
Harvard School of Engineering and Applied Sciences — CS 252: Advanced Topics in Programming Languages

Logical Relations Part 4

Lecture 4 Wednesday, September 13, 2017

We continue exploring logical relations. This lecture is based on lectures by Prof Amal Ahmed at the
Oregon Programming Languages Summer School, 20151, as reported in the notes by Lau Skorstengaard.2

1 Recursive Types

What is the type of a data structure such as a tree? In a programming language like Java, we would define
it as follows:

c l a s s Tree {
i n t val ;
Tree l e f t ;
Tree r i g h t ;

}

This type is recursive: the type Tree is defined in terms of the type Tree. Similarly, nn an ML-like lan-
guage, a declaration of a tree type would be recursive:

type t r e e = Leaf
| Node of i n t ∗ t r e e ∗ t r e e

So how would we extend the lambda calculus to let us express recursive types? Let’s think about what
we would like for a tree type. A tree value can be either a leaf, or a node with an int and two subtrees. We
can represent a leaf with a unit value (since the leaf carries no information). So we would like the tree type
to be something like

tree = unit + (int× tree× tree).

Of course, this is recursive: it’s not a definition of the type tree, rather it is an equation that we would
like the type tree to satisfy. That is, if X is a variable that will be equal to the type for trees, we would like
the following equivalences to hold.

X = unit + (int×X ×X)

= unit + (int× (unit + (int×X ×X))× (unit + (int×X ×X)))

= unit + (int× (unit + (int× (int×X ×X)× (int×X ×X)))× (unit + (int× (int×X ×X)× (int×X ×X))))

. . .

Each time we “expand” the type variable X , the type gets bigger, with the limit being an infinite tree,
which is, conceptually, the type that we have in mind for the type tree.

Let’s define a function for which we want to find a fixed point. The function F will take a type X , and
return another type.

F = λX :: type. unit + (int×X ×X)

A fixed point of F is, by definition, a type τ such that τ = F (τ). Let’s call that type tree, i.e., we want
tree = F (tree).

Se can write the fixed point as µX. F (X), where µ is the fixed-point constructor. By definitionF (µX. F (X)) =
µX. F (X). If we write τ for F (X), then the fixed point would be µX. τ , and F (µX. F (X)) = F (µX. τ) =
τ{µX. τ/X}. That is, the type µX. τ is equivalent to the type τ{µX. τ/X}.

This step of substituting the fixed point µX. τ for the type variable X in τ “unfolds” the recursive type
µX. τ . Going from µX. τ to τ{µX. τ/X} and vice-versa is acheived by the fold and unfold operations.

1Videos available at https://www.cs.uoregon.edu/research/summerschool/summer15/curriculum.html.
2Available at https://www.cs.uoregon.edu/research/summerschool/summer16/notes/AhmedLR.pdf.

https://www.cs.uoregon.edu/research/summerschool/summer15/curriculum.html
https://www.cs.uoregon.edu/research/summerschool/summer16/notes/AhmedLR.pdf

Lecture 4 Logical Relations Part 4

Consider a simply-typed lambda calculus extended with recursive types.

e ::= n | x | λx :τ. e | e1 e2 | fold e | unfold e
v ::= n | λx :τ. e | fold v
τ ::= int | τ1 → τ2 | µX. τ | X

E ::= [·] | E e | v E | fold E | unfold E

e −→ e′

E[e] −→ E[e′] (λx :τ. e) v −→ e{v/x} (unfold fold v) −→ v

Γ ` n : int Γ ` x :τ
Γ(x) = τ

Γ, x :τ ` e :τ ′

Γ ` λx :τ. e :τ → τ ′

Γ ` e1 :τ → τ ′ Γ ` e2 :τ

Γ ` e1 e2 :τ ′
Γ ` e :τ{µX. τ/X}

Γ ` fold e :µX. τ

Γ ` e :µX. τ

Γ ` unfold e :τ{µX. τ/X}

Note that we assume (without providing appropriate typing rules) that our types have no free type
variables.

Returning to our tree example, we could define the type of tree as follows (assuming we had sum,
product, int, and unit types).

tree , µX. unit + (int×X ×X)

We could write the type of integer lists as follows.

intlist , µX. unit + (int×X)

Note that we can also type the non-terminating term Ω = (λx. . x x) (λx. . x x) (provided that we insert
appropriate folds and unfolds).

` fold (λx. :µX. X → X. (unfold x) x) :µX. X → X

Note that x has type µX. X → X , and so unfold x has type (µX. X → X)→ (µX. X → X).
So our lambda calculus with recursive types now has non-terminating computations.

2 Type Safety and Step-indexed logical relations

Let’s consider proving type safety for this language. Informally, type safety means that a well-typed com-
putation won’t get stuck. That is, a computation can take some number of steps, and if it can’t take any
more steps, then it must be a value, i.e., it is never the case that we have a non-value expression that is
irreducible.

Let’s define a couple of useful predicates to let us express type safety.

irred(e) =,6 ∃e′. e −→ e′

safe(e) =, ∀e′. e −→∗ e′ =⇒ e′ is a value ∨ ∃e′′. e −→ e′′

We will prove type safety by defining a logical relation. Let’s first consider the logical relation for the
simply typed lambda calculus (i.e., without recursive types), and then consider how to modify the logical
relation to deal with recursive types.

We will again define a family of value relations Vτ and expression relations Eτ indexed by type τ . Rela-
tion (or, rather, predicate) Vτ will be a set of closed values, and Eτ will be a set of closed terms.

Page 2 of 4

Lecture 4 Logical Relations Part 4

Vint = {n | n ∈ Z}
Vτ1→τ2 = {λx. :τ1. e | ∀v ∈ Vτ1 . e{v/x} ∈ Eτ2}
Eτ = {e | ∀e′. e −→∗ e′ ∧ irred(e′) =⇒ e′ ∈ Vτ}

We define our semantic notion of type safety by providing an interpretation of variable contexts, and
then use that semantic notion of type safety to state the fundamental property.

Given a variable context Γ, we define the interpretation of Γ as a set of substitutions that are consistent
with Γ.

G[[•]] = {∅}
G[[Γ, x :τ]] = {γ[x 7→ v] | γ ∈ G[[Γ]], v ∈ Vτ}

Γ � e :τ , ∀γ ∈ G[[Γ]]. γ(e) ∈ Eτ

The proof of type safety is in two steps. First, well-typed expressions are in the relation:

Theorem 1 (Fundamental property). If Γ ` e :τ then Γ � e :τ .

Second, expressions in the relation are type safe.

Theorem 2. If Γ � e :τ then safe(e).

The proofs of these theorems are fairly straightforward. Let’s turn our attention to extending the logical
relations to handle recursive types.

Note that values of type µX. τ are of the form fold v. A first (incorrect) attempt to define the appropriate
value relation might be the following, based on the idea that the result of de-constructing the value (i.e.,
applying unfold to it) is in the appropriate relation.

VµX. τ = {fold v | unfold fold v ∈ Eτ{µX. τ/X}}

We can simplify this a bit, since unfold fold v steps to v, and v is a value.

VµX. τ = {fold v | v ∈ Vτ{µX. τ/X}}

However, we now run into well-foundedness issues! The value relation VµX. τ is defined in terms of
the value relation Vτ{µX. τ/X}, which is not strictly smaller. Thus, the definition of VµX. τ may not be a
definition per se, but rather a recursive equation that we would like the set VµX. τ to satisfy.

To solve this issue, we index the interpretation by a natural number k: Vkτ = {v | . . . }. The intuition is
that Vkτ means that “v belongs to the interpretation of τ for k steps.” That is, if we run a computation that
uses v for k or fewer steps, then we will not notice that it does not have type τ . If we run a computation for
more than k steps, we might notice that v does not have type τ , which means that we might get stuck. In
essence, we are using these indexed relations to mean that the value/expression is type safe for at least k
steps.

Vkint = {n | n ∈ Z}
Vkτ1→τ2 = {λx. :τ1. e | ∀j ≤ k. ∀v ∈ Vjτ1 . e{v/x} ∈ E

j
τ2}

VkµX. τ = {fold v | ∀j < k. v ∈ Vjτ{µX. τ/X}}

Ejτ = {e | ∀j < k. ∀e′. e −→j e′ ∧ irred(e′) =⇒ e′ ∈ Vk−jτ }

Note that we do not need a value interpretation for type variables X , since we never need to interpret a
type variable (since recursive types are always closed).

Page 3 of 4

Lecture 4 Logical Relations Part 4

We also need to lift the interpretation of type environments to step-indexing, and we can then lift the
definition of semantic type safety.

G[[•]]k = {∅}
G[[Γ, x :τ]]k = {γ[x 7→ v] | γ ∈ G[[Γ]]k, v ∈ Vkτ }

Γ � e :τ , ∀k ≥ 0. ∀γ ∈ G[[Γ]]k. γ(e) ∈ Ekτ

Page 4 of 4

	Recursive Types
	Type Safety and Step-indexed logical relations

