CS252r: Program Analysis

Now with static and dynamic !!!

Fall 2015
CS252r

• Survey of program analysis concepts
 • Program analysis: automatic reasoning about programs
 • Foundations, formalism, techniques, applications, implementations

• Aims:
 • Understand relative strengths and weaknesses of different analyses
 • Understand some current challenges in program analysis

• Research project:
 • Advance the state-of-the-art in program analysis; OR
 • Implement/apply state-of-the-art program analysis techniques

• Prereq: CS 152, CS 153, or equivalent
Class meetings

- Fairly informal
- Meet twice weekly
- Combination of lectures, papers, and workshops
 - First 8 classes will be background lectures
 - May include additional/relevant/recommended reading
 - Research papers
 - Mostly recent research, some classic papers.
 - Research workshops
 - 4-5 classes where we collaboratively workshop a research idea
- Expect to present/lead discussion once (maybe twice) during semester
Assessment

• Auditors welcome
• Class participation
 • Presentation/discussion
• Project
 • Dig deep into one or more aspects of material covered in class
 • Many possibilities: lit survey, reproducing results, implementation of analysis, developing new analysis, performance/scalability study, applying an analysis to a domain you are interested in…
• More details and project suggestions coming later
Topics/syllabus

• See web page
Research project

• Primary course assessment
• Goal: develop a deep understanding in one or more of the areas studied in this course, and, ideally, to conduct original research.
• You may (and are even encouraged) to work in groups (up to 3 members).
• Weekly meetings with me (from Sept 14th)
• Sept 29: Project proposals due
• Dec 3: In-class presentations
• Dec 9: Projects due
Static and Dynamic Analyses

What?
- Static analyses
 - Analyze programs without actually running them
- Dynamic analyses
 - Analyze a program execution

Why?
- Static analyses
 - Reject program
 - e.g., insecure, may have bugs, ...
 - Rewrite program
 - To be secure, bug-free, ...
 - Find problems
 - Understand program
 - Performance, requirements on external environment
 - ???
- Dynamic analyses
 - Reject execution
 - e.g., insecure, stop bad behavior before catastrophe
 - Modify execution
 - Prevent insecurities, avoid bugs, ...
 - Find problems
 - Understand program
 - Possible behaviors of this (and maybe other) executions
 - ???

For this lecture: assume that dynamic analysis is about analyzing execution, not about monitoring/modifying a deployed system.
Static and Dynamic Analyses

Static analyses
- Approximate all possible executions of program
 - Type checking
 - Abstract interpretation
 - Data-flow analysis
 - Model checking
 - Hoare logic
 - ...

- Approximate some executions of program
 - Symbolic execution
 - Unsound data-flow analysis
 - Model checking
 - ...

Dynamic analyses
- Analyze single execution
 - Execution monitoring
 - Program rewriting
 - Interpreter/virtual machine
 - Interposition
 - Modify execution
 - Adversarial scheduler
 - Fault injection
 - ???

- Analyze single execution as representative of set of executions
 - Symbolic (concolic?) execution
 - Thread interleavings
 - ...

How?
Some themes...

• What is the interaction between static and dynamic analysis?
 • (or maybe I mean static analysis and dynamic intervention)

• Gaps between analysis and real programs
 • Precision
 • Soundness
 • Completeness

• ... and how to bridge them