
Harvard School of Engineering and Applied Sciences — CS 252: Advanced Topics in Programming Languages

Logical Relations Part 1

Lecture 1 Wednesday, August 30, 2017

1 Logical Relations

We often want to show that a property holds of all (well-typed) terms in a language. A standard way of
proving such a property is to perform induction on the structure of the term. However, for some properties,
it may be difficult to find the right induction hypothesis, since evaluation of the program may not preserve
the structure of terms.

For example, consider trying to prove strong normalization (i.e., termination) of terms in the simply-
typed lambda calculus, and specifically consider the case for application e1 e2. The induction hypothesis
might say that terms e1 and e2 are strongly normalizing, and so e1 will evaluate to an abstraction λx. e and
e2 will evaluate to a value v. But (λx. e) v steps to e{v/x}, and our inductive hypothesis has nothing to say
about this new term!

Logical relations are a powerful technique to help specify the a sufficiently strong inductive hypothe-
sis. In this lecture, we will prove the strong normalization of simply-typed lambda calculus using logical
relations. This proof technique was invented by Tait in 1967, to prove strong normalization (i.e., normal-
ization in a language with full-beat reduction, i.e., nondeterministic evaluation order). Plotkin coined the
phrase “logical relations”, but don’t try to read too much into the name. Logical relations are so-called be-
cause they preserve the property of interest across logical implication (i.e., functions) and types with logical
counterparts under the Curry-Howard isomorphism.

2 Proof of Normalization Using Logical Relations

(This proof is based on the presentation in Chapter 12 of “Types and Programming Languages” by Benjamin
C. Pierce, MIT Press, 2002.)

Suppose we have a simply-typed lambda calculus with unit. (That is, the only base type is Unit.) The
syntax is defined as follows.

e ::= x | λx :τ. e | e1 e2 | ()
v ::= λx :τ. e | ()
τ ::= Unit | τ1 → τ2

We start by defining a logical relation for each type: for each type τ , the set Rτ will be a set of closed
terms of type τ , and we write Rτ (e) if e ∈ Rτ . (For this example, we are using unary logical relations, and
so could maybe call them logical predicates.)

RUnit(e) iff e halts
Rτ1→τ2(e) iff e halts and for all e′ such that Rτ1(e

′), we have Rτ2(e e
′)

Note that if we consider the Curry-Howard isomorphism and regard function types as logical implica-
tion, the definition of Rτ1→τ2 preserves the logical relation over implication: if Rτ1(e′) and Rτ1→τ2(e) then
Rτ2(e e

′).
The proof of strong normalization proceeds in two steps. First we show that if e ∈ Rτ , then e terminates.

Second, we show that if e is a well-typed expression of type τ , then e ∈ Rτ .

Lemma 1. If Rτ (e) then e terminates.

Proof. Immediate from the definition of Rτ .

Lecture 1 Logical Relations Part 1

To prove the second step, we use two lemmas. The first lemma shows that membership inRτ is invariant
under evaluation. The second lemma shows quite directly that if e is a well-typed expression of type τ ,
then e ∈ Rτ . However, in this second lemma we need to strengthen the inductive hypothesis to handle
expressions with free variables. We do so by considering expressions with free variables have the variables
substituted with suitable values.

Lemma 2. If e −→ e′ then Rτ (e) iff Rτ (e′).

Proof. Assume ` e :τ and e −→ e′. First, note that it is clear in this language that e terminates if and only if
e′ terminates.

Now, consider the⇒ direction, which we will prove by induction on the structure of type τ . Suppose
that Rτ (e). For the base case τ = Unit, the result is immediate. Consider the case τ = τ1 → τ2. We need to
show that for all e1 ∈ Rτ1 , we haveRτ2(e′ e1). But we have e e1 −→ e′ e1, which by the induction hypothesis
for type τ2 means that Rτ2(e′ e1).

The other direction (⇐) is similar.

Lemma 3. If x1 : τ1, . . . , xn : τn ` e : τ and v1, . . . , vn are closed values of type τ1, . . . , τn, and for all i ∈ 1..n we
have Rτi(vi), then Rτ (e{v1/x1} . . . {vn/xn}).

Proof. We proceed by induction on the typing derivation of x1 :τ1, . . . , xn :τn ` e :τ .

• Case T-Var. Here, e = xi and τ = τi. Since Rτi(vi) and vi{v1/x1} . . . {vn/xn} = vi, the result is
immediate.

• Case T-Unit. Here, e = () and τ = Unit. Since RUnit(()) and (){v1/x1} . . . {vn/xn} = (), the result is
immediate.

• Case T-App. Here, e = e1 e2, and we have the following:

x1 :τ1, . . . , xn :τn ` e1 :τ2 → τ

x1 :τ1, . . . , xn :τn ` e2 :τ2

By the inductive hypothesis, we have Rτ2→τ (e1{v1/x1} . . . {vn/xn}) and Rτ2(e2{v1/x1} . . . {vn/xn}).
By the definition of Rτ2→τ we have

Rτ (e1{v1/x1} . . . {vn/xn} e2{v1/x1} . . . {vn/xn})
=Rτ ((e1 e2){v1/x1} . . . {vn/xn}

• Case T-Abs. Here e = λx :τx. e
′ and τ = τx → τ ′ and we have:

x1 :τ1, . . . , xn :τn, x :τx ` e′ :τ ′

Clearly, e is a value, and so e terminates. So we need to show that for any e′′ such that Rτx(e′′), we
have Rτ ′((e{v1/x1} . . . {vn/xn}) e′′).
Since Rτx(e′′), by Lemma 1 e′′ will terminate, i.e., will evaluate to a value v′′. Moreover, by Lemma 2
we have Rτx(v′′). So we have

(e{v1/x1} . . . {vn/xn}) e′′ −→∗(e{v1/x1} . . . {vn/xn}) v′′

= ((λx :τx. e
′){v1/x1} . . . {vn/xn}) v′′

−→e′{v1/x1} . . . {vn/xn}{v′′/x}

But by the inductive hypothesis, we have Rτ ′(e′{v1/x1} . . . {vn/xn}{v′′/x}).

Strong normalization follows easily from Lemma 3.

Theorem 1. If ` e :τ then e terminates.

Page 2 of 2

