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This paper addresses localization of the deformation due to buckling that occurs immedi-
ately following the onset of bifurcation in the axisymmetric buckling of a perfect spher-
ical elastic shell subject to external pressure. The localization process is so abrupt that
the buckling mode of the classical eigenvalue analysis, which undulates over the entire
shell, becomes modified immediately after bifurcation transitioning to an isolated dimple
surrounded by an unbuckled expanse of the shell. The paper begins by revisiting earlier
attempts to analyze the initial post-buckling behavior of the spherical shell, illustrating
their severely limited range of validity. The unsuccessful attempts are followed by an ap-
proximate Rayleigh-Ritz solution which captures the essence of the localization process.
The approximate solution reveals the pathway that begins at bifurcation from the classical

mode shape to the localized dimple buckle. The second part of the paper presents an exact
asymptotic expansion of the initial post-buckling behavior which accounts for localization
and which further exposes the analytic details of the abruptness of the transition.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Mechanical localization phenomena are more common than is generally appreciated. Necking in a long bar or rod subject
to tensile stretching is perhaps the best known example. Prior to the onset of necking relatively uniform straining occurs
along the entire length of the bar, but once necking sets in the additional deformation localizes in the neck which typically
has a length on the order of the bar diameter. Pipes, tubes and straws subject to overall bending distribute the curvature
along their length until suddenly the additional curvature changes localize at one section whose length is again on the order
of the diameter of the member. This paper addresses buckling localization in shells, specifically in elastic spherical shells
subject to external pressure. Our primary aim is to expose the abrupt transition from a buckling mode that is distributed
over the entire shell at the onset of buckling to a buckling mode that is a localized dimple in a small region of the shell
and unbuckled outside that region.

There are two features common to nearly all mechanical localization phenomena: a competition between two well
separated deformation scales, an overall scale and a local scale, and a diminishing load carrying capacity attained at some
stage with increasing deformation at the overall scale. For necking of the long tensile bar, the two scales are the length and
the diameter of the bar. The second feature is met for most metals and some polymers because a bar of these materials
displays a maximum load followed by decreasing load under uniaxial tension. For long cylindrical shells undergoing elastic
bending, the two scales are again the length and the diameter. These structural entities display a maximum moment in

* Corresponding author.
E-mail address: audoly@Imm,jussieu.fr (B, Audoly).

https://doi.org/10.1016/j.jmps.2019.103720
0022-5096/© 2019 Elsevier Ltd. All rights reserved.






2 B. Audoly and J.W. Hutchinson/Journal of the Mechanics and Physics of Solids 136 (2020) 103720

overall bending followed by decreasing moment, either due to cross-sectional ovalization or to a short wavelength buckling
mode on the compressive side of the shell. In spherical shell buckling of interest here, the two scales are the characteristic
wavelength of the buckling mode, which is on the order of +/Rt with R as the shell radius and ¢ as its thickness, and the
size of the shell itself, of order R. The second feature making spherical shell buckling susceptible to localization is the
drop in pressure carrying capacity which coincides with the onset of buckling. In each of these cases, a physical argument
applies analogous to that put forward by Considére (1885) to explain necking localization in a long bar stretched in tension.
Namely, a slight imperfection somewhere along the bar causes the maximum load to be attained at that location and, then,
with continuing deformation at that location, the load falls at the other locations along the bar because the maximum load
is never reached in those locations. Outside the neck the bar unloads. Tvergaard and Needleman (1980) have interpreted
the corresponding scenario for bending localization in cylindrical tubes and shells along the lines laid out by Considére,
while the book by Kyriakides and Corona (2007) reports both numerical studies and an extensive series of experiments on
bending localization in pipelines.

The importance of localization in the elastic buckling of cylindrical shells subject to axial compression has recently
emerged in the published work of Hordk et al. (2006), Kreilos and Schneider (2017) and Groh and Pirrera (2019). Local-
ization in cylindrical shells has features in common with that in the spherical shell, however, cylindrical shell buckling is
inherently two dimensional involving variations in both the axial and circumferential directions. As a consequence the be-
havior of the cylinder is governed by partial differential equations and the analyses noted above have been numerical. For
the perfect elastic cylindrical shell under axial compression, stable localized dimple-like buckles have been shown to exist at
loads above those the shell can support for more widely distributed buckle patterns suggesting that cylindrical shells with
a sufficiently low level of imperfection may be capable of carrying higher loads that the design codes currently allow. An
attractive feature of spherical shells is that an important set of buckling localizations can be studied for shells undergoing
axisymmetric deformation such that the behavior is governed by ordinary, not partial, differential equations. This, in turn,
increases the possibility of obtaining insight from analytical solution methods of various kinds, as well enabling simpler nu-
merical methods. In this paper we will exploit both analytical and numerical methods to expose the nature of localization
in the elastic buckling of a perfect spherical shell subject to uniform external pressure.

1.1. Background preliminaries to localization in spherical shells

As background to the present study, we begin by citing basic results for the classical elastic buckling of a thin, perfect
spherical shell subject to external pressure. The axisymmetric response of the spherical shell fully captures the localization
phenomena of interest here, and throughout this paper attention will be restricted to axisymmetric behavior. Let  be the
meridian angle measured from the upper pole of the shell. With D as the external pressure acting on the shell and W(j) as
the outward normal deflection of the shell middle surface, the classical buckling, or bifurcation, pressure and the associated
buckling eigenmode are

ﬁczi and W (B) x Pu(cos B). (11)

V3(1 —v2)R2

Here, E is Young's modulus and v is Poisson's ratio, Py(x) is the Legendre polynomial of degree n, and n is the integer
most closely satisfying n(n+ 1) = /12(1 — v2)¥. The magnitude of the classical buckling mode is largest at the poles but
the mode extends over the entire shell with a wavelength proportional to +/Rt. A collage of some of the details of the
localization process in the buckling of an elastic spherical shell under external pressure is presented in Fig. 1. These results
have been computed in the same manner employed in Hutchinson (2016) using an accurate numerical algorithm for solving
nonlinear ordinary differential equations. The normal buckling displacement is defined throughout as AW(8) = W(B) — Wy
where Wy is the uniform displacement of the unbuckled shell due to p:

(1 —v)pR?
o 2B
The buckling displacement at the pole & is defined positive inward such that § = —Aw(0).

The plot in Fig. 1(b) shows the drop in the pressure as the shell buckles, and this dimensionless curve becomes inde-
pendent of R/t and v after localization has set in for thin shells with R/t > 50. The classical mode is evident in the buckling
deflection in the top middle plot with undulations spread over the entire shell but already at this very small buckling deflec-
tion localization has begun, as will emerge more clearly in the sequel. When the pressure has dropped to about p/p. = 0.9
and the pole buckling deflection is about 0.3 times the shell thickness, buckling is fully localized in the form of a dimple
at the pole, as seen in the bottom middle plot. Not only is localization fully established long before the dimple at the pole
has ‘inverted’, which occurs at § ~ 10t (Hutchinson and Thompson, 2017), but it is even fully established well before the
local curvature at the pole becomes flat, which occurs when § ~t. Asymptotic formulas valid for deflections greater than
about one shell thickness have been derived by Evkin et al. (2016) for dimple buckling. Very recently, Baumgarten and Kier-
feld (2019) have also obtained a complete set of asymptotic results in the weakly post-buckled regime where localization
is present, i.e., up to & ~t/10. Their approach allows them to obtain directly the deflection at the pole without calculating
the solution in the full domain, and they do not address localization per se. The realization that localized dimple buck-
les existed in spherical shells without an understanding of how they relate to the classical buckling mode dates back to

wo = (1.2)
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Fig. 1. The progression of buckling localization in a perfect full spherical shell undergoing axisymmetric deformation that is symmetric with respect to
equator, (a) Geometry of the spherical shell, (b) Normalized pressure, p/pc, versus the dimensionless buckling deflection at the pole, +/1 —v2/t. () Di-
mensionless normal buckling displacement, /T — v2ZAW/t, as a function of B at three values of p/p. labeled A, B and C immediately following the onset of
buckling. (d) Distribution of the dimensionless elastic strain energy/area, UR?/D, at the same three values of p/p.. These dimensionless results have been
computed numerically for a shell with R/t = 103.5 and v = 0.3 (n = 18), however the dimensionless results for p/p. versus +'1 — v2§/t become independent
of R/t and v after localization occurs,

some of the earliest studies with von Karman and Tsien (1939) citing experimental observations, the numerical solutions for
buckled deep spherical caps of Bushnell (1965), and the early numerical axisymmetric solutions for full spherical shells of
Bauer et al. (1970).

The abruptness of this localization process will be investigated here. This study will shed light on the difficulty en-
countered by earlier attempts such as those of Thompson (1964) and Koiter (1969) to analyze the post-buckling behavior
of the spherical shell using expansion methods that employ the classical buckling mode as the dominant contribution to
the deflection. Included in Fig. 1(d) are plots of the distribution of the strain energy per area U in the shell at the same
three post-buckling states in dimensionless form URZ/D where D = Et3/[12(1 — v?)] is the bending stiffness. Immediately
following bifurcation undulations reflecting the classical mode are evident, but as localization progresses the energy density
becomes uniformly distributed away from the pole and equal to that of the uniform unbuckled solution.

The organization of the paper is as follows. The equations employed to model the shell are listed at the end of this
introduction. Results of two initial post-buckling expansions of the type promulgated by Koiter (1945, 1969) are presented in
Section 2. These highlight the limited range of validity of the Koiter expansions for spherical shell buckling. An approximate
Rayleigh-Ritz solution which captures localization is presented in Section 3 providing an approximate solution with a much
larger range of validity. The last section of the paper present an exact (asymptotic) expansion which reveals analytically the
progression of the localization process immediately following the onset of buckling.

1.2. The shallow shell model

Analytically it is easier to deal with the equations of shallow shell theory for the spherical shell as opposed to the
equations of moderate rotation theory for the full shell. Moreover, the essential features of buckling localization for the
spherical shell under external pressure are fully revealed by shallow shell theory for spherical caps with sufficient height
because continuing deformation localizes to the vicinity of the pole. This is the model which will be analyzed in this paper.
Once localization occurs the solution predicted using shallow shell theory coincides to high accuracy with that of moderate
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Fig. 2. Geometry of a shallow shell.

rotation theory for the full spherical shell (Hutchinson and Thompson, 2017). The range of pressures for which the shallow
shell and the full shell models agree will be specified in the discussion (Section 5).

Let 5 be the meridional distance along the middle surface of the spherical cap and let u(5) and W(5) be the tangential and
outward normal displacements of the middle surface, as sketched in Fig. 2. The stretching and bending strains in shallow
shell theory for a perfect spherical cap deforming axisymmetrically are

EQ=%+¥+%(CA—?)Z (1.3)
Em:g+g (1.4)
Ky f:; (15)
Ky = —%g (1.6)

The work conjugate resultant in-plane stresses and bending moments are
Et
1-—v2
(My, My) = D(Kg + vKy, Ky + VKp). (1.7)

The principle of virtual work (with p positive inward) is

(N@, Nw) = (Fg + VEw, Em + VEH)

§D — — — — — — — —
/ {My8Ky + MK, + NgSEy + NowSEe, + pSW)3ds = 0, (1.8)
0

where 5 is the distance from the pole to the edge of the shell. The boundary conditions introduced below produce no work
on the shell edge.

1.3. Dimensionless shallow shell equations

The dimensionless forms of these equations used in the analysis make use of scaled variables that are denoted without
an over-bar,

1/4
s (12da — vV 5

VRt
2yy1/2
W (12a _tv NV
201 -2t (R
T 1+t t

(By. Ew) = (121 —v2) 28 (B By
(K9=Kw) = R(RGVRW)

R — —
Ny, Nu) = (1201 = 12) 2 25 (. W)

R —
(Mg, My,) = 12(1 — vz)E(Ma,Mw)

2
p=(12(1 —vz))m;?ﬁ (1.9)
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We consider a thin shell, in the sense that the wavelength ~ +/Rt of the initial buckling mode is much smaller than the
shell’s dimension Sg: Sg 3> +/Rt. This implies that the scaled radius is a large number,

Sp > 1. (1.10)
The existence of a large number in the problem is at the heart of the asymptotic method capturing the onset of localization,
as presented in Section 4.

In terms of the scaled variables, the stretching and bending strains write
/ 1 /2
Egy =(1+v)u' +w+ jw

u
Ey = (1+V)§ +w

Ky = —w’
J
K, — ,W? (1.11)

with primes denoting differentiation with respect to the scaled arc-length, (-)’ = d(-)/ds. The constitutive law take the scaled
form

1
(NE)vNW) = 1 _ \)2

(Mg, M) = (Ko + VKo, Ko + vKp), (112)

and the principle of virtual work becomes

(E(-) + VEy, Ep + VE(-))

So
[ (MoK -+ MuSKy + NaSEs + NuSEs + pdwlsds — 0. (113)
0

With this choice of variables, the only parameters are sy and v plus the dimensionless pressure p.
The equilibrium equations generated by (1.13) are

1 1 1
5 SMg)" = =M, — (Ng +No) + < (sNgw')' —p=0 (114a)

(sNg)' =N, = 0. (1.14b)

The boundary conditions for the spherical cap require that the solution is well behaved at the pole. At both the pole
(s =0) and the edge (5 = 5g) the displacements satisfy

u=0 Ww=0 (%(sw’)’)’zo, (115)

where the last condition follows from (sMg)’ — My = 0 which ensures there is no concentrated force at the pole and no
force per unit edge length. The uniform solution of the unbuckled shell (ug, wy) satisfies the field equations and these
boundary conditions with ug(s) = 0 and wy(s) given by (1.2).

The in-plane equilibrium Eq. (1.14b) is automatically satisfied by stresses generated by a stress function, f(s), with

Ny = % No = f". (1.16)
Compatibility of the in-plane strains requires
1 A 1w?
— =w - ——. 117
(60 — (117)

2. Koiter’s initial post-buckling expansions
In this section, we present Koiter’s initial post-buckling expansion, both in the standard and extended forms, for the

shell model presented in Section 1.3, namely shallow spherical shells under external pressure undergoing axisymmetric
deformations. Note that a translation of the Koiter's disseration is available in English (Riks, 1970).

2.1. Elimination of tangent displacement

In dimensionless form, the uniform, unbuckled solution for a perfect shell with the boundary conditions specified
in (1.15) is

wos) = ~(1-0)2  w®) =0 fols) =2 1)
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Denote a buckled solution by
w(s) =wo(s) +W(s)  u(s) =up(s) +i(s)  f(s) = fols) + f(s) (2.2)

The form of the system energy given next, which is expressed in terms of W alone, is particularly useful in carrying out the
Koiter expansions and the approximate localization analysis to follow. In the Supplementary Materials, we show that the
change in energy of the system from the uniform unbuckled state at prescribed p can be expressed as

SO, p) = fo {%((VZW)Z FWE - gﬁﬂ) WG (W, 5) + %[Gz(v”v, s')]zisds (2.3)

where G, (W,s) = [7°(2%)~1W2(x)dx and V2W =s~1(sw)’ as the Laplacian associated with the metric f-sds. The energy
change comprises contributions that are quadratic, cubic and quartic in w. Contributions that depend on Poisson’s ratio have
either been absorbed into the dimensionless quantities or integrated to zero for the boundary condition under consideration.
With p as the prescribed pressure, the only parameter in the energy functional is sy. The geometric boundary conditions on
W require that W = 0 at s = 0 and s = sp. These are coupled with the natural boundary conditions requiring (s~1(sWw')’)’ =0
at ends of the interval, see Eq. (1.15).

The stress function f, which is now auxiliary, is given in terms of W by

Fo1 =1 [ 900 + a0 i 24)
The Euler equation characterizing the buckled states is generated by §& = 0 for all admissible W and is given by

VA W+ VR = —Gy(,5) + %(f@’)’. (2.5)
where VAW = V2(V2W) and f is given in terms of W by (2.4).
2.2. The classical buckling mode and pressure

The differential equation for the eigenvalue problem governing the classical buckle problem is given by (2.5) linearized
with respect to w:

Viw, +w; + gvlw1 —0 with w, = (s"'(sw})")’ =0 for s = 0, 5. (2.6)

The eigenmodes have the form wq(s) = —Jo(ts) where p is any root of J;(14S9) = 0, with Jy and J; as Bessel functions
of zeroth and first order. The eigenvalue associated with (¢ is p=2(u? + ¢=2). For r=0, denote the it" zero of J;(r) =0,
ordered in increasing magnitude, by r;, i=0,..., co0 (including (o = 0 as the first root). One sees immediately, that for any
sp equal to one of these positive roots, say sy = ry, the minimum eigenvalue, i.e., the classical buckling pressure pe, is given
by

pe=4 (2.7)

with py = 1. The buckling mode is the eigenmode, wq(s) = —Jy(s), and the associated stress function is fq(s) = —J1(s).
Values of sy that are not equal to one of the roots r; will have a higher minimum eigenvalue, but for the shells of interest
in this study, the dimensionless base radius sg is large, see Eq. (1.10) so that the dimensionless classical buckling pressure is
always either 4 or just slightly above.

Without any loss in physical insight, we will focus attention in Sections 2 and 3 on shells with base radius equal to one
of the roots, sg = ry, where N is large compared to 1.

2.3. Koiter's initial post-buckling expansion

Koiter’s ‘standard’ method develops an expansion about the bifurcation point in the form

W(s) =Ew(s) + E2wa(s) +E3ws(s) + -+ pﬂ =14aE+bE2+---, (2.8)

C
with the auxiliary expansion, f(s) =& f;(s) + £2fa(s) + £3f3(5) +--- For the standard expansion it is necessary to spec-
ify an orthogonality condition on the higher order contributions, wj, for the expansion to be unique. Here we require
Jo? wywjsds =0 for j=2.
The boundary value problem for w, obtained from the expansion of (2.5) is

Viw, +wy + %Vzwz = —%aVzm +q3(5) (2.9)

with g3(s) =s1(f; w))" — Gz(wy, s). The homogeneous boundary conditions listed earlier apply. The solution to the second
order problem is constructed using the complete set of eigenfunctions generated by the problem for v(s) on 0<s<sg:
V2u + p2v = 0, with v analytic at s = 0 with 1/(0) = 0 and 1/ (sp) = 0. The eigenfunctions are

vi(s) =Jo( 1),
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Fig. 3. Plot of the initial post-buckling coefficients for values of sp = ry, 5<N <15, as predicted by Koiter's standard method, computed with M = 40. As
N0, a— 0 (a = —0.653/s is a fit to the computed values) and b -~ —0.132,

where pi; are the eigenvalues satisfying J; (1;So) =0 for i =0, ..., co. With sg = ry, we have u; = rj/ry and py = 1. Further,
it is easily shown that each eigenfunction satisfies all four boundary conditions required for Ww. We expand g3(s) on the
eigenfunctions

M . . So
©© =Y afne)  with o = [ axsmsds
i=0 o
where the number M of terms retained in the expansion must be sufficient to ensure accuracy, M > 1.
The existence of a solution to (2.9) requires that the secular term proportional to wy on the right hand side of the
equation be suppressed, which provides a as

(N)

_9
a=-- (2.10)
Then
M P
wa(s) = Y wivj(s) (2.11a)
j=0
with
w® =g® w0 w= L0 iz1xnN. (211b)

(i1 —pai?) >

Koiter's ‘standard’ method (see Supplementary Material) provides the following formulas for the initial post-bifurcation
expansion coefficients, a and b:

3 [y Ga(wy, s)wy sds
T B whsds
20 {w1 SO x 7 TWiwhdx + (Wa + Ga(wy, $))Ga(wy, 5) }sds
- B ¥ wisds
Note that a only depends on wy. For the present shell problem, one can show by direct manipulation that the expression
for a in (2.10) is the same as that in (2.12), and, further, that both can be re-expressed as
3 [0 wids
a= fos—l. (2.13)
Pe fo! witsds

b

(212)

Plots of a and b as dependent on N with sy =ry are presented in Fig. 3. Nearly all the integrals such as those
in (2.12) and (2.13) have been evaluated numerically in this paper using highly accurate integration algorithms in the IMSL
codes (Visual Numerics, 1994). It is worth mentioning that a great deal of Koiter's 1969 paper is taken up with reducing
integrals analogous to these so they could be integrated analytically.

While Thompson (1964) and Koiter (1969) analyzed a full spherical shell and the present paper analyzes a spherical
cap, the trends in the post-buckling coefficients for the two cases are very similar. In Fig. 3 it is seen that a is negative
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numerical solution

06 + B
5,=29.05 (N=10 w
05 ’ ( ) N1=Vv38 /¢t
i I I I I
0 0.2 0.4 0.6 08 1

Fig. 4. Axisymmetric post-buckling response of a shallow spherical shell with sp = 29.05 (N = 10) subject to external pressure according to Koiter’s standard
post-bifurcation expansion (Section 2.3), to Koiter’s extended expansion (Section 2.4), to the approximate Rayleigh-Ritz solution (Section 3) and from a
direct numerical solution of the shallow shell equations presented in Section 1.3. These dimensionless results are independent of v. The numerical solution
has been included over the range of pressures where it is accurate, i.e., everywhere except in the immediate vicinity of the bifurcation point.

(favoring inward buckling at the pole, since p <p. corresponds to (a€)<0, i.e, £ >0, ie, W(0) ~ &Ew;(0) <0) and rela-
tively small in magnitude compared to b. Further, a approaches zero as the dimensionless cap radius sy becomes large.
For fixed dimensional quantities, R and Sy, this implies that a=0 for thin shells with small ¢/R, similar to the findings of
Thompson (1964) and Koiter (1969) for the full sphere. This lowest order result suggests weakly unstable buckling behavior
with very little tendency to favor inward rather than outward deflections at the pole, which is very much at odds with
experimental observations for spherical shells. The failure of the lowest order nonlinear expansion to capture the expected
highly unstable buckling behavior drove Koiter to examine the second order terms in the expansion in considerable depth
in his 1969 paper. The second order coefficient b in Fig. 3 is negative and significantly larger than a. Furthermore, it ap-
proaches a finite value (b ~ —0.132) as sy becomes large. Nevertheless, the predicted buckling instability is still rather weak,
as Koiter also found from his analysis of the full sphere. The plot in Fig. 4, which includes the accurate numerical analysis
of the shallow cap (similar to that for the full sphere in the Introduction) and two other results developed later, makes this
evident.

Fig. 4 displays curves of p/p. versus the dimensionless inward buckling deflection at the pole, /1 — v2§/t. Noting that

V1 —v28/t = —W(0)/+/12 and wy(0) = —Jp(0) = —1, one finds to second order in &
V1 —v28 1

t V2
This equation together with p/pe = 1 + a& + b&2 generates the post-buckling curve for a shell with sy =29.05 (N = 10) in
Fig. 4 labeled as the ‘standard expansion’.! As Koiter (1969) observed for his analysis of the full sphere, the standard expan-
sion method fails to capture the dramatic loss in post-buckling load carrying capacity. In fact, Koiter argues that the range
of validity of the standard expansion for the spherical shell buckling problem goes to zero as t/R— 0.

(& —&’wy(0)).

2.4. Koiter's extended post-buckling expansion

In an attempt to extend the range of validity of the post-buckling expansion, Koiter (1969) modified the standard ex-
pansion by evaluating the second order buckling contribution, wy, at p, not at p¢ as in the standard method. His rationale
for doing so in the case of the sphere is due to the clustering of eigenmodes at eigen-pressures only slightly above pc. It
turns out that this medification is almost trivially implemented for the present problem. The extended method occupies a
substantial section of Koiter's 1969 paper, in part, because he includes the extensive analytical reductions of integrals and
sums which are bypassed here with the aid of numerical integration and summation.

Our rendering of the modified expansion of Koiter (1945, 1969) is presented in the Supplementary Materials. The central
results for the shallow shell are as follows. The buckling displacement is expanded as

W(s) = Ew;(s) + Ewy(s, p) +--- (2.14)

! The coefficients a and b depend on the normalization of £ which in turn depends on the way w is rendered dimensionless, It is more common to have
p/pe=14a(d/t) + 5(6/:)2 +---, see, e.g.,, Koiter (1969). The two sets of coefficients are related by d = ,/12(1 — v2)a and b=12(1-v?)h.
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Fig. 5. a) Plots of w (s, p) for three values of p/p. as computed using Koiter's extended method. The curve for p/p. = 1 is the same as that for the standard
method. b) Values of b(p) for a range of 55 =ry, 5<N <15, computed with M = 40,

where wq(s) = —Jo(s) is unchanged but w, is now evaluated at the current pressure p and not at the bifurcation pressure
Pc. The post-buckling expansion then takes the form

pﬂ=1+a§+b(p)§2+--- (2.15)

C
The coefficient a remains unchanged, depending only on wq and given by (2.12); the formula for b, given in the Supplemen-
tary Materials, also reduces to that for the standard expansion in (2.12) when one accounts for the orthogonality of w, to
wy, but b now depends on p due to the presence of w;.
The boundary value problem for w5 in the extended method differs slightly from that in (2.9) and writes

Viw, +wsy + gvzwz = —%avzm +qa(s) (2.16)

with the same homogeneous boundary conditions and with g, as defined earlier. The solution for w; is identical to that
presented in (2.11a) and (2.11b) except that p¢ in the formula for wg) in (2.11b) is replaced by p, i.e.,

0) _ ,(0) N) _ (i _ 1 @ :
wy =gy w; =0 w, _(,u;'Jr]fpu,.z)qz , 1>1(#N). (217)
Plots of wy(s, p) are shown in Fig. 5 for p/pc = 1, 0.95 and 0.9 for a shell with sy = 29.05 (N = 10). The plot for p/pc =1,
which is the same as that for the standard expansion, is not localized to the pole. However, already at p/p. = 0.95, w; is
nearly localized at the pole. Moreover, the amplitude of w, at the pole depends strongly on p/pc, as does the second order
coefficient b(p) which is also plotted in Fig. 5.

The prediction of the pressure function of the pole deflection § generated by the extended method using (2.15) is
included in Fig. 4 for a shell with sg = 29.05 (N = 10). Evidently, while the extended method does capture localization in
Wy, it is not successful in extending the range of the of the post-buckling expansion. Indeed, for the case in Fig. 4, the range
of the extended method appears to be slightly smaller than that of the standard method. Koiter’s application of his extended
method (Koiter, 1969) to the full sphere is more successful in extending the range of the expansion but, as he emphasizes,
its validity remains severely limited.

3. An approximate localization analysis

In this section, we present an approximate localization analysis of the shallow shell model presented in Section 1.3.

The purpose is twofold. First, it will reveal very clearly why both variants of Koiter’s method, the standard one and its
extension, have such a small range of validity—the essential reason being that the dominant term in the expansion, &w;(s),
does not incorporate localization. Secondly, the approximate method presented in this section captures and clearly reveals
the remarkably abrupt nature of the localization behavior. A rigorous analytical expansion that captures localization will
be presented Section 4. Here, an approximate Rayleigh-Ritz-type method is employed to analyze the initial post-buckling
behavior of the shell.

We use trial functions of the form

W(s) = Esech(ns)wi(s) + 2w, (s, p) (3.1)

where & and 7 are the two free parameters which will be varied to render the full energy functional ®(W, p) in (2.3) sta-
tionary.
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Fig. 6. Predictions of the approximate localization analysis (Section 3) with sp = 29.05 (N = 10). Top row: The buckling deflection, AW(s) = W(s) — Wy, in
dimensionless form at three values of p/p. displaying the development of localization. Bottom figure: The localization parameter, », as a function of the
dimensionless inward pole buckling deflection.

Now, wy(s) = —Jo(s) continues to be the classical bifurcation mode, and w5 (s, p) is the second order displacement func-
tion obtained in the previous section for the extended method. The relatively simple choice (3.1) builds upon the extended
solution and brings in a new ingredient: the multiplicative function sech(ns) = 1/cosh(ns) ‘turns off" the first order buckling
contribution at a tunable distance ~ 1/n from the pole. This introduces an adjustable amount of localization. For = 0, the
exact expansion to second order in & is recovered. As has already been noted, w;(s, p) from the extended analysis reflects
localization at values of p below p. so it has not been modified.

First order terms analogous to &sech(ns)w;(s) emerge in rigorous analytical localization analyses such as that of
Wadee et al. (1997) who carried out an extensive study of buckling localization of an infinite elastic beam on a non-
linear elastic foundation, a problem with much in common with the spherical shell problem but analytically simpler.
Wadee et al. (1997) have illustrated the effectiveness of a Rayleigh-Ritz approach using trial functions suggested by their
analytical localization expansion. A first order term qualitatively similar to £sech(ns)w;(s) will also emerge in the localiza-
tion analysis carried out in Section 4, including a prescription for the dependence of # on p. When n =0, W in (3.1) satisfies
all the boundary conditions. When localization is fully in effect and sech(nsg)~ 0, W also satisfies all the boundary condi-
tions. There is a small range of #, roughly 0 <7 <2/sg, wherein the natural boundary conditions at sy are only approximately
met by the term &sech(ns)w;(s), however in the range of interest when localization is in effect, the conditions are met.

The procedure for rendering & stationary for any prescribed p can be described as follows. Given the function W, ®(&,
7, p) in (2.3) is evaluated numerically to high accuracy given a prescribed p for any values of the two free parameters
& and 7. Stationarity requires d®/9£& =0 and 9P dn = 0. These equations are solved using a Newton iteration method
with all derivatives with respect to & and 7 evaluated numerically. The result of this process for a shell with s5 =29.05
(N =10) is included in Fig. 4 for pressure versus pole buckling deflection. Companion plots of the buckling deflection,

V1 —v2AW(s)/t = W(s)//12, and of the localization parameter 1 as a function of the dimensionless pole buckling de-
flection are given in Fig. 6.
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The relatively simple trial buckling mode in (3.1) coupled with the Rayleigh-Ritz analysis transparently captures buckling
localization in the spherical shell subject to external pressure. Moreover, the results in Figs. 4 and 6 clearly reveal why the
conventional initial post-bifurcation expansions, including Koiter's extended method, have such a limited range of validity.
Note from Fig. 6 that at pole buckling deflections as small as 1/10 of the shell thickness, ~0.1 such that the mode has
already undergone significant localization, i.e., there is a substantial zone around the edge of the shell with w~ 0 and
w A Wy. At pole deflections on the order of 1/2 the shell thickness the mode is essentially fully localized at the pole with
w Wy everywhere outside the dimple. The abruptness of the localization is the reason that the standard initial post-
bifurcation expansion has such a small range of validity. These results also explain why Koiter’'s attempt to extend the range
of validity by modifying w, but not wy could only have modest success. The asymptotic post-buckling results obtained by
Baumgarten and Kierfeld (2019) also reveal a transition in the response of pressure versus pole deflection associated with
localization at the small pole deflections noted above.

The localization analysis presented in this section generates a reasonably accurate approximation to the post-buckling
response for inward pole deflections as large as one shell thickness, corresponding to pressures falling to about 60% of the
classic buckling pressure. This range could almost certainly be extended with more elaborate trial functions having more
free parameters. That extension is not pursued in this paper because of the availability of the accurate numerical solution
referred to in the Introduction. The primary objective of this paper is to expose the abrupt nature of the localization process
immediately following bifurcation and to provide insights into the analytical form the localization takes by modifying the
classical buckling mode. We believe the approximate analysis in this section and the more rigorous localization expansion
to follow achieves this objective.

4. An asymptotic solution capturing localization

In this section, we derive a weakly non-linear solution to the shallow shell equations summarized in Section 1.3. We
work in the limit sp = oc where the edge is at infinity, implying that we ignore the immediate aftermath of bifurcation
where the buckling pattern extends beyond the ‘endpoint’ sq. In view of the above numerical results, this assumption is
already reasonably for p/p. = 0.99, and highly accurate for p/p. = 0.95. It is possible to extend our results to the case of a
finite s but this does not bring much more insight (as discussed in the conclusion) and it is significantly more complicated:
it requires handling boundary conditions at the edge sy. Here, we will simply require that the solutions vanish asymptoti-
cally for s — co. Our approach complements the recent results of Baumgarten and Kierfeld (2019) by providing an explicit
expression for the post-buckled solution w(s).

The critical value of the pressure corresponding to sy = oo is used in this section, namely

Pc = 4.
4.1. Expansion strategy

The approach inspired by the classical work on localization of elastic buckling modes in extended structures (Amazigo
et al., 1970; Coman, 2006; Hunt et al., 1993; Potier-Ferry, 1983). Here ‘extended structures’ refer to structures whose dimen-
sions are much larger than the typical wavelength of their linear bifurcation mode: a shallow shell is an extended structure
in this sense, in the limit 553> 1 considered here, see the discussion above Eq. (1.10).

In extended structures, the buckling mode, initially spreading over the entire domain, often localizes in the post-buckling
regime. This localization has been described in extended systems such as elastic struts on a nonlinear foundation (Amazigo
et al., 1970; Hunt et al.,, 1993) or on a fluid foundation (Audoly, 2011; Pocivavsek et al., 2008). In these works, the localization
has been analyzed by means of a two-scale expansion: the buckling mode is sought in terms of a ‘fast’ variable s capturing
the rapid oscillations already present in the linear buckling mode, as well as a ‘slow’ variable x = £s capturing an amplitude
modulation. The connection x = £s between the slow and fast variables makes use of the same expansion parameter & as
that appearing in Koiter's expansions, |£| « 1, representing an arc-length along the bifurcated branch in the bifurcation dia-
gram. In the two-scale expansion, the fast variable s is ultimately averaged out, which leads to so-called amplitude equations
involving the slow variable only. These amplitude equations can be solved and they capture the localization effectively, as
we shall show.

The above is a general strategy to address localization. In the particular case of shallow axisymmetric shells, there is an
additional complication: localization takes place at the pole s = 0, which happens to be a singular point of the ordinary dif-
ferential Eqgs. (1.14a-1.14b) governing the equilibrium. As a result, the two-scale expansion cannot yield directly the boundary
conditions applicable at the pole for the amplitude equations: the amplitude equation brings in divergences at the poles,
and boundary layer analysis is required to resolve these divergences. Boundary layer equations need to be derived, which
replace the boundary conditions used in simpler extended structures. They play a key role: the nonlinearity that ultimately
selects the buckling amplitude arises from the polar layer, as we shall show.

4.2. Expansions

This strategy is carried out by postulating the following expansions.
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= The load p is expanded as before in terms of an ‘arc-length’ parameter £, see Eq. (2.8),

LA B N 4.1
Pc
where p. =4

The solution for the tangential and outward normal displacements u(s) and w(s) is sought in the outer region (s 1)
in the form Wour(S) = Wo(S) + Wour(S) and Upur(S) = Ug(S) + Uouc(S) where wg(s) and ug(s) =0 represent the uniform
solution, see Eq. (2.1), and the buckling displacements Woyut and {ipyt are given by a two-scale expansion,

_ 2
Wou[(s) = fa?ﬁ |:€iS (W[O](X) + fg‘W[]](X) + %W[ZI(X) + .- )i|

) 2
Uout () = E”‘ﬂit [e’s (U[O](X) + SU[”(X) + %U[z](x) + .. )i| (4.2)

where
x=E&s

is the slow variable, % represents the real part operator, i is the unit imaginary number i = +/—1, « is an exponent to be
determined later and Wgj(x) and Ujgj(x) are complex-valued functions.

The solution in the polar layer, for s = @(1), is sought as a regular (single-scale) perturbation in terms of the slow
variable s,

2
Win(s) = &° (W[ol(S) +EWy(s) + %le](s) + )

- - 2 —
fljp(s) = Eﬁ(Um](S) +EUp(s) + é7”[2](5) + ) (4.3)

where f is a second exponent, to be determined later, and W[(]](S) and U’[Ol(s) are real-valued functions.

The exponential term e in the outer solution accounts for the oscillations seen both in the linear buckling mode and in
the numerical post-bifurcated solutions.

The outer amplitudes Wi;(x) and Uj;(x), the inner solutions Wm(s) and U[j](s), as well as the coefficients @ and b and
the exponents o and B will be determined by inserting these expansions into the shallow shell equations, and by solving
order by order with respect to &. As part of the solution process, we will ensure that the outer and inner solutions can be
matched in the so-called intermediate region, defined as the domain overlapping the inner and outer regions.

4.3. Scaling analysis

Before proceeding to insert the expansions above into the equations of equilibrium, we start by a qualitative scaling
analysis.

First, we require that the linear buckling mode, which writes wy = A(£)Jp(s) in the limit 55 — oo (i.e., by setting ;t =1 in
Section 2.2), is consistent with expansions postulated above; here, A(§) is the buckling amplitude, which remains unspec-
ns

ified in the linear bifurcation analysis. A large-s expansion of the Bessel function Jo writes wq = A(§) ;"—jg + ;‘—ﬁ) +.e=

[%]m[e“(% +---)] where the dots denote higher-order terms, of order s—3/2. This expression can be identified with the

leading-order term in the expansion Wqyu(s) in the outer region s3> 1, see Eq. (4.2), provided we identify [A(g)\/g] ~ &% and
Wioj(x) ~ 77%. On the other hand, wi = A(§)Jo(s) can be identified directly with the inner expansion (4.3) with A(§)~&#

and W[()] (s) ~ Jo(s). Eliminating A(£) from these two relations, we conclude £%* ~ A(S;‘)‘/E ~ EP+172 which imposes

a=ﬁ+%. (4.4)

A similar reasoning based on the tangent displacement uq(s) = A(£)J;(s) of the linear buckling mode leads to the same
relation between « and B.

Next, we observe that the only nonlinearity present in the variational formulation (1.11-1.13) of the shallow shell model
is the term %w’z found in the strain Ey. This is thus the nonlinearity that will ultimately enter into the nonlinear equation
and will set the buckling amplitude. We know from simulations that the localization takes place at the pole: we assume
that the nonlinearity plays a role in the polar (inner) region. There, it can be estimated as W2 ~ W'I'g ~ E2P Next, we try to
guess which is the other term with which this nonlinearity is balanced in the equation for the buckling amplitude. If we
attempt to balance the nonlinear term with the other, linear terms present in the strain Eg, namely wy, ~ £# and uj o~ £h,

we arrive to 28 ~(f, ie,, 28 = fB; however, this is inconsistent with the requirement =0 warranting that the buckling
amplitude goes to zero near threshold (for £ — 0). As we will see later, this paradox is resolved by balancing the nonlinear
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term W:ﬁ ~ E28 with the subdominant corrections to the linear terms W, and i entering in the strain Eg; both of latter are
of order ~ & x £F = £P+1, The balance then yields £2 = £P+1 hence B = 1. With the help of (4.4), this suggests
o == =1. 4.5
2 P (45)

Even though we can offer no mathematical proof, we expect that these particular values are the only ones that can make
the asymptotic matching procedure work. In the following, we will use Eq. (4.5) as a starting point to derive the leading
order terms in the solution. We will check at the end that the predictions are consistent with the numerical results.

4.4, Main steps of the asymptotic construction

A complete derivation of the asymptotic solution is given in the Supplementary Material. A summary of the main results
is presented here.

4.4.1. Regions
The different regions used in the expansion are defined by

—1/2
inner region: s<(1-%)
=172

intermediate region: 1<s< (1-1})
outer region: 1 «s.

Note that the intermediate region is the intersection of the inner (polar) and outer regions.

4.4.2. Outer solution
By inserting the outer expansion in the equations for the shallow shell, we first obtain

a=0, (4.6)

which is consistent with the prediction of Koiter’s method for s5 — oo, see Section 2 and Fig. 3 in particular. In view of (4.1),
the relation between the load and the expansion parameter & becomes

Ve~ (1-0)" (47)

By solving the equilibrium equations for the shell order by order, we find the dominant solution in the outer region as

Wg (%) = GG exp(—,/ *Tbx), where the real constants of integration C; and C; and the coefficient b will be determined

VX
later by matching with the outer solution. Inserting into (4.2), we find the buckling deflection as
. Cicoss —Cysins 1 172
wout(s):g—‘% exp (—[i(l—i}—j)] S)+--- (4.8)

The coefficient in square bracket in the exponential produces a fast localization in the post-buckling regime, as discussed
in Section 4.5.

4.4.3. Inner solution
The inner solution is found similarly by inserting the expansions (4.3) into the equilibrium equations for shallow shells.
The result is

W[(]](S) = Glo(s)
2

< Cs C s T
Wi1)(s) = Gelo(s) + ?Sjl (s} + (—C4 + Z}) (1 —Jo(s) — ih (5)) + ch G(s)
where G(s) is a numerical function defined in terms of Bessel functions, defined in the Supplemental material, and Cs, ..., Cg
are constants of integration. By contrast with what happened in the outer region, both the dominant order solution W[O](s)
and the subdominant one V'Vm(s) are required in the inner region for matching, see below.
An expression for W;,(s) is found by inserting the above solution into (4.3).

4.44. Matching
By reguiring that the inner and outer solutions match in the intermediate region, we find two constants of integration

as ¢ = T;’? and G = f%, and we obtain
v=b
Y+ =G =0, (4.9)

V2m
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Fig. 7. Progressive localization of the buckling deflection, as predicted by the asymptotic expansion, Eq. (4.11b). Same parameter values and plotting con-
ventions as in Fig. 6. Note the overlap of the inner solution Wy, (thicker light blue curve) and the outer solution Wgy (thin black curve). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Here, y a numerical constant,

LT [ (WP
~ Tz

2 + Jo(u)J (u))ujo(u)du (4.10a)

whose value is

= ﬂ =0.183226. (4.10b)
16/m
By multiplying both sides of Eq. (4.9) by £2, one makes appear the load p from Eq. (4.7) and the outward normal dis-
placement at the pole W(0) ~ §3/2Wjg(0) = §#C3y(0) = C3&. This leads to the bifurcation equation

. 1 p 1/2 N a
(W(OHym(]_Z) )W(O)_

It has two solutions: the unbuckled one w(0) =0, and the buckled one.

4.5. Results

The main predictions of the matched asymptotic theory are as follows. The buckling amplitude at the pole is predicted

as
N 1 p 1/2
w(0 =——(1——) , 411a
©=-7=(1-3 (411a)
and the solution for the deflection writes
1/2 . .
Jo(s) + 1-8 sY1(s) + - (inner region)
W(s) =w(0) x { cos (5—3£ ( )] 1 172 . (4.11b)
— xp( [ (1- 3)] ) +---  (outer region)

Here, Y; denotes the Bessel function of the second kind. The matching procedure ensures that the alternatives in the right-
hand side above are consistent in the intermediate region: there, both can be approximated as

_ _cos(s—F) 17, p\1"? . . .
w(s) = W(O)? (1 — [j( — 4—)] s+ --- ). (intermediate region). (4.11¢)
2
Note that the expansion parameter £ has been eliminated from this final set of results.
Eq. (4.11a) predicts that the deflection is inward at the pole, in accord with the experimental and numerical observations.
The deflection predicted by Eq. (4.11b) is plotted in Fig. 7 for different values of the pressure. The exponential in the outer
solution produces a fast localization: due to the coefficient appearing in the square bracket, the amplitude of the oscillations
is reduced significantly at a distance of order s ~ [%(] — z“’)]*”2 from the pole. This yields the following estimate for the
number ngse of oscillations where the cut-off takes place,

ne=[5(1-D)] " Jem (a12)

The set of plots in Flg 7 (asymptotic method) and in Fig. 6 (approximate method) were produced using the same set of
values of the loadmg ={0.99, 0.95,0.90}. They show very similar results—the two figures do not exactly agree, however,
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Fig. 8. (a) Bifurcation curves showing the deflection at the pole scaled by the thickness versus the dimensionless pressure, as predicted by the different
models; same data as in Fig. 4 except for the new curve corresponding to the asymptotic solution (thick blue curve). (b) Comparison of the inverse
localization length (vertical axis) versus the scaled deflection at the pole for the asymptotic and approximate localization analyses. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

as the ansatz in Eq. (3.1) is not asymptotically exact. The above formula yields estimates ngsc = {2.3, 1.0, 0.7} for these re-
spective values of %. This captures how the number of bumps seen in both sets of figures evolves with p. When the pressure
is only 1% less than the critical pressure, 2 = 0.99 (first plot), the estimated residual number of bumps, ngsc = 2.3, is already
quite small: the asymptotic solution captures the quick localization. For § = 0.95, the predicted number of oscillations is so
small, nesc = 1.0, that the main assumption of the matched asymptotic theory, namely a clear separation between the scale
s~1 of the oscillations and the scale s ~ (1 — 5)*1/4, is no longer satisfied: the asymptotic theory cannot yield accurate
results for p/4 less than ~0.95. In accord with this, the overlap between the outer and inner solutions becomes limited
below § ~ 0.95.

An estimate of the pressure py, where the curvature at the pole becomes zero, i.e.,, when the outward curvature brought

~ I ] - _
about by buckling balances the initial inward curvature, can be obtained by solving w;,(0) = BV Using the expres
sion of Wy, in Eq. (4.11b), we can solve this equation as ~at Plac — 1 — (2027 ZV*/_ )2 =0.923 (with v =0.3). This pressure is too

A12(1-

small for the asymptotic theory to be accurate, but this suffices to confirm that the buckling is already fully localized by the
time the curvature at the pole changes sign, as discussed in Section 1.1.
The inward deflection at the pole scaled by the thickness writes, in our units,

5 0 1 1/2 8 1/2

A ) _ (1 3) _ 7(1 . 3) , (4.13)
t - V12 yv2am 4 9Vv2 4

and we recover the result obtained by Baumgarten and Kierfeld (2019) by a direct method. In Fig. 8(a), this prediction is

compared to the predictions of the other models. The range of pressure where the asymptotic theory roughly agrees with

the approximate Rayleigh-Ritz solution is limited, but consistent with the estimate 1 < g < 0.95 warranting scale separation.

A more detailed comparison of the asymptotic and approximate localization analyses can be made by identifying the
localizing terms sech(#s) in (3.1) and exp(— [1(1 p)]UZS) in Eq. (4.11b). Using the equivalent sech(ns) o exp(—7s) for

large s, this suggests 1 =[3(1— §)]"? = gt x /1~ v28 —1.124(y/1 — v28). This is the dashed blue prediction shown
in Fig. 8(b). The agreement is good up to deflections of the order one tenth of the thickness, which is in line with the domain
of validity of the asymptotic theory. Note that the asymptotic and approximate localization analyses are not equivalent to
one another, even for small buckling amplitudes: this is why the slope of the dashed blue curve in Fig. 8(b) does not exactly

match the initial tangent to the full curve; the slopes still agree within about 20%.

5. Discussion and conclusion

In this paper, we have analyzed the localization of buckling in spherical shells based on the shallow shell model. If we
had instead used a full (i.e., non-shallow, geometrically exact) shell model, we would have obtained (slightly) different pre-
dictions close to the bifurcation threshold, when the post-buckled solution makes significant oscillations far from the pole.
When localization proceeds, however, the oscillations become limited to the neighborhood of the poles, and the shallow
shell model produces equivalent predictions as full shell models. Quantitatively, this equivalence holds when the size of
the localized region is typically less than, say, half the radius of the shell: in our dimensionless units, this happens when

[%(l - p—”c)]—”2 ie, £ Z*f For the full shell shown in Fig. 1 having an aspect ratio R/t = 103, this

R
N P
< VRey1217/47 770 pe 2 R/t)121/2
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Pc
the bifurcated solution depend on the details of the shell model and on the equatorial boundary conditions. As soon as
the pressure becomes less, the shallow shell model provides an accurate description. This equivalence of the different shell
models has been reported in the simulations, as summarized in the Introduction; the localization analysis done in this paper
provides explicit ranges of pressure where the shallow shell model is a good approximation.

Koiter argued that the domain of validity of his expansions goes to zero as the shell’s aspect ratio R/t becomes large.
This domain of validity can be quantitatively assessed as follows. For Koiter's expansions to be applicable, the post-buckled
solution should bear strong resemblance with the linear buckling mode. This requires that the localizing exponential
in (4.11b) varies little over the entire domain. For instance, the condition [%(1 - p—”c)]—lf2 > ﬁ warrants that the local-

izing exponential varies by at most 1 — e~1/> = 20% from pole to equator; for a shell with an aspect ratio R/t = 103 as earlier,
. - . P o_q_ 1 —
this shows that Koiter’s expansion breaks down when the scaled pressure becomes less than ;- = 1 2(R/r)5212 7 = 0.9998.

The characteristic wavelengths of the buckles of a spherical shell subject to external pressure are short compared to
the radius of the shell, and the overall pressure carrying capacity attains a maximum when the shell undergoes buckling.
These are the two essential elements giving rise to buckling localization wherein the classical buckling mode which covers
the entire shell rather abruptly transitions to a localized mode. The qualitative aspects of the phenomenon are similar to
those put forward by Considére (1885) for necking localization in long bars stretched in tension. For the perfect spherical
shell, the localization process begins at bifurcation in the form of the classical buckling mode modulated by a localizer
function which is unity at bifurcation but which begins to alter the shape of the classical buckling mode immediately upon
bifurcation. The abrupt alteration of the classical buckling mode is captured by an exact asymptotic localization expansion
given in Section 4 and by the approximate Rayleigh-Ritz analysis in Section 3. The approximate Rayleigh-Ritz analysis has the
advantage that it provides a good approximation to much larger buckling deflections than the exact asymptotic expansion.
In this sense, the spherical shell problem investigated in this paper has much in common with the problem of the buckling
of a compressed beam on a nonlinear elastic foundation analyzed in depth using both methods by Wadee et al. (1997). In
the Introduction, we have noted that there has been recent progress in exploring localization in the iconic shell buckling
problem, the cylindrical shell under axial compression, by Horak et al. (2006), Kreilos and Schneider (2017) and Groh and
Pirrera (2019). These authors have exploited new numerical techniques for partial differential equations in their studies. The
subject of localization phenomena is ripe for developing new analytical and numerical methods.

The spherical shells in this paper have been taken to be perfect and the recent work on localization in cylindrical shells
alluded to above has also been limited to perfect shells. To obtain a full understanding of shell buckling and, in particular,
to obtain quantitative estimates of load carrying capacities under realistic conditions, it will be necessary for imperfections
to be taken into account. Imperfections, such as initial distortions from the perfect geometry of the shell in the form of
a local dimple, can trigger a buckling response that is localized from the start. Localized dimple-like imperfections are
generally regarded as more realistic than geometric imperfections assumed to have the shape of a classical buckling mode
which extends in a highly coordinated manner over the entire shell. An extensive experimental and numerical study of
the buckling of spherical shells with isolated geometric dimple imperfections has been recently published (Lee et al., 2016)
which reveals buckling dominated by localized behavior, and the analysis of Baumgarten and Kierfeld (2019) considers the
influence of local dimple imperfections.

yields £ < 0.978 which is very close to 1. Only in the immediate aftermath of the bifurcation, for 1 < % < 0.978, does

Supplementary material

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.jmps.2019.
103720.
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