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ES128: Homework 1 

Solutions 
Problem 1 

For the spring system given in Figure 1, 

a. Number the elements and nodes; 

b. Assemble the global stiffness and force matrix; 

c. Partition the system and solve for the nodal displacements; 

d. Compute the reaction forces. 

 

 
 

 

 

Solution 

We assign nodes and elements numbers as in the figure below 

 

 

 

 

 

 

 

It follows that the element stiffness matrices are given by 
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The global stiffness matrix is given by 
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The displacement and force nodal vectors are 
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To impose the prescribed boundary conditions, we partition the system as  
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Since [dE = 0  0  0], FFFF fdK = , so that 
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Therefore, ku /1429.74 =  and ./7143.105 ku =  

 

Since =Ed [0  0  0], EFEF fdK = , so that 
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Therefore, 1429.321 −=r  (N), 1429.72 −=r  (N) and 7143.103 −=r  (N). 

 

 

 

 

Problem 2 

Figure 2 shows a two-member plane truss supported by a linearly elastic spring. The 

truss members are of a solid circular cross section having d=20 mm and E=80Gpa. The 

linear spring has stiffness constant 50 N/mm. 

a. Assemble the system global stiffness matrix and calculate the global 

displacements of the unconstrained node; 

b. Compute the reaction forces and check the equilibrium conditions; 

c. Check the energy balance. Is the strain energy in balance with the mechanical 

work of the applied force? 

d. Compute the strain and stress in each bar. 
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Solution  

We assign nodes and elements numbers as in the figure below 
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For element 3 
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The global stiffness matrix is  
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The displacement and force matrices are 
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To impose the prescribed boundary conditions, we partition the system as  
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03 =xr ;  

=yr3 -0.5590 (kN). 

 

The resultant of the reaction forces in x direction is 14.5757+(-24.2175)+9.6418=0. 

The resultant of the reaction forces in  y direction is (-10.9317)+(-0.5590)+11.4907=0. 
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The strain energy for Element 1 is 
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The strain energy of the system is 82.816 (J) 

 

If the work done by the external force is computed assuming the force had remained 

constant from the initial state to the final state we obtain 

Mechanical work of the applied force = ( yyxx ufuf 4444 + )=2x82.816 (J) 

 

In the linear theory of elasticity Clapeyron's theorem states that the potential energy of 

deformation of a body, which is in equilibrium under a given load, is equal to half the 

work done by the external forces computed assuming these forces had remained 

constant from the initial state to the final state 
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In reality the forces increased slowly from the initial state (force=0) to the final state 

(force= final force). If the work done by the external force is computed assuming the 

force increased from the initial state to the final state we obtain 

Mechanical work of the applied force = 0.5( yyxx ufuf 4444 + )=82.816 (J) 

 

 


