Symbolic Execution

CS252r Fall 2015
Contains content from
slides by Jeff Foster
Static analysis

- Static analysis allows us to reason about all possible executions of a program
 - Gives assurance about any execution, prior to deployment
 - Lots of interesting static analysis ideas and tools
- But difficult for developers to use
 - Commercial tools spend a lot of effort dealing with developer confusion, false positives, etc.
One issue is abstraction

• Abstraction lets us scale and model all possible runs
 • But must be conservative
 • Try to balance precision and scalability
 • Flow-sensitive, context-sensitive, path-sensitivity, …

• And static analysis abstractions do not cleanly match developer abstractions
Testing

- Fits well with developer intuitions
- In practice, most common form of bug-detection
- But each test explores only one possible execution of the system
 - Hopefully, test cases generalize
Symbolic execution

• King, CACM 1976.
• Key idea: generalize testing by using unknown symbolic variables in evaluation

• Symbolic executor executes program, tracking symbolic state.
• If execution path depends on unknown, we fork symbolic executor
 • at least, conceptually
Symbolic execution example

1. int a = α, b = β, c = γ;
2. // symbolic
3. int x = 0, y = 0, z = 0;
4. if (a) {
5. x = -2;
6. }
7. if (b < 5) {
8. if (!a && c) { y = 1; }
9. z = 2;
10.}
11. assert(x+y+z!=3)
Symbolic execution example

1. `int a = α, b = β, c = γ;`
2. `// symbolic`
3. `int x = 0, y = 0, z = 0;`
4. `if (a) {
 5. x = -2;
 6. }
7. if (b < 5) {
8. if (!a && c) { y = 1; }
9. z = 2;
10.}`
11. `assert(x+y+z!=3)`
Symbolic execution example

1. int a = α, b = β, c = γ;
2. // symbolic
3. int x = 0, y = 0, z = 0;
4. if (a) {
5. x = -2;
6. }
7. if (b < 5) {
8. if (!a && c) { y = 1; }
9. z = 2;
10. }
11. assert(x+y+z!=3)
What’s going on here?

• During symbolic execution, we are trying to determine if certain formulas are satisfiable
 • E.g., is a particular program point reachable?
 • Figure out if the path condition is satisfiable
 • E.g., is array access a[i] out of bounds?
 • Figure out if conjunction of path condition and \(i < 0 \lor i \geq a.length\) is satisfiable
 • E.g., generate concrete inputs that execute the same paths

• This is enabled by powerful SMT/SAT solvers
 • SAT = Satisfiability
 • SMT = Satisfiability modulo theory = SAT++
 • E.g. Z3, Yices, STP
SMT

- Satisfiability Modulo Theory
- SMT instance is a formula in first-order logic, where some function and predicate symbols have additional meaning
- The “additional meaning” depends on the theory being used
 - E.g., Linear inequalities
 - Symbols with extra meaning include the integers, $+, -, \times, \leq$
 - A richer modeling language than just Boolean SAT
- Some commonly supported theories: Uninterpreted functions; Linear real and integer arithmetic; Extensional arrays; Fixed-size bit-vectors; Quantifiers; Scalar types; Recursive datatypes, tuples, records; Lambda expressions; Dependent types
- A lot of recent success using SMT solvers
 - In symbolic execution and otherwise...
Predicate transformer semantics

- Predicate transformer semantics give semantics to programs as relations from logical formulas to logical formulas
 - Strongest post-condition semantics: if formula φ is true before program c executes, then formula ψ is true after c executes
 - Like forward symbolic execution of program
 - Weakest pre-condition semantics: if formula φ is true after program c executes, then formula ψ must be true before c executes
 - Like backward symbolic execution of program
Predicate transformer semantics

- Predicate transformers operationalize Hoare Logic
- **Hoare Logic is a deductive system**
 - Axioms and inference rules for deriving proofs of Hoare triples (aka partial correctness assertion)
 - \{ φ \} c \{ ψ \} says that if φ holds before execution of program c and c terminates, then ψ holds after c terminates
- Predicate transformers provide a way of producing valid Hoare triples
Hoare logic

• First we need a language for the assertions
 • E.g., first order logic

assertions \(P, Q \in \text{Assn} \)

\[P ::= \text{true} \mid \text{false} \mid a_1 < a_2 \mid P_1 \land P_2 \mid P_1 \lor P_2 \mid P_1 \Rightarrow P_2 \mid \neg P \]

\[\forall i. P \mid \exists i. P \]

arithmetic expressions \(a \in \text{Aexp} \)

\[a ::= \ldots \]

logical variables \(i, j \in \text{LVar} \)

• We also need a semantics for assertions
 • For state \(\sigma : \text{Var} \rightarrow \text{Int} \) and interpretation \(l : \text{LVar} \rightarrow \text{Int} \) we write \(\sigma, l \models P \) if \(P \) is true when interpreted under \(\sigma, l \)
Rules of Hoare Logic

SKIP

\[
\begin{array}{c}
\text{SKIP} \\
\{P\} \text{skip} \{P\}
\end{array}
\]

ASSIGN

\[
\begin{array}{c}
\text{ASSIGN} \\
\{P[a/x]\} \ x := a \ {P}\n\end{array}
\]

SEQ

\[
\begin{array}{c}
\text{SEQ} \\
\{P\} \ c_1 \ {R}\{R\} \ c_2 \ {Q}\{P\} \ c_1; c_2 \ {Q}\n\end{array}
\]

IF

\[
\begin{array}{c}
\text{IF} \\
\{P \land b\} \ c_1 \ {Q}\{P\} \ \text{if} \ b \ \text{then} \ c_1 \ \text{else} \ c_2 \ {Q}\n\end{array}
\]

CONSEQUENCE

\[
\begin{array}{c}
\text{CONSEQUENCE} \\
\models (P \Rightarrow P')\{P'\} \ c \ {Q'}\models (Q' \Rightarrow Q)\{P\} \ c \ {Q}\n\end{array}
\]

WHILE

\[
\begin{array}{c}
\text{WHILE} \\
\{P \land b\} \ c \ {P}\{P\} \ \text{while} \ b \ \text{do} \ c \ {P \land \neg b}\n\end{array}
\]
Soundness and completeness of Hoare Logic

- Semantics of Hoare Triples
 - $\sigma, I \models \{P\} \mathcal{C} \{Q\} \triangleq$ if $\sigma, I \models P$ and $\llbracket c \rrbracket \sigma = \sigma'$, then $\sigma', I \models P$
 - $\models \{P\} \mathcal{C} \{Q\} \triangleq$ for all σ, I we have $\sigma, I \models \{P\} \mathcal{C} \{Q\}$

- Soundness: If there is a proof of $\{P\} \mathcal{C} \{Q\}$, then $\models \{P\} \mathcal{C} \{Q\}$

- Relative completeness: If $\models \{P\} \mathcal{C} \{Q\}$ then there is a proof of $\{P\} \mathcal{C} \{Q\}$
 - (assuming you can prove the implications in the rule of consequence).
Back to predicate transformers

• Weakest pre-condition semantics
 • Function \(wp \) takes command \(c \) and assertion \(Q \) and returns assertion \(P \) such that \(\vDash \{ P \} c \{ Q \} \)
 • \(wp(c, Q) \) is the **weakest** such condition
 • \(\vDash \{ P \} c \{ Q \} \) if and only if \(P \Rightarrow wp(c, Q) \)
 • \(wp(\text{skip}, Q) = Q \)
 • \(wp(x:=a, Q) = Q[a/x] \)
 • \(wp(c_1;c_2, Q) = wp(c_1, wp(c_2, Q)) \)
 • \(wp(\text{if } b \text{ then } c_1 \text{ else } c_2, Q) = (b \Rightarrow wp(c_1, Q)) \land (\neg b \Rightarrow wp(c_2, Q)) \)
What about loops?

- Two possibilities: do we want the weakest precondition to guarantee termination of the loop?
- **Weakest liberal precondition**: does not guarantee termination
 - Corresponds to **partial** correctness of Hoare triples
 - \(\text{wp(while } b \text{ do } c, \ Q) = \forall i \in \text{Nat. } L_i(Q) \)
 - where \(L_0(Q) = \text{true} \)
 - \(L_{i+1}(Q) = (\neg b \implies Q) \land (b \implies \text{wp}(c, L_i(Q))) \)
 - Ensures loop terminates in a state that satisfies \(Q \) or runs forever
What about loops?

Weakest precondition: guarantees termination

- Corresponds to **total** correctness of Hoare triples

- \(\text{wp}(\text{while } b \text{ do } c, \ Q) = \exists i \in \text{Nat. } L_i(Q)\)

 where \(L_0(Q) = \text{false}\)

 \[L_{i+1}(Q) = (\neg b \Rightarrow Q) \land (b \Rightarrow \text{wp}(c, L_i(Q)))\]

- Ensures loop terminates in a state that satisfies \(Q\)
Strongest post condition

- Function sp takes command c and assertion P and returns assertion Q such that $\models \{P\}c\{Q\}$
- sp(c, P) is the strongest such condition
 - $\models \{P\}c\{Q\}$ if and only if $sp(c, P) \Rightarrow Q$
Strongest post condition

- \(\text{sp} (\text{skip}, P) = P \)
- \(\text{sp} (x:=a, P) = \exists n. x=a[n/x] \land P[n/x] \)
- \(\text{sp} (c_1;c_2, P) = \text{sp} (c_2, \text{sp} (c_1, P)) \)
- \(\text{sp} (\text{if } b \text{ then } c_1 \text{ else } c_2, P) = \text{sp} (c_1, b \land P) \lor \text{sp} (c_2, \neg b \land P) \)
- \(\text{sp} (\text{while } b \text{ do } c, P) = \neg b \land \exists i. L_i(P) \)
 where
 \(L_0(P) = P \)
 \(L_{i+1}(P) = \text{sp}(c, b \land L_i(P)) \)
- Weakest preconditions are typically easier to use than strongest postconditions
Symbolic execution

- Symbolic execution can be viewed as a predicate transformation semantics
- Symbolic state and path condition correspond to a formula that is true at a program point
 - e.g., Symbolic state \([x \mapsto \alpha, y \mapsto \beta + 7]\) and path condition \(\alpha > 0\) may correspond to \(\alpha > 0 \land x = \alpha \land y = \beta + 7\)
- Strongest post condition transformations gives us a forward symbolic execution of a program
- Weakest pre condition transformations gives us a backward symbolic execution of a program
Symbolic execution

• Recall
 • $sp(x:=e, P) = \exists n. x=e[n/x] \land P[y/x]$
 • $sp(c_1; c_2, P) = sp(c_2, sp(c_1, P))$
 • $sp(\text{if } b \text{ then } c_1 \text{ else } c_2, P) = sp(c_1, b \land P) \lor sp(c_2, \neg b \land P))$
 • $sp(\text{while } b \text{ do } c, P) = \neg b \land \exists i. L_i(P)$
 where $L_0(P) = true$
 $L_{i+1}(P) = sp(c, b \land L_i(P))$

• Disjunction encoded by multiple states
 • $\langle \text{if } b \text{ then } c_1 \text{ else } c_2, P \rangle \downarrow \langle \text{skip, } \{b \land P, \neg b \land P\} \rangle$
 • or equivalently with non-deterministic semantics?
 • $\langle \text{if } b \text{ then } c_1 \text{ else } c_2, P \rangle \rightarrow \langle c_1, b \land P \rangle$ and
 $\langle \text{if } b \text{ then } c_1 \text{ else } c_2, P \rangle \rightarrow \langle c_2, \neg b \land P \rangle$

• While loops simply unrolled (may fail to terminate)
Symbolic execution and abstract interpretation

• Can we use logical formulas as an abstract domain?
 • Yes! Known as logical abstract interpretation
 • Also makes use of SMT solvers

• Can perhaps be seen as an abstract semantics for a concrete predicate transformer semantics?
Back to symbolic execution...

• What about the details?
What values to treat symbolically?

- Primitive values, like ints, floats, and chars seem reasonable
- Strings? Or treat them as arrays of chars?
 - There are theories for strings, but somewhat limited in their reasoning ability
- Pointers?
 - Yeah, you want to have symbolic pointers.
 - But can complicate, e.g., deallocation
- Memory objects?
 - Symbolic regions of memory?
 - Symbolic data structures (e.g., linked lists, trees, hash maps, ...)?
- Files?
- When to concretize?
 - See Klee's behavior on pointers and files. Concretizes a pointer based on each memory object it may point to.
 - Keep a symbolic ternary value e.g., (α<0 ? 0 : β) or fork execution?
What are the sources of symbolic values?

- Inputs to the program? Which?
- Environment?
 - Environment variables? File system? Network messages?
Efficient implementation

- How to efficiently handle many forked executions?
 - Use underlying process abstraction?
 - How to take advantage of lots of shared state between forked executions?
 - How to take advantage of lots of shared/similar queries between forked executions?
 - When to concretize?

- Order of evaluating executions?
 - How to explore unexplored code paths?
 - How to avoid getting stuck in "fork bombs"?

- How to reduce the number of SMT queries?
Summary

- Symbolic execution
 - Predicate transformation semantics
 - Allows us to reason about multiple concrete executions
 - But may not allow us to reason about all possible executions
 - Enabled by recent advances in SMT solvers