Interprocedural Analysis

CS252r Fall 2015
Procedures

• So far looked at intraprocedural analysis: analyzing a single procedure

• Interprocedural analysis uses calling relationships among procedures
 • Enables more precise analysis information
Call graph

• First problem: how do we know what procedures are called from where?
 • Especially difficult in higher-order languages, languages where functions are values
 • We’ll ignore this for now, and return to it later in course…

• Let’s assume we have a (static) call graph
 • Indicates which procedures can call which other procedures, and from which program points.
Call graph example

```c
f() {
    1:    g();
    2:    g();
    3:    h();
}

h() {
    5:    f();
    6:    i();
}

i() { … }
```
Interprocedural dataflow analysis

How do we deal with procedure calls?
Obvious idea: make one big CFG

```c
main() {
    x := 7;
    r := p(x);
    x := r;
    z := p(x + 10);
}

p(int a) {
    if (a < 9)
        y := 0;
    else
        y := 1;
    return a;
}
```

Diagram of the control flow graph (CFG) for the above code.
Interprocedural CFG

• CFG may have additional nodes to handle call and returns
 • Treat arguments, return values as assignments
• Note: a local program variable represents multiple locations

Set up environment for calling p
a := x, ...

Enter main

x := 7

Call p(x)

r := Return p(x)

x := r

Call p(x + 10)

z := Return p(x + 10)

Exit main

Enter p

a < 9

y := 0

y := 1

return a;

Exit p

Restore calling environment
z := a
x := 7
Call p(x)
r := Return p(x)
x := r
Call p(x + 10)
z := Return p(x + 10)
Exit main

Enter main
a := 7
Enter p
a < 9
y := 0
y := 1
Exit p
return a;

r := 7, x := 7
a := 7
a := 17
r := 7, x := 7
a := ⊥
r := 7, x := ⊥

r := ⊥, x := ⊥
r := ⊥, x := ⊥

Stephen Chong, Harvard University
Invalid paths

• Problem: dataflow facts from one call site “tainting” results at other call site
 • p analyzed with merge of dataflow facts from all call sites
• How to address?
Inlining

- Inlining
 - Use a new copy of a procedure’s CFG at each call site

- Problems? Concerns?
 - May be expensive! Exponential increase in size of CFG
 - \(p() \) \{ \(q() ; q() ; \) \} \(q() \) \{ \(r() ; r() \) \}
 - \(r() \) \{ … \}
 - What about recursive procedures?
 - \(p(int n) \) \{ … \(p(n-1) ; \) … \}
 - More generally, cycles in the call graph

```
p() { q(); q(); }   q() { r(); r() }
r() { … }
```

```
p(int n) { … p(n-1); … }
```

More generally, cycles in the call graph.
Context sensitivity

• Solution: make a finite number of copies

• Use context information to determine when to share a copy
 • Results in a context-sensitive analysis

• Choice of what to use for context will produce different tradeoffs between precision and scalability

• Common choice: approximation of call stack
main() {
 1: p();
 2: p();
}

p() {
 3: q();
}

q() {
 ...
}

Context sensitivity example
main() {
 1: p();
 2: p();
}

p() {
 3: q();
}

q() {
 ...
}

Context sensitivity example
Fibonacci: context insensitive

```c
main() {
  1: fib(7);
}

fib(int n) {
  if n <= 1
    x := 0
  else
    2: y := fib(n-1);
    3: z := fib(n-2);
    x := y+z;
  return x;
}
```
main() {
 1: fib(7);
}

fib(int n) {
 if n <= 1
 x := 0
 else
 2: y := fib(n-1);
 3: z := fib(n-2);
 x := y+z;
 return x;
}
main() {
 fib(7);
}

fib(int n) {
 if n <= 1
 x := 0
 else
 2: y := fib(n-1);
 3: z := fib(n-2);
 x := y+z;
 return x;
}
Other contexts

• Context sensitivity distinguishes between different calls of the same procedure
 • Choice of contexts determines which calls are differentiated

• Other choices of context are possible
 • Caller stack
 • Less precise than call-site stack
 • E.g., context “2::2” and “2::3” would both be “fib::fib”
 • Object sensitivity: which object is the target of the method call?
 • For OO languages.
 • Maintains precision for some common OO patterns
 • Requires pointer analysis to determine which objects are possible targets
 • Can use a stack (i.e., target of methods on call stack)
Other contexts

• More choices
 • Assumption sets
 • What state (i.e., dataflow facts) hold at the call site?
 • Used in ESP paper
 • Combinations of contexts, e.g., Assumption set and object
Procedure summaries

• In practice, often don’t construct single CFG and perform dataflow

• Instead, store procedure summaries and use those

• When call p is encountered in context C, with input D, check if procedure summary for p in context C exists.
 • If not, process p in context C with input D
 • If yes, with input D’ and output E’
 • if D’ ⊑ D, then use E’
 • if D’ ⊋ D, then process p in context C with input D’∩D

• If output of p in context C changes then may need to reprocess anything that called it

• Need to take care with recursive calls
Flow-sensitivity

• Recall: in a flow insensitive analysis, order of statements is not important
 • e.g., analysis of c1;c2 will be the same as c2;c1
• Flow insensitive analyses typically cheaper than flow sensitive analyses
• Can have both flow-sensitive interprocedural analyses and flow-insensitive interprocedural analyses
 • Flow-insensitivity can reduce the cost of interprocedural analyses
Infeasible paths

• Context sensitivity increases precision by analyzing the same procedure in possibly many contexts

• But still have problem of infeasible paths
 • Paths in control flow graph that do not correspond to actual executions
Infeasible paths example

```c
main() {
   1: p(7);
   2: x:=p(42);
}
p(int n) {
   3: q(n);
}
q(int k) {
   return k;
}
```

Context: -

- Enter main
- 1: Call p(7)
 - 1: Return p(7)
 - 2: Call p(42)
 - 2: Return p(42)
- Exit main

Context: 1

- Enter p
- 3: Call q(n)
 - 3: Return q(n)
- Exit p

Context: 2

- Enter p
 - 3: Call q(n)
 - 3: Return q(n)
- Exit p

Context: 3

- Enter q
 - return k
- Exit p

Stephen Chong, Harvard University
Realizable paths

- Idea: restrict attention to realizable paths: paths that have proper nesting of procedure calls and exits
- For each call site i, let’s label the call edge “(i)” and the return edge “(i)”
- Define a grammar that represents balanced paren strings

 $$\text{matched ::= } \epsilon \mid e \mid \text{matched matched} \mid (i \text{ matched })i$$

 - Corresponds to matching procedure returns with procedure calls
- Define grammar of partially balanced parens (calls that have not yet returned)

 $$\text{realizable ::= } \epsilon \mid (i \text{ realizable} \mid \text{matched realizable}$$
Example

main() {
 1: p(7);
 2: x:=p(42);
}

p(int n) {
 3: q(n);
}

q(int k) {
 return k;
}

Exit p

Enter p

3: Call q(n)

Exit q

return k

Enter p

3: Return q(n)

Exit p

Enter main

1: Call p(7)

Exit main

1: Return p(7)

2: Call p(42)

2: Return p(42)

3
Meet over Realizable Paths

• Previously we wanted to calculate the dataflow facts that hold at a node in the CFG by taking the meet over all paths (MOP)

• But this may include infeasible paths

• Meet over all realizable paths (MRP) is more precise
 • For a given node n, we want the meet of all realizable paths from the start of the CFG to n
 • May have paths that don’t correspond to any execution, but every execution will correspond to a realizable path
 • Realizable paths are a subset of all paths
 • \Rightarrow MRP sound but more precise: $\text{MRP} \subseteq \text{MOP}$
Program analysis as CFL reachability

- Can phrase many program analyses as context-free language reachability problems in directed graphs
 - “Program Analysis via Graph Reachability” by Thomas Reps, 1998
 - Summarizes a sequence of papers developing this idea
CFL Reachability

- Let L be a context-free language over alphabet Σ
- Let G be a graph with edges labeled from Σ
- Each path in G defines a word over Σ
- A path in G is an L-path if its word is in L
- CFL reachability problems:
 - All-pairs L-path problem: all pairs of nodes n_1, n_2 such that there is an L-path from n_1 to n_2
 - Single-source L-path problem: all nodes n_2 such that there is an L-path from given node n_1 to n_2
 - Single-target L-path problem: all nodes n_1 such that there is an L-path from n_1 to given node n_2
 - Single-source single-target L-path problem: is there an L-path from given node n_1 to given node n_2
Why bother?

• All CFL-reachability problems can be solved in time cubic in nodes of the graph
• Automatically get a faster, approximate solution: graph reachability
• On demand analysis algorithm for free
• Gives insight into program analysis complexity issues
Encoding 1: IFDS problems

• Interprocedural finite distributive subset problems (IFDS problems)
 • Interprocedural dataflow analysis with
 • Finite set of data flow facts
 • Distributive dataflow functions ($f(a \cap b) = f(a) \cap f(b)$)

• Can convert any IFDS problem as a CFL-graph reachability problem, and find the MRP solution with no loss of precision
 • May be some loss of precision phrasing problem as IFDS
Encoding distributive functions

- Key insight: distributive function $f: \mathbb{2D} \rightarrow \mathbb{2D}$ can be encoded as graph with $2D + 2$ nodes
- W.L.O.G. assume $\cap \equiv \cup$
- E.g., suppose $D = \{x, g\}$
- Edge $\Lambda \rightarrow d$ means $d \in f(S)$ for all S
- Edge $d_1 \rightarrow d_2$ means $d_2 \not\in f(\emptyset)$ and $d_2 \in f(S)$ if $d_1 \in S$
- Edge $\Lambda \rightarrow \Lambda$ always in graph (allows composition)
Encoding distributive functions

\[\lambda S. \{x, g\} \]

\[\lambda S. S-\{x\} \]
Encoding distributive functions

\(\lambda S. S-\{x\} \circ \lambda S. \{x,g\} \)
Exploded supergraph $G^\#$

- Let G^* be supergraph (i.e., interprocedural CFP)
- For each node $n \in G^*$, there is node $\langle n, \Lambda \rangle \in G^\#$
- For each node $n \in G^*$, and $d \in D$ there is node $\langle n, d \rangle \in G^\#
- For function f associated with edge $a \rightarrow b \in G^*$
 - Edge $\langle a, \Lambda \rangle \rightarrow \langle b, d \rangle$ for every $d \in f(\emptyset)$
 - Edge $\langle a, d_1 \rangle \rightarrow \langle b, d_2 \rangle$ for every $d_2 \in f(\{d_2\}) - f(\emptyset)$
 - Edge $\langle a, \Lambda \rangle \rightarrow \langle b, \Lambda \rangle$
Possibly uninitialized variable example

- Closed circles represent nodes reachable along realizable paths from \(\langle \text{start_main}, \Lambda \rangle \)

Program Analysis via Graph Reachability by Reps, Information and Software Technology 40(11-12) 1998

Stephen Chong, Harvard University
Encoding 2: IDE problems

- Interprocedural Distributive Environment problems (IDE problems)
 - Interprocedural dataflow analysis with
 - Dataflow info at program point represented as a finite environment (i.e., mapping from variables/locations to finite height domain of values)
 - Transfer function distributive “environment transformer”
 - E.g., copy constant propagation
 - interprets assignment statements such as $x=7$ and $y=x$
 - E.g. linear constant propagation
 - also interprets assignment statements such as $y = 5z + 9$
Encoding distributive environment-transformers

- Similar trick to encoding distributive functions in IFDS
- Represent environment-transformer function as graph with each edge labeled with micro-function
Solving

- Requirements for class F of micro functions
 - Must be closed under meet and composition
 - F must have finite height (under pointwise ordering)
 - $f(l)$ can be computed in constant time
 - Representation of f is of bounded size
 - Given representation of $f_1, f_2 \in F$
 - can compute representation of $f_1 \circ f_2 \in F$ in constant time
 - can compute representation of $f_1 \sqcap f_2 \in F$ in constant time
 - can compute $f_1 = f_2$ in constant time
Solving

- First pass computes jump functions and summary functions
 - Summaries of paths within a procedure and of procedure calls, respectively
- Second pass uses these functions to compute environments at program points
- More details in “Precise Interprocedural Dataflow Analysis with Applications to Constant Propagation” by Sagiv, Reps, and Horwitz, 1996.