basic block
•Compose transfer functions

•Store only In/Out for each basic block
•Typical basic block is about 5 statements

40
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Order is important

•Assume forward data flow problem 
•Let G=(V,E) be the CFG 
•Let k be the height of the lattice

•If G acyclic, visit in topological order
•Visit head before tail of edge

•Running time O(|E|)
•No matter what size the lattice

41
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Order is important

• If G has cycles, visit in reverse postorder
•Order from depth-first search

•Let Q = max # back edges on cycle-free path
•Nesting depth
•Back edge is from node to ancestor on DFS tree

•Then if ∀x. f(x) ≤ x   (sufficient, but not necessary)

•Running time is O((Q + 1)|E|)

42
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Flow sensitivity

•Data flow analysis is flow sensitive
•The order of statements is taken into account
• I.e., we keep track of facts per program point

•Alternative: Flow-insensitive analysis
•Analysis the same regardless of statement order
•Standard example: types describe facts that are true at 

all program points
• /*x:int*/     x:=…     /*x:int*/

43
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A problem...

•Consider following program

•Can pFile be NULL when used for fputs?
•What dataflow analysis could we use to 

determine if it is?
44

FILE *pFile = NULL;
if (debug) {
    pFile = fopen(“debuglog.txt”, “a”)
}
…
if (debug) {
    fputs(“foo”, pFile);
}
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Path sensitivity

45

pFile = ...

...

fputs(pFile)

...

debug

debug

pFile ≠ NULL∅

∅

∅
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Path sensitivity

• A path-sensitive analysis tracks data flow facts depending on 
the path taken
• Path often represented by which branches of conditionals taken

• Can reason more accurately about correlated conditionals (or 
dependent conditionals) such as in previous example

• How can we make a path sensitive analysi
• Could do a dataflow analysis where we track facts for each possible path

• But exponentially many paths make it difficult to scale

• Some research on scalable path sensitive analyses. We will 
discuss one next week

46
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Terminology review

•Must vs. May
•(Not always followed in literature)

•Forwards vs. Backwards
•Flow-sensitive vs. Flow-insensitive
•Path-sensitive vs Path-insensitive
•Distributive vs. Non-distributive

47
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Dataflow analysis and the heap

•Data Flow is good at analyzing local variables
•But what about values stored in the heap?
•Not modeled in traditional data flow

•In practice: *x := e
•Assume all data flow facts killed (!)
•Or, assume write through x may affect any variable 

whose address has been taken

•In general, hard to analyze pointers
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