HARVARD

John A. Paulson

School of Engineering
and Applied Sciences

Some background info for
program synthesis

CS 252, Fall 2017

lopics

e Hoare logic
e Reasoning about programs
e \Weakest precondition
*See also lecture notes for CS152 in Spring 2014
* https://www.seas.harvard.edu/courses/cs152/2014sp/
e Abstract interpretation
* Approximating concrete execution

e See lecture notes for CS5252 in Spring 2011
* https://www.seas.harvard.edu/courses/cs252/2011sp/

*See also lecture notes for CS152 in Spring 2014
* https://www.seas.harvard.edu/courses/cs152/2014sp/

* Model checking

e See lecture notes for CS5252 in Spring 2011

* https://www.seas.harvard.edu/courses/cs252/2011sp/
Stephen Chong, Harvard University 2

https://www.seas.harvard.edu/courses/cs252/2011sp/
https://www.seas.harvard.edu/courses/cs252/2011sp/

Axiomatic Semantics

*Key idea: give specifications for what programs are
supposed to do

e Define meaning of programs in terms of logical formulas
satisfied by program

*Enables reasoning about programs

* Pre- and post-condition:
{Pre} c {Post}
e Partial correctness: “If Pre holds before execution of ¢, and

c terminates, then Post holds after c.”

o (Total correctness: “If Pre holds before execution of ¢ then
c terminates and Post holds after c.”)

e Example

{foo = 0 A bar =i} baz := 0; while foo # bar do (baz := baz — 2;foo := foo + 1) {baz = —2i}

*Non example
{ true } if foo < O then foo := -foo else skip { foo > 0 }

Stephen Chong, Harvard University 4

Hoare Logic

SKIP ASSIGN

- {P} skip {P} - {Pla/x|} x :=a {P}
SEO - {P} c1 {R} F{R} co {Q} . F{P Ab}c1 {Q} H{P A-b} co {Q}
- {P} C1; C2 {Q} = {P} iIf b then ¢, else ¢, {Q}
WEHILE F{P Ab}c{P}

- {P} while bdo ¢ {P A —b}

F(P=P) H{P}ci{Q} F@Q =Q)
- {Pc{@}

CONSEQUENCE

e Hoare logic is sound and relatively complete
* No more incomplete that our language of assertions = P=Q

Stephen Chong, Harvard University 5

Hoare Lo

SKIP _ ASSIGN
- {P} skip {P} - {Pla/2|} = := a {P}
SEO - {P}c {R} F{R} co {Q} - F{P Ab} 1 {Q} E{P A—=b}co {Q}
- {P} C1;Co {Q} = {P} iIf b then ¢, else ¢, {Q}
WEHILE - {P Ab} c{P}

- (P} while bdo ¢ {P A —b}

F(P=P) H{P}ci{Q} F@Q =Q)
- {P} c{Q}

CONSEQUENCE

{foo = 0 A bar = i} baz := 0; while foo # bar do (baz := baz — 2;foo := foo + 1) {baz = —2i}

Stephen Chong, Harvard University

*Build a proof tree for the following:

{foo = 0 A bar =i} baz := 0; while foo # bar do (baz := baz — 2;foo := foo + 1) {baz = —2i}

Stephen Chong, Harvard University 7

Predicate transformation

*\We now have a logic to
triples {P} c {QQ}

prove partial correctness

*|nteresting question: Given Q and ¢, what is the
weakest P such that {P} c {Q} ?

e Weakest (liberal) pre-condition

°E.g., Consider c= “a = int[50

*\What is the weakest preconc

ition P such that {P} c {i>50 }?

i.e., how do we trigger an overflow?

* Dual is strongest post-condition: given P and c,
what is the strongest Q such that {P} c {Q} ¢

Weakest pre-condition

ewp(c, Q) = P where P is the weakest condition

such that {P} c {Q}

e wp(skip, Q) = Q
swp(x :=e, Q) = Qe/x}
ee.g., wp(foo := bar+1, foo > 42) = (bar+1 > 42)

swp(cl;c2, Q) = wp(cl, wp(c2, Q))
ewp(if b then c1 else c2,Q) =
b=wp(cl, Q) A =b=wp(c2, Q)

°ec.g.,
wp(if x < 0 then x := -x else skip, x > 0)=?

Weakest pre-condition

ewp(whilebdoc, Q) =72
*In general undecidable

e Conservative under approximation: unroll loop

ewp’(whilebdoc, Q)=
wp(if (b) then (c;if(b) then c), QA-b)
* i.e., approximate 0-2 executions of loop

*{P} while b do c {Q} is valid it
P=wp’(whilebdoc, Q)

* The converse if not necessarily true

Weakest pre-condition

ewp(whilebdoc, Q) =72
e Conservative under approximation: loop invariant

* A loop invariant / is true at top of each loop iteration

| oop invariant typically supplied by programmer, or use
heuristics to guess

ewp'(whilebdoc, Q)

IAb = wpl(c, 1) [is a loop invariant

A (FbAQ v loop won't execute
(1 A (IAmb=Q)) Invariant holds

and Q holds when loop exits

» Note this is weakest liberal precondition: it does not require termination

