
Some background info for
program synthesis

CS 252, Fall 2017

Stephen Chong, Harvard University

Topics

•Hoare logic
•Reasoning about programs
•Weakest precondition
•See also lecture notes for CS152 in Spring 2014
• https://www.seas.harvard.edu/courses/cs152/2014sp/

•Abstract interpretation
•Approximating concrete execution
•See lecture notes for CS252 in Spring 2011
• https://www.seas.harvard.edu/courses/cs252/2011sp/

•See also lecture notes for CS152 in Spring 2014
• https://www.seas.harvard.edu/courses/cs152/2014sp/

•Model checking
•See lecture notes for CS252 in Spring 2011
• https://www.seas.harvard.edu/courses/cs252/2011sp/

2

https://www.seas.harvard.edu/courses/cs252/2011sp/
https://www.seas.harvard.edu/courses/cs252/2011sp/

Stephen Chong, Harvard University

Axiomatic Semantics

•Key idea: give specifications for what programs are
supposed to do
•Define meaning of programs in terms of logical formulas

satisfied by program
•Enables reasoning about programs

•Pre- and post-condition:

•Partial correctness: “If Pre holds before execution of c, and
c terminates, then Post holds after c.”

•(Total correctness: “If Pre holds before execution of c then
c terminates and Post holds after c.”)

3

Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Axiomatic semantics

Lecture 20 Thursday, April 10, 2014

1 Introduction to axiomatic semantics

The idea in axiomatic semantics is to give specifications for what programs are supposed to compute. This
contrasts with operational model (which show how programs execute) or denotational models (which show
what programs compute). Axiomatic semantics defines the meaning of programs in terms of logical formu-
las satisfied by the program.

This approach to reasoning about programs and expressing program semantics was originally proposed
by Floyd and Hoare, and then pushed further by Dijkstra and Gries.

Program specifications can be expressed using pre-conditions and post-conditions:

{Pre} c {Post}

where c is a program, and Pre and Post are logical formulas that describe properties of the program state
(usually referred to as assertions). Such a triple is referred to as a partial correctness statement (or partial
correctness assertion triple) and has the following meaning:

“If Pre holds before c, and c terminates, then Post holds after c.”

In other words, if we start with a store � where Pre holds, and the execution of c in store � terminates
and yields store �

0, then Post holds in store �

0.
Pre- and post-conditions can be regarded as interfaces or contracts between the program and its clients.

They help users to understand what the program is supposed to yield without needing to understand
how the program executes. Typically, programmers write them as comments for procedures and functions,
for better program understanding, and to make it easier to maintain programs. Such specifications are
especially useful for library functions, for which the source code is, in many cases, unavailable to the users.
In this case, pre- and post-conditions serve as contracts between the library developers and users of the
library.

However, there is no guarantee that pre- and post-conditions written as informal code comments are
actually correct: the comments specify the intent, but give no correctness guarantees. Axiomatic semantics
addresses this problem: we will look at how to rigorously describe partial correctness statements and how
to prove and reason about program correctness.

Note that partial correctness doesn’t ensure that the given program will terminate – this is why it is
called “partial correctness”. In contrast, total correctness statements ensure that the program terminates
whenever the precondition holds. Such statements are denoted using square brackets:

[Pre] c [Post]

meaning:

“If Pre holds before c then c will terminate and Post will hold after c.”

In general a pre-condition specifies what the program expects before execution; and the post-conditions
specifies what guarantees the program provides when the program terminates. Here is a simple example:

{foo = 0 ^ bar = i} baz := 0;while foo 6= bar do (baz := baz� 2; foo := foo+ 1) {baz = �2i}

If, before the program executes, the store maps foo to zero, and maps bar to i, then, if the program
terminates, then the final store will map baz to �2i, that is, �2 times the initial value of bar. Note that i is a
logical variable: it doesn’t occur in the program, and is just used to express the initial value of bar.

Stephen Chong, Harvard University

Example

•Example

•Non example
•{ true } if foo < 0 then foo := -foo else skip { foo > 0 }

4

Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Axiomatic semantics

Lecture 20 Thursday, April 10, 2014

1 Introduction to axiomatic semantics

The idea in axiomatic semantics is to give specifications for what programs are supposed to compute. This
contrasts with operational model (which show how programs execute) or denotational models (which show
what programs compute). Axiomatic semantics defines the meaning of programs in terms of logical formu-
las satisfied by the program.

This approach to reasoning about programs and expressing program semantics was originally proposed
by Floyd and Hoare, and then pushed further by Dijkstra and Gries.

Program specifications can be expressed using pre-conditions and post-conditions:

{Pre} c {Post}

where c is a program, and Pre and Post are logical formulas that describe properties of the program state
(usually referred to as assertions). Such a triple is referred to as a partial correctness statement (or partial
correctness assertion triple) and has the following meaning:

“If Pre holds before c, and c terminates, then Post holds after c.”

In other words, if we start with a store � where Pre holds, and the execution of c in store � terminates
and yields store �

0, then Post holds in store �

0.
Pre- and post-conditions can be regarded as interfaces or contracts between the program and its clients.

They help users to understand what the program is supposed to yield without needing to understand
how the program executes. Typically, programmers write them as comments for procedures and functions,
for better program understanding, and to make it easier to maintain programs. Such specifications are
especially useful for library functions, for which the source code is, in many cases, unavailable to the users.
In this case, pre- and post-conditions serve as contracts between the library developers and users of the
library.

However, there is no guarantee that pre- and post-conditions written as informal code comments are
actually correct: the comments specify the intent, but give no correctness guarantees. Axiomatic semantics
addresses this problem: we will look at how to rigorously describe partial correctness statements and how
to prove and reason about program correctness.

Note that partial correctness doesn’t ensure that the given program will terminate – this is why it is
called “partial correctness”. In contrast, total correctness statements ensure that the program terminates
whenever the precondition holds. Such statements are denoted using square brackets:

[Pre] c [Post]

meaning:

“If Pre holds before c then c will terminate and Post will hold after c.”

In general a pre-condition specifies what the program expects before execution; and the post-conditions
specifies what guarantees the program provides when the program terminates. Here is a simple example:

{foo = 0 ^ bar = i} baz := 0;while foo 6= bar do (baz := baz� 2; foo := foo+ 1) {baz = �2i}

If, before the program executes, the store maps foo to zero, and maps bar to i, then, if the program
terminates, then the final store will map baz to �2i, that is, �2 times the initial value of bar. Note that i is a
logical variable: it doesn’t occur in the program, and is just used to express the initial value of bar.

Stephen Chong, Harvard University

Hoare Logic Rules

5

Lecture 20 Axiomatic semantics

1.3 Hoare logic and program correctness

How do we show that a partial correctness statement {P} c {Q} holds? We know that {P} c {Q} is valid if
it holds for all stores and interpretations: 8�, I. � ✏I {P} c {Q}. Furthermore, showing that � ✏I {P} c {Q}
requires reasoning about the execution of command c (that is, C[[c]]), as indicated by the definition of validity.

It turns out that there is an elegant way of deriving valid partial correctness statements, without having
to reason about stores, interpretations, and the execution of c. We can use a set of inference rules and
axioms, called Hoare rules, to directly derive valid partial correctness statements. The set of rules forms a
proof system known as Hoare logic.

SKIP
` {P} skip {P}

ASSIGN
` {P [a/x]} x := a {P}

SEQ
` {P} c1 {R} ` {R} c2 {Q}

` {P} c1; c2 {Q}
IF

` {P ^ b} c1 {Q} ` {P ^ ¬b} c2 {Q}
` {P} if b then c1 else c2 {Q}

WHILE
` {P ^ b} c {P}

` {P} while b do c {P ^ ¬b}

The assertion P in the rule for while loops is essentially a loop invariant; it is an assertion that holds
before and after each iteration, as shown in the premise of the rule. Therefore, it is both a pre-condition for
the loop (because it holds before the first iteration); and also a post-condition for the loop (because it holds
after the last iteration). The fact that P is both a pre- and post-condition for the while loop is reflected in
the conclusion of the rule.

There is one more rule, the rule of consequence, which allows to strengthen pre-conditions and weaken
post-conditions:

CONSEQUENCE
✏ (P) P

0) ` {P 0} c {Q0} ✏ (Q0) Q)

` {P} c {Q}

These set of Hoare rules represent an inductive definition for a set of partial correctness statements
{P} c {Q}. We will say that {P} c {Q} is a theorem in Hoare logic, written ` {P} c {Q}, if we can build a
finite proof tree for it.

1.4 Soundness and Completeness

At this point we have two kinds of partial correctness assertions:

a) valid partial correctness statements ✏ {P} c {Q}, which hold for all stores and interpretations, accord-
ing to the semantics of c; and

b) Hoare logic theorems ` {P} c {Q}, that is, a partial correctness statement that can be derived using
Hoare rules.

The question is how do these sets relate to each other? More precisely, we have to answer two questions.
First, is each Hoare logic theorem guaranteed to be valid partial correctness triple? In other words,

does ` {P} c {Q} imply ✏ {P} c {Q}?

The answer is yes, and it shows that Hoare logic is sound. Soundness is important because it says that
Hoare logic doesn’t allow us to derive partial correctness assertions that actually don’t hold. The proof of
soundness requires induction on the derivations in ` {P} c {Q} (but we will omit this proof).

Page 4 of 5

Lecture 20 Axiomatic semantics

1.3 Hoare logic and program correctness

How do we show that a partial correctness statement {P} c {Q} holds? We know that {P} c {Q} is valid if
it holds for all stores and interpretations: 8�, I. � ✏I {P} c {Q}. Furthermore, showing that � ✏I {P} c {Q}
requires reasoning about the execution of command c (that is, C[[c]]), as indicated by the definition of validity.

It turns out that there is an elegant way of deriving valid partial correctness statements, without having
to reason about stores, interpretations, and the execution of c. We can use a set of inference rules and
axioms, called Hoare rules, to directly derive valid partial correctness statements. The set of rules forms a
proof system known as Hoare logic.

SKIP
` {P} skip {P}

ASSIGN
` {P [a/x]} x := a {P}

SEQ
` {P} c1 {R} ` {R} c2 {Q}

` {P} c1; c2 {Q}
IF

` {P ^ b} c1 {Q} ` {P ^ ¬b} c2 {Q}
` {P} if b then c1 else c2 {Q}

WHILE
` {P ^ b} c {P}

` {P} while b do c {P ^ ¬b}

The assertion P in the rule for while loops is essentially a loop invariant; it is an assertion that holds
before and after each iteration, as shown in the premise of the rule. Therefore, it is both a pre-condition for
the loop (because it holds before the first iteration); and also a post-condition for the loop (because it holds
after the last iteration). The fact that P is both a pre- and post-condition for the while loop is reflected in
the conclusion of the rule.

There is one more rule, the rule of consequence, which allows to strengthen pre-conditions and weaken
post-conditions:

CONSEQUENCE
✏ (P) P

0) ` {P 0} c {Q0} ✏ (Q0) Q)

` {P} c {Q}

These set of Hoare rules represent an inductive definition for a set of partial correctness statements
{P} c {Q}. We will say that {P} c {Q} is a theorem in Hoare logic, written ` {P} c {Q}, if we can build a
finite proof tree for it.

1.4 Soundness and Completeness

At this point we have two kinds of partial correctness assertions:

a) valid partial correctness statements ✏ {P} c {Q}, which hold for all stores and interpretations, accord-
ing to the semantics of c; and

b) Hoare logic theorems ` {P} c {Q}, that is, a partial correctness statement that can be derived using
Hoare rules.

The question is how do these sets relate to each other? More precisely, we have to answer two questions.
First, is each Hoare logic theorem guaranteed to be valid partial correctness triple? In other words,

does ` {P} c {Q} imply ✏ {P} c {Q}?

The answer is yes, and it shows that Hoare logic is sound. Soundness is important because it says that
Hoare logic doesn’t allow us to derive partial correctness assertions that actually don’t hold. The proof of
soundness requires induction on the derivations in ` {P} c {Q} (but we will omit this proof).

Page 4 of 5

•Hoare logic is sound and relatively complete
•No more incomplete that our language of assertions ⊨ P⇒Q

Stephen Chong, Harvard University

Hoare Logic Rules

6

Lecture 20 Axiomatic semantics

1.3 Hoare logic and program correctness

How do we show that a partial correctness statement {P} c {Q} holds? We know that {P} c {Q} is valid if
it holds for all stores and interpretations: 8�, I. � ✏I {P} c {Q}. Furthermore, showing that � ✏I {P} c {Q}
requires reasoning about the execution of command c (that is, C[[c]]), as indicated by the definition of validity.

It turns out that there is an elegant way of deriving valid partial correctness statements, without having
to reason about stores, interpretations, and the execution of c. We can use a set of inference rules and
axioms, called Hoare rules, to directly derive valid partial correctness statements. The set of rules forms a
proof system known as Hoare logic.

SKIP
` {P} skip {P}

ASSIGN
` {P [a/x]} x := a {P}

SEQ
` {P} c1 {R} ` {R} c2 {Q}

` {P} c1; c2 {Q}
IF

` {P ^ b} c1 {Q} ` {P ^ ¬b} c2 {Q}
` {P} if b then c1 else c2 {Q}

WHILE
` {P ^ b} c {P}

` {P} while b do c {P ^ ¬b}

The assertion P in the rule for while loops is essentially a loop invariant; it is an assertion that holds
before and after each iteration, as shown in the premise of the rule. Therefore, it is both a pre-condition for
the loop (because it holds before the first iteration); and also a post-condition for the loop (because it holds
after the last iteration). The fact that P is both a pre- and post-condition for the while loop is reflected in
the conclusion of the rule.

There is one more rule, the rule of consequence, which allows to strengthen pre-conditions and weaken
post-conditions:

CONSEQUENCE
✏ (P) P

0) ` {P 0} c {Q0} ✏ (Q0) Q)

` {P} c {Q}

These set of Hoare rules represent an inductive definition for a set of partial correctness statements
{P} c {Q}. We will say that {P} c {Q} is a theorem in Hoare logic, written ` {P} c {Q}, if we can build a
finite proof tree for it.

1.4 Soundness and Completeness

At this point we have two kinds of partial correctness assertions:

a) valid partial correctness statements ✏ {P} c {Q}, which hold for all stores and interpretations, accord-
ing to the semantics of c; and

b) Hoare logic theorems ` {P} c {Q}, that is, a partial correctness statement that can be derived using
Hoare rules.

The question is how do these sets relate to each other? More precisely, we have to answer two questions.
First, is each Hoare logic theorem guaranteed to be valid partial correctness triple? In other words,

does ` {P} c {Q} imply ✏ {P} c {Q}?

The answer is yes, and it shows that Hoare logic is sound. Soundness is important because it says that
Hoare logic doesn’t allow us to derive partial correctness assertions that actually don’t hold. The proof of
soundness requires induction on the derivations in ` {P} c {Q} (but we will omit this proof).

Page 4 of 5

Lecture 20 Axiomatic semantics

1.3 Hoare logic and program correctness

How do we show that a partial correctness statement {P} c {Q} holds? We know that {P} c {Q} is valid if
it holds for all stores and interpretations: 8�, I. � ✏I {P} c {Q}. Furthermore, showing that � ✏I {P} c {Q}
requires reasoning about the execution of command c (that is, C[[c]]), as indicated by the definition of validity.

It turns out that there is an elegant way of deriving valid partial correctness statements, without having
to reason about stores, interpretations, and the execution of c. We can use a set of inference rules and
axioms, called Hoare rules, to directly derive valid partial correctness statements. The set of rules forms a
proof system known as Hoare logic.

SKIP
` {P} skip {P}

ASSIGN
` {P [a/x]} x := a {P}

SEQ
` {P} c1 {R} ` {R} c2 {Q}

` {P} c1; c2 {Q}
IF

` {P ^ b} c1 {Q} ` {P ^ ¬b} c2 {Q}
` {P} if b then c1 else c2 {Q}

WHILE
` {P ^ b} c {P}

` {P} while b do c {P ^ ¬b}

The assertion P in the rule for while loops is essentially a loop invariant; it is an assertion that holds
before and after each iteration, as shown in the premise of the rule. Therefore, it is both a pre-condition for
the loop (because it holds before the first iteration); and also a post-condition for the loop (because it holds
after the last iteration). The fact that P is both a pre- and post-condition for the while loop is reflected in
the conclusion of the rule.

There is one more rule, the rule of consequence, which allows to strengthen pre-conditions and weaken
post-conditions:

CONSEQUENCE
✏ (P) P

0) ` {P 0} c {Q0} ✏ (Q0) Q)

` {P} c {Q}

These set of Hoare rules represent an inductive definition for a set of partial correctness statements
{P} c {Q}. We will say that {P} c {Q} is a theorem in Hoare logic, written ` {P} c {Q}, if we can build a
finite proof tree for it.

1.4 Soundness and Completeness

At this point we have two kinds of partial correctness assertions:

a) valid partial correctness statements ✏ {P} c {Q}, which hold for all stores and interpretations, accord-
ing to the semantics of c; and

b) Hoare logic theorems ` {P} c {Q}, that is, a partial correctness statement that can be derived using
Hoare rules.

The question is how do these sets relate to each other? More precisely, we have to answer two questions.
First, is each Hoare logic theorem guaranteed to be valid partial correctness triple? In other words,

does ` {P} c {Q} imply ✏ {P} c {Q}?

The answer is yes, and it shows that Hoare logic is sound. Soundness is important because it says that
Hoare logic doesn’t allow us to derive partial correctness assertions that actually don’t hold. The proof of
soundness requires induction on the derivations in ` {P} c {Q} (but we will omit this proof).

Page 4 of 5

Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Axiomatic semantics

Lecture 20 Thursday, April 10, 2014

1 Introduction to axiomatic semantics

The idea in axiomatic semantics is to give specifications for what programs are supposed to compute. This
contrasts with operational model (which show how programs execute) or denotational models (which show
what programs compute). Axiomatic semantics defines the meaning of programs in terms of logical formu-
las satisfied by the program.

This approach to reasoning about programs and expressing program semantics was originally proposed
by Floyd and Hoare, and then pushed further by Dijkstra and Gries.

Program specifications can be expressed using pre-conditions and post-conditions:

{Pre} c {Post}

where c is a program, and Pre and Post are logical formulas that describe properties of the program state
(usually referred to as assertions). Such a triple is referred to as a partial correctness statement (or partial
correctness assertion triple) and has the following meaning:

“If Pre holds before c, and c terminates, then Post holds after c.”

In other words, if we start with a store � where Pre holds, and the execution of c in store � terminates
and yields store �

0, then Post holds in store �

0.
Pre- and post-conditions can be regarded as interfaces or contracts between the program and its clients.

They help users to understand what the program is supposed to yield without needing to understand
how the program executes. Typically, programmers write them as comments for procedures and functions,
for better program understanding, and to make it easier to maintain programs. Such specifications are
especially useful for library functions, for which the source code is, in many cases, unavailable to the users.
In this case, pre- and post-conditions serve as contracts between the library developers and users of the
library.

However, there is no guarantee that pre- and post-conditions written as informal code comments are
actually correct: the comments specify the intent, but give no correctness guarantees. Axiomatic semantics
addresses this problem: we will look at how to rigorously describe partial correctness statements and how
to prove and reason about program correctness.

Note that partial correctness doesn’t ensure that the given program will terminate – this is why it is
called “partial correctness”. In contrast, total correctness statements ensure that the program terminates
whenever the precondition holds. Such statements are denoted using square brackets:

[Pre] c [Post]

meaning:

“If Pre holds before c then c will terminate and Post will hold after c.”

In general a pre-condition specifies what the program expects before execution; and the post-conditions
specifies what guarantees the program provides when the program terminates. Here is a simple example:

{foo = 0 ^ bar = i} baz := 0;while foo 6= bar do (baz := baz� 2; foo := foo+ 1) {baz = �2i}

If, before the program executes, the store maps foo to zero, and maps bar to i, then, if the program
terminates, then the final store will map baz to �2i, that is, �2 times the initial value of bar. Note that i is a
logical variable: it doesn’t occur in the program, and is just used to express the initial value of bar.

Stephen Chong, Harvard University

Example

•Build a proof tree for the following:

7

Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Axiomatic semantics

Lecture 20 Thursday, April 10, 2014

1 Introduction to axiomatic semantics

The idea in axiomatic semantics is to give specifications for what programs are supposed to compute. This
contrasts with operational model (which show how programs execute) or denotational models (which show
what programs compute). Axiomatic semantics defines the meaning of programs in terms of logical formu-
las satisfied by the program.

This approach to reasoning about programs and expressing program semantics was originally proposed
by Floyd and Hoare, and then pushed further by Dijkstra and Gries.

Program specifications can be expressed using pre-conditions and post-conditions:

{Pre} c {Post}

where c is a program, and Pre and Post are logical formulas that describe properties of the program state
(usually referred to as assertions). Such a triple is referred to as a partial correctness statement (or partial
correctness assertion triple) and has the following meaning:

“If Pre holds before c, and c terminates, then Post holds after c.”

In other words, if we start with a store � where Pre holds, and the execution of c in store � terminates
and yields store �

0, then Post holds in store �

0.
Pre- and post-conditions can be regarded as interfaces or contracts between the program and its clients.

They help users to understand what the program is supposed to yield without needing to understand
how the program executes. Typically, programmers write them as comments for procedures and functions,
for better program understanding, and to make it easier to maintain programs. Such specifications are
especially useful for library functions, for which the source code is, in many cases, unavailable to the users.
In this case, pre- and post-conditions serve as contracts between the library developers and users of the
library.

However, there is no guarantee that pre- and post-conditions written as informal code comments are
actually correct: the comments specify the intent, but give no correctness guarantees. Axiomatic semantics
addresses this problem: we will look at how to rigorously describe partial correctness statements and how
to prove and reason about program correctness.

Note that partial correctness doesn’t ensure that the given program will terminate – this is why it is
called “partial correctness”. In contrast, total correctness statements ensure that the program terminates
whenever the precondition holds. Such statements are denoted using square brackets:

[Pre] c [Post]

meaning:

“If Pre holds before c then c will terminate and Post will hold after c.”

In general a pre-condition specifies what the program expects before execution; and the post-conditions
specifies what guarantees the program provides when the program terminates. Here is a simple example:

{foo = 0 ^ bar = i} baz := 0;while foo 6= bar do (baz := baz� 2; foo := foo+ 1) {baz = �2i}

If, before the program executes, the store maps foo to zero, and maps bar to i, then, if the program
terminates, then the final store will map baz to �2i, that is, �2 times the initial value of bar. Note that i is a
logical variable: it doesn’t occur in the program, and is just used to express the initial value of bar.

Stephen Chong, Harvard University

Predicate transformation

•We now have a logic to prove partial correctness
triples {P} c {Q}

•Interesting question: Given Q and c, what is the
weakest P such that {P} c {Q} ?
•Weakest (liberal) pre-condition
•E.g., Consider c≡ “a = int[50]; i =0; while (i < b) { ... }; a[i]=0”

•What is the weakest precondition P such that {P} c { i ≥ 50 }?
i.e., how do we trigger an overflow?

•Dual is strongest post-condition: given P and c,
what is the strongest Q such that {P} c {Q} ?

8

Stephen Chong, Harvard University

Weakest pre-condition

•wp(c, Q) = P where P is the weakest condition  
 such that {P} c {Q}

•wp(skip, Q) = Q
•wp(x := e, Q) = Q{e/x}

•e.g., wp(foo := bar+1, foo > 42) = (bar+1 > 42)

•wp(c1;c2, Q) = wp(c1, wp(c2, Q))
•wp(if b then c1 else c2,Q) =  

 b⇒wp(c1, Q) ∧ ¬b⇒wp(c2, Q)

•e.g.,  
wp(if x < 0 then x := -x else skip, x > 0)=?

9

Stephen Chong, Harvard University

Weakest pre-condition

•wp(while b do c, Q) = ???
•In general undecidable
•Conservative under approximation: unroll loop

•wp’(while b do c, Q) =  
 wp(if (b) then (c;if(b) then c), Q∧¬b)
• i.e., approximate 0-2 executions of loop

•{P} while b do c {Q} is valid if  
 P⇒wp’(while b do c, Q)

• The converse if not necessarily true

10

Stephen Chong, Harvard University

Weakest pre-condition

•wp(while b do c, Q) = ???
•Conservative under approximation: loop invariant

•A loop invariant I is true at top of each loop iteration
•Loop invariant typically supplied by programmer, or use

heuristics to guess
•wp’(while b do c, Q) =  

 I∧b ⇒ wp(c, I) I is a loop invariant 
 ∧ (¬b∧Q ∨ loop won’t execute  
 (I ∧ (I∧¬b⇒Q)) Invariant holds  
 and Q holds when loop exits

• Note this is weakest liberal precondition: it does not require termination
11

