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Abstract:  The stability of cylindrical coaxial fibers made from soft elastomeric materials is 

studied for electro-static loadings.  The general configuration considered is a 3-component 

axisymmetric fiber having a conducting core bonded to a dielectric annulus in turn bonded to an 

outer conducting annular sheath.  A voltage difference between the conducting components is 

imposed.  The stresses and actuated elongation in the perfectly concentric fiber are analyzed and 

the critical voltage at which stability of the concentric configuration is lost is determined via 

solution of the non-axisymmetric bifurcation problem.  The role of the geometry and moduli 

contrasts among the components is revealed, and the sub-class of 2-component fibers is also 

analyzed.  The idealized problem of a planar layer with conducting surfaces that is bonded to a 

stiff substrate on one surface and free on the other exposes the importance of short wavelength 

surface instability modes. 

1. Introduction

The co-axial geometry is an alternative actuator configuration to the parallel plate, planar 

capacitor that forms the basis for most of dielectric elastomer actuators designs discussed in the 

electro-mechanics community [1, 2] and the soft-robotics literature [3]. Geometrically, the 

electrode and dielectric configurations are identical to standard, co-axial cables used for 

screening electrical signals and for high frequency transmission lines.  Consequently, in contrast 

to the planar actuator configuration, when a voltage is applied between the inner and outer 

electrodes, the electric field in the dielectric is not spatially uniform but varies radially.  Because 

of the high modulus of the materials typically used in co-axial cables, such as polyethylene and 

copper, the electrostatic forces produced are insufficient to produce appreciable actuation. 

However, when a soft elastomer (shear modulus ~ 10-200 kPa compared with 0.75 GPa for high-

density polyethylene) and complaint electrodes are used, the actuation strains can be significant 

and can result in fiber actuators that extend in length when an electric field is applied.  Several 

examples of co-axial actuation have been demonstrated [4, 5] but because of the fabrication 

methods the fibers have been short and have all had a hollow inner electrode. A consequence of 
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the inner core being hollow rather than solid is that the tube can undergo an electro-mechanical 

instability in which the dielectric abruptly thins above a critical electric field. This was analyzed 

by Zhu et al.[5] for the conditions of a thin-walled tube configuration, namely the dielectric is 

much thinner than the diameter of the tube.  

Solid inner core co-axial elastomer fibers can now be fabricated in arbitrary lengths by 

3D printing in which the dielectric and conductive electrode materials are co-extruded through a 

compound nozzle [6]. By varying the nozzle dimensions, the radii of the core, the dielectric 

annulus and the outer electrodes can all be systematically varied. The electrode materials consist 

of an elastomer loaded with hydrophobic carbon black particles above the electrical percolation 

threshold concentration such that the electrodes are both elastically compliant and electrical 

conducting. The solid core ensures that the fibers do not undergo the electro-mechanical 

‘thinning’ instability. As the fibers can be printed, not only long fibers can be produced but they 

can be formed in bundles as well as into complex curved shapes, such as cylinders [6]. In these 

geometries, the fibers are subject to bending.  

In this work, the electro-mechanical stability of solid core co-axial elastomer fibers is 

considered.  The critical instabilities are bifurcation modes associated with non-axisymmetric 

perturbations in electro-static charge distribution and the associated deformations and tractions 

of the fiber interfaces.  The paper begins in Section 2 with an analysis of the stresses and 

deformation of a perfectly concentric 3-component coaxial fiber comprised of neo-Hookean 

materials.  The non-axisymmetric stability analysis is carried out in Section 3 with some of the 

analytic details given in the Supporting Materials.  The stability analysis requires a tightly 

coupled approach.  The non-axisymmetric deformations produce non-axisymmetric changes in 

the electro-static charge distribution and in the associated electro-static tractions acting on the 

fiber interfaces, and vice versa.  The limit of the 3-component fiber wherein the modulus of the 

outer elastomeric annular sheath is set to zero and the outer surface remains conducting 

corresponds to a well-defined 2-component system which is analyzed and discussed in Section 4.  

The 2-component fiber with a rigid core, in turn, leads to consideration of a basic limiting 

problem: a planar elastomeric layer with conducting surfaces with one surface bonded to a rigid 

substrate and the other traction-free.  This problem, which is solved in [7] and summarized in 



Section 5, provides additional fundamental insights into the nature of the electro-mechanical 

instability. 

2.  The stresses and deformation of the perfectly concentric 3-component fiber 

 The undeformed geometry of the 3-component coaxial fiber is defined by an inner 

conducting core of radius 0a , surrounded by and bonded to a concentric non-conducting 

dielectric annulus with outer radius 0b  , which, in turn, is bonded to a conducting annular sheath 

with outer radius 0c , as depicted in Fig. 1.  The length of the fiber in the undeformed state is 0L  

which is assumed to be much greater than 0c .  The core (denoted by A ) and the annular regions 

(denoted by B  and C , respectively) are made of incompressible, isotropic neo-Hookean 

elastomeric materials with ground state shear moduli 
A

µ , 
B

µ  and C
µ .   The interface at 0 0r a=  is 

identified by the label AB  and that at 0 0r b=  by BC .  These interfaces do not resist 

deformation in any way other than through their electro-static interaction driven by an imposed 

voltage difference across them.   

 

Fig. 1  The 3-component system in the undeformed state.  The shear moduli in the respective 

components are 
A

µ , 
B

µ  and C
µ .  The interface between A  and B  is denoted by AB  and that 

between B  and C  by BC . 

 The electrostatic forces conspire to elongate the fiber in the z-direction.  Away from the 

ends of the fiber (end details will not concern us here), the axial stretch  zλ  will be the same in 

each component.  A basic consequence of incompressibility and cylindrical symmetry (and the 

absence of a cylindrical hole at the center of the fiber) is that any material point at radius  0r  in 

the undeformed body will be at radius 0
/

z
r r λ=  in the deformed body.  In particular, the radii 



of the two interfaces and the outer surface in the deformed state are 0
/

z
a a λ= ,  0

/
z

b b λ=

and 0
/

z
c c λ= , and the deformed length is 0zL Lλ= .   Note also that 0 0/ /a b a b=  and 0 0/ /c b c b= .  

Further, since the circumferential stretch of a material element at initial radius 0r  is 0/r rθλ = , it 

follows that 1/
zθλ λ= .  Incompressibility ( 1)

r zθλλ λ =  gives 1/
r z

λ λ= .  In summary, 

incompressibility and cylindrical symmetry and otherwise independent of any constitutive 

assumptions, the stretches are uniform throughout the fiber and given by  

 1/
r zθλ λ λ= =          (2.1) 

with zλ  to be determined. 

 The electrical charge associated with the imposed voltage 0V  resides on the two 

interfaces, AB  and BC , of the conducting components.  A direct calculation of the radial 

tractions given in the Supporting Materials provides the tractions (force per area) acting on the 

two interfaces due to the electro-static forces 
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with ε  as the permittivity of the dielectric material in B , a  and b  as the radii in the deformed 

state of the perfectly concentric fiber, and 
r

i  as the unit vector pointing in the radial direction.  

The electrical energy stored in the perfectly concentric fiber is 
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where C  is the fiber capacitance in the current state. 

The neo-Hookean strain energy density function is given by  

 ( )2 2 21
3

2
r z

W θµ λ λ λ= + + −           (2.4) 



where ( , , )r zθλ λ λ  are the principal stretches which are aligned with the cylindrical coordinates 

( , , )r zθ  in the pre-bifurcation state and the modulus is denoted by Aµ, 
B

µ  or Cµ in the 

respective components. The incompressibility condition, 1r zθλλλ = , must be imposed.  The true 

stresses are related to the stretches by 

 
2 2 2, ,r r z zq q qθ θσ µλ σ µλ σ µλ= − = − = −         (2.5) 

where q  is related to the pressure and is determined by equilibrium considerations.  The stresses 

will be seen to be are uniform in each component.     

 Under prescribed voltage 0V  the free energy of the coaxial fiber system is the sum of the 

elastic energy and the potential energy of the battery maintaining the voltage: 

 0( , , , )r z elastic electricVθλ λ λΨ =Ψ −Ψ ,    
0

0 0 0
0

2 ( , , )
c

elastic r zL W r drθπ λ λ λΨ =    (2.6) 

This is a mixed formulation in that the elasticity is Lagrangian employing the undeformed state 

as reference, while the electrical potential energy is defined in the current, deformed state.  With 

0( )ru r  as the radial displacement, 01 /r rdu drλ = +  and 
1

01 rr uθλ −= + .  Rendering the free energy 

stationary for fixed voltage with respect to all admissible variations ruδ  and zδλ  requires 
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Use has been made the fact that /
i i

W Nλ∂ ∂ =  are the nominal stresses (force/original area) which are 

related to the true stresses (force/current area) by r r z
N θσ λ λ= , r z

Nθ θσ λλ=  and z z rN θσ λλ= .  The 

integration by parts employed in arriving at (2.7) anticipates rσ  is uniform within each 

component; 
A

rσ  denotes the radial stress within component A , etc.   



Noting that 
1/2

z r z zθλλ λλ λ= =  throughout the fiber, the first integral in (2.7) requires 

rθσ σ=  which could have been anticipated.  Enforcing (2.7) for all variations 0( )ru aδ  and 0( )
r

u bδ  

requires 
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These equations balance the electro-static normal interface tractions, AT  and BT , introduced 

earlier in (2.2), by the stresses in the components.  These conditions emerge naturally in 

rendering the free energy of the system stationary.  Stationarity with respect to z
δλ  requires 
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which becomes the equation for determining the axial stretch in terms of the stresses 
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The final step in the calculation is to solve for the stresses using the constitutive relations 

(2.5) together with (2.8).  The outer surface of the fiber is traction-free: 
1 0C

r C z Cqσ µ λ −= − = .  It 

then immediately follows that   
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C z C zθσ µ λ µ λ− −= − =  and 
2 1( )C
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At r b=  the second balance equation in (1.8) must be satisfied, requiring 
B B

r Tσ =  such that 

1 B

B z Bq Tµ λ − − = .  Thus,  
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z B z z Tσ µ λ λ −= − +       (2.12) 

At r a=  the radial stresses in A  and B  must balance AT  (first equation in (2.8)) requiring 

A B A

r r Tσ σ− =  with the following results for the components of stress in A  
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Finally, the equation for the axial stretch zλ  is obtained by enforcing (2.10) 
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remembering that 
0 0/ /b a b a= and using the fact that 

2 2 2

0 0 0( ) ( ) 0A B B
a T T b a T+ + − = , in agreement 

with the result in [6].  In dimensionless form this equation can be written as 
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  (2.15) 

with 
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 The plots in Fig. 2 set the stage by illustrating theoretical and experimental trends in the 

axial strain, 1
z z

ε λ= − , as dependent on voltage and the radius ratio 0 0/a b .  Fig. 2a presents the 

strain as a function of the dimensionless voltage load parameter
0Ω  from (2.15) for six radius 

ratios with outer sheath radius set at 
0 0/ 0.95b c =  and  with A B C

µ µ µ µ= = ≡ .  For the cylindrical 

geometry of the 3-component fiber, the axial stretch increases monotonically with increases in 

the voltage parameter.  For large 
0

V , by (2.15),  zλ  increases linearly with 
2

0V .  One 

implication of this result is that an axisymmetric instability mode akin to necking is unlikely to 

exist for solid core coaxial fibers made from neo-Hookean materials or from other elastomeric 

materials that display significant stiffening under stretch.  The first occurrence of instability of 

the perfect fibers in Fig. 2a is indicated by the solid black dot obtained from the analysis in 

Section 3.  The instability is a non-axisymmetric bifurcation with circumferential mode number 

m .  Fig. 2b presents a comparison of experimental data for axial strain (in %) as a function of 

voltage from [6] for three fibers with predictions from (2.15), including the onset of the lowest 

non-axisymmetric bifurcation from the analysis of Section 3.  The termination of the 



experimental curves in Fig. 2b was associated with electrical breakdown. The properties of the 

fibers (taken from [6]) are 114
A C

kPaµ µ= = , 155
B

kPaµ = , 12 224.8 10 NVε − −= × , with the component 

radii 0 0 0( , , )a b c  of the three fibers in mµ  as (205,361,372) , (110,332,347)  and (53,339,356) . 

 

Fig. 2  a) Dependence of axial strain on the dimensionless voltage parameter for six 3-component 

fibers over a range of the radii ratio 
0 0/a b  for components with identical shear moduli µ  

predicted by (2.15).  b) Experimentally measured actuation axial strain as dependent on applied 

voltage (square points and dashed curves) for three fibers tested in [6] with properties listed in 

the text.  The solid curves are the predictions for these fibers from (2.15).  In both a) and b) the 

black circular point on each of the theoretical curves marks the onset of instability of the 

axisymmetric state as determined in Section 3.  The index m is the circumferential mode number 

as detailed in Section 3.  The termination of the experimental curves is due to electrical 

breakdown. 

 The onset of the instability in the form of the non-axisymmetric bifurcation will be 

analyzed and discussed in the next Section, but several observations to set the stage can be made 

based on the results in Fig. 2.  First, the onset of instability has a strong geometric dependency.  

Fig. 2a already reveals that instability is significantly postponed for fibers in the range 

0 00.3 / 0.5a b< < .  Secondly, none of the fibers in [6] in Fig. 2b were tested to the onset of 

instability.  Nevertheless, a systematic increase in the axial strain above the theoretical prediction 

for the axisymmetric fiber occurs when the voltage exceeds about 50% of the instability onset 

predicted for the perfect fiber.  One possible explanation for this behavior is that it is driven by 



non-axisymmetric imperfections—such behavior is common in structural buckling problems at 

loads on the order of 50% of the buckling load.   It is also worth noting that, in the range of 

strains associated with the results in Fig. 2, the neo-Hookean material model should be a good 

representation of isotropic elastomeric materials. 

3.  Non-axisymmetric bifurcation from the concentric state for the 3-component fiber 

The perfectly concentric fiber loses stability as a non-axisymmetric bifurcation from the 

pre-bifurcation state detailed in Section 2.  At the point of bifurcation, the geometry of the fiber 

is specified by 0
/

z
a a λ= ,  0

/
z

b b λ= , 0
/

z
c c λ= and 0 z

L Lλ= .  The cylindrical coordinate 

system ( , , )r zθ  in the pre-bifurcation state with 0
/

z
r r λ=  and 0 z

z z λ=  will be used in the 

bifurcation analysis such that in A , 0 r a≤ ≤ , etc.  We will focus our attention on plane strain 

bifurcations, with zλ  fixed at the value given by (2.15).   The equations governing bifurcation 

admit modes with incremental changes in displacements and in q from the pre-bifurcation state, 

( , , , )
r z

u u u qθ
ɺ ɺ ɺ ɺ , of the separable form  

 ( )cos , ( )sin , 0, ( )cos
r z

u U r m u V r m u q Qr mθθ θ θ= = = =ɺ ɺ ɺ ɺ  ,  1 , 2 , 3 , . . . .m =  (3.1) 

with incompressibility requiring 

 1( ) 0U r U mV−′+ + =           (3.2) 

where ( ) ( ) /d d r′ = . 

 The full details of electro-static problem in the bifurcated state are given in the 

Supporting Materials.  The analysis conducted in this paper requires the lowest order changes in 

the electro-static tractions and the work they perform on interfaces AB  and BC .  These lowest 

order changes are determined by perturbing about the axisymmetric pre-bifurcation state using 

( ) /U a a  and ( ) /U b b  as the amplitudes of the shape perturbations.  The electro-static 

tractions on the two interfaces subject to fixed 0V are 
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where A
n  and 

B
n  are the unit normal to the respective interfaces pointing into component B .  The 

work per current unit length performed by these tractions on the fiber through the shape 

perturbations is 
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The expression (3.5) is positive definite for all ( )U a  and ( )U b  for 0 / 1a b< < .  In other 

words, for shape changes in the form of any of the modes in (3.1) the battery maintaining the 

voltage 0V  does positive work on the fiber to lowest order in the bifurcation amplitudes.  The 

axisymmetric pre-bifurcation tractions do no work through the bifurcation displacements. 

For the mode with 1m = , (3.5) reduces to  
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The mode in (3.1) for 1m =  implies that to lowest order in the bifurcation amplitude, the 

interfaces and the outer surface remain circular and simply undergo lateral translations relative to 

one another, as depicted in Fig. 3, even though straining occurs within the three components.  In 

particular, the two interfaces, AB  and BC , on which the charge resides translate relative to 



each other by ( ) ( )U b U aδ = − .  The result (3.6) is corroborated by the exact result in the 

literature [8] for the electrical energy per unit length stored in an cylindrical capacitor loaded to a 

voltage 0V  and having a circular inner conducting surface of radius a  and circular outer 

conducting surface of radius b whose centers are offset from one another by a distance δ : 
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Fig. 3  The plane strain bifurcation modes for 1, 2 & 3m = . 

 

 The expression for lowest order change in the elastic energy per unit length due to 

bifurcation is also quadratic in U and V ; the result, derived in the Supporting Materials, is  
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where the stress r θσ σ σ≡ =  takes on the uniform pre-bifurcation value in each component as does 

the modulus 2 1 2 22 ( 2 )/3 2(2 )/3z z zM µ λ λ σ σ−= + − + .  The following dimensionless quantities have been 

employed: ( , ) ( , )/UV UV b=ɶ ɶ , /r r b=ɶ , ( ) ( ) /d d y′ = ɶ , /a a b=ɶ , 1b =ɶ  and /a a b=ɶ .  The 



dimensionless component-dependent stress and modulus are / Mσ σ=  and /
B

M M µ=ɶ ;  the 

incompressibility condition is 
1( ) 0U r U mV−′+ + =ɶ ɶ ɶɶ .   

 The dimensionless work done by the perturbed electro-static tractions (3.5) is 
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The functional governing the bifurcation eigenvalue problem is 

elastic electric∆Ψ=∆Ψ −∆Ψɶ ɶ ɶ         (3.11) 

This functional is homogeneous of degree 2 in the modal displacements.  The eigenvalue is Ω  

while σ  and Mɶ  can be expressed in terms of Ω , z
λ  and the shear modulus ratios. For any 

given m , 0∆ Ψ >ɶ  at voltages below the lowest critical eigenvalue for all non-zero 

admissible functions Uɶ and Vɶ .  The critical eigenvalue is the lowest voltage for which 

0∆ Ψ =ɶ  for some non-zero combination of Uɶ and Vɶ , and this combination is the 

eigenmode when appropriately normalized.   

3.1 Solution procedure 

In each component, the field equations for the modal quantities in (3.1) generated by 

rendering the functional (3.11) stationary admit 4 linearly independent solutions (see Supporting 

Materials).  For 1m =  the general solution in each component has the form 
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where the b’s are undetermined coefficients and /Q Q M= .  For 2m ≥ , the four independent 

solutions are 
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where 1 1n m= − , 2 1n m= + , 3 ( 1)n m=− − , 4 ( 1)n m=− + , ( 1)/ , 1,4i iv n m i=− + = , 2 2( 1)(1 2 )/q m mσ= + +  and 

3 2( 1)(1 2 )/q m mσ= − + .  Each contribution in (3.12) and (3.13) satisfies the incompressibility condition.  

Denote the coefficients in component A  by , 1,4ia i= , in B  by , 1,4
i

b i= , and in C  by , 1,4ic i= .  

It will now be shown that the bifurcation solution can be reduced to a form dependent 

only on the '
i

b s  in B  as independent unknowns.  The solution must be bounded at the origin 

requiring 3 4 0a a= = .   Continuity of Uɶ and Vɶ  at r a=ɶ ɶ  provides two linear equations for 1a  

and 2a  in terms of the '
i

b s .  Four linear equations for , 1,4ic i =  in terms of the 'ib s  are obtained 

from the two traction-free conditions at r c=ɶ ɶ  and the two continuity conditions on Uɶ and Vɶ  

at r b= ɶɶ .  Thus, 1a , 2a  and , 1,4
i

c i =  are uniquely determined for every set of '
i

b s .  For 2m ≥ , 

, 1,4
i

b i=  are the free variables in solving the bifurcation problem.  For 1m = , the set of free-

variables must be restricted to exclude the rigid body translation (i.e., co nstan tU V= − =ɶ ɶ ).  

This is achieved by taking 1 0a =  such that the two interface continuity equations at r a=ɶ ɶ  

provide equations for 2a  and one of the '
i

b s , which we have taken to be 4b .  Thus for 1m =  there 

are three independent free variables, 1b , 
2b  and 3b .  For 1m =  the reduction gives 
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The reduction for 2m ≥  is also straightforward but requires the use of a linear equation solver 

which does not need to be described here. 

In summary, the bifurcation mode can be represented by some combination of 'ib s  

(absent 4b  as a free variable for 1m = ).  For any combination of the '
i

b s , the integrations in 



each component region in the bifurcation functional can be carried out either analytically, 

although this would be length, or numerically to high precision.  The bifurcation functional 

(3.11) has thus been reduced to a quadratic algebraic function of the 'ib s  with Ω  as the 

eigenvalue, i.e., ( , )∆Ψ Ωbɶ .  Standard numerical methods are available for solving for the critical 

(lowest) eigenvalue and the associated bifurcation mode for each m , as discussed in the 

Supporting Materials.   

3.2  Critical voltage for 3-component fibers 

 Fig. 4 presents the solution to the eigenvalue problem just described for circumferential 

wave numbers  1, 5m =  for the family of fibers considered in Fig. 2a.  For any geometry, the 

critical (lowest) eigenvalue which determines the onset of the instability of the perfect fiber is 

that indicated by the solid black dot in Fig. 2.  For this example, the critical circumferential mode 

number is 2m =  in the lowest range of 0 0/a b , switches to 3m =  in the intermediate range of 

0 0/a b , and switches again to 4m =  for 0 0/ 0.52a b > .  The critical voltage, 
0 0/ /B V bε µ , and the 

associated axial strain, 1
z z

ε λ= − , do not vary monotonically with 0 0/a b .  The maximum critical 

voltage is attained for fibers having 0 0/ 0.35a b ≅ , but the maximum axial actuation strain at the 

onset of instability is 0.2
z

ε ≅  throughout the range 0 00.35 / 0.52a b< < . 

 Fig. 5 reveals the influence of the shear modulus of the thin outer sheath for fibers with 

0 0/ 0.5a b =  and 0 0/ 0.95b c = .  Over the entire range of /C Bµ µ  plotted, the critical voltage 

eigenvalue is associated with 3m = .  Relative to the case where the sheath and dielectric 

components have the same modulus, the critical voltage is reduced by about 20% when the 

sheath modulus becomes negligible compared to 
B

µ  and it is increased by about 15% when 

5C Bµ µ= .  A sheath modulus with C Bµ µ≅  appears to be a good choice for maximizing the stable 

actuation strain range without unduly elevating the voltage for actuation.  No formal 

optimization work will be conducted in this paper, but the stability analysis enables such studies.  



 

Fig. 4  Instability eigenvalue spectrum 0 0/ /V bε µΩ =  on the left and associated axial strain 

zε  on the right as dependent on 0 0/a b  and circumferential mode number m  for fibers with 

0 0/ 0.95b c =  and identical component moduli µ .  The stability limits (black dots) in Fig. 2a are 

derived from these results. 

 

Fig. 5  The influence of the sheath shear modulus on the voltage eigenvalue spectrum and the 

associated axial strain for fibers with 
0 0/ 0.5a b = , 0 0/ 0.95b c =  and A B

µ µ= .  

 In the examples discussed above the mode with circumferential wave number 1m =  is 

not competitive in the sense that the eigenvalue associated with this mode lies well above the 

critical mode having the lowest eigenvalue.  This also will be the case for the 2-component fibers 



discussed in the next section.  Of all the plane strain circumferential modes considered in this 

paper, only the 1m =  gives rise to a longitudinal bending moment (i.e., xM  or y
M ) in the fiber.  

The modes with 2m ≥  produce no longitudinal bending moment and, thus, an unconstrained, 

vertically supported fiber, as in the experiments in [6], would remain straight in the post-

bifurcation range, at least for relatively small bifurcation displacements.  If 1m =  were critical, 

the fiber in such an experiment would undergo bending beyond the onset of instability.  The 

moment for 1m =  is computed in the Supporting Materials, but it will not be discussed further 

here because this mode is not critical.  

4  Critical voltage for 2-component coaxial fibers 

 If / 0
C B

µ µ → , the solution method described in Section 3 generates solutions for the 2-

component system consisting of a core A  and annulus B  with a conducting interface between  

A  and B  with and outer conducting surface on B .  Spectrums for the instability eigenvalue for 

the limiting cases of a fluid-filled core, / 0
A B

µ µ → , and a rigid core, /
A B

µ µ →∞, are presented in 

Figs. 6 and 7.  The associated axial stretch is shown for the fluid-filled core; the rigid core 

constrains the stretch to be unity.   

The limit / 0
C B

µ µ →  of the solution does not correspond to a core becoming a traction-

free cavity [5], rather it corresponds to an incompressible fluid with zero shear modulus which is 

assumed to be able to support the hydrostatic tension without cavitation in the core generated by 

the electro-static forces.  In the limit of the fluid-filled core, the critical voltage is associated with 

the plane strain mode 2m =  over the entire range of geometry in Fig. 6.  In this limit it is quite 

possible that a plane strain mode is not the critical mode.  Modes with both sinusoidal 

circumferential and axial variations should be considered including axisymmetric modes.  The 

present analysis can be generalized to such modes (e.g., [9]), but lower instability possibilities 

for the fluid-filled core will not be pursued further here. 



 

Fig. 6 The dimensionless voltage eigenvalue spectrum in a) and associated axial stretch in b) for 

a 2-component system with a fluid-filled core, A , and an elastomeric annulus, B . 

 

Fig. 7 The dimensionless voltage eigenvalue spectrum for a 2-component system with a rigid 

core, A , and an elastomeric annulus, B .  The axial stretch is constrained by the core to be 1
z

λ =

.  Included as a dashed line is the asymptotic short wavelength limit in Section 5. 

The eigenvalue spectrum for rigid core fibers in Fig. 7 reveals that the circumferential 

wave number associated with the critical voltage eigenvalue depends strongly on 0 0/a b .  The 

eigenvalue for 2m =  lies well above the critical eigenvalue over the entire range plotted, but the 



eigenvalue for 1m =  is the critical eigenvalue at the lower end of the interval, and it remains 

only modestly above the critical value over the entire interval.  For values of 0 0/a b  at the upper 

range of the plotted, the critical eigenvalue approaches from above the asymptotic result derived 

in the next section: 

 0 0

0 0

1.2872 1
B

V a

b b

ε

µ

 
= − 

 
        (4.1) 

This asymptotic result becomes an increasingly accurate approximation as the ratio the thickness 

of the annulus B to 0b  becomes small.  The result above holds in the limit of short wavelength 

modes that are increasingly confined to the vicinity of the outer free surface of component B , as 

will be discussed in the next section. 

 Fig. 8 is a summary plot for the critical instability voltage and associated axial strain for 

2-component fibers showing results for five core-to-annulus shear modulus ratios. 

 

Fig. 8  a) Critical (lowest) voltage eigenvalue and b) associated axial strain for 2-component 

coaxial fibers for five ratios of core to annulus shear moduli ranging from fluid-filled cores to 

fibers with rigid cores.  The axial strain for the rigid core fiber is zero. 

 

 



5.  A dielectric layer clamped on the bottom and free at the top 

 Motivated by the behavior noted in the previous section for the rigid core, consider as a 

special limiting case a planar incompressible neo-Hookean layer modeling the dielectric 

elastomer, of thickness h and shear modulus µ , that is bonded to a rigid substrate on the bottom 

and traction-free on the top.  The upper and lower surfaces of the layer are conducting with a 

voltage 0V  imposed across them.  This problem can be analyzed using the method laid out in 

Section 3.  The bifurcation and initial post-bifurcation behavior of this problem and a companion 

problem have been analyzed in [7].  Experimental studies of versions of this planar problem have 

also been carried out [10,11].  Here we provide a summary of the results of the planar problem 

relevance to the 2-component fiber with the rigid core. 

 Owing to the constraint of the rigid substrate, the pre-bifurcation state in the layer is one 

of hydrostatic compression: 
2 2

0 / 2x y z V hσ σ σ ε= = =−  with 1x y yλ λ λ= = =  in the coordinates of the 

insert in Fig. 9.  The pre-bifurcation thickness in the current state is unchanged from that in the 

unstressed state.  Denote the plane strain displacement increments associated with the bifurcation 

solution by ( )sin( )
x

u U y kx=ɺ , ( )cos( )yu V y kx=ɺ  and 0zu =ɺ  with k  as the mode wave number and 

2 / kπ=ℓ  as the wavelength.  On 0y = , 0U V= = .  With a voltage 0V  prescribed across the 

top and bottom surfaces, the traction, T , on the top perturbed surface and the lowest order work, 

electric∆Ψ , done by these tractions per unit length in the z -direction over one wavelength ℓ  are 
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with a  as the unit normal to the top surface pointing into the layer.  The dimensionless quadratic 

functional governing bifurcation is 
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 (5.2) 



with /y y h=ɶ , ( ) ( ) /d d y′ = ɶ , k k h=ɶ , ( , ) ( , )/UV UV h=ɶ ɶ  and 
2 2

0 /( )V hε µΩ= .  The field 

equations admit linearly two linearly independent solutions after the boundary conditions on the 

bottom of the layer are satisfied: 
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     (5.3) 

 

Fig. 9  Spectrum of the voltage eigenvalue as a function of the wavelength for the infinite 

dielectric neo-Hookean layer.  The top and bottom surfaces of the layer are conducting.  The top 

surface is unconstrained and the bottom surface is bonded to a rigid substrate.   

 The eigenvalue spectrum as dependent on the dimensionless modal wavelength, 

/ 2 /h kπ= ɶℓ , is plotted in Fig. 9.  An interesting feature of this spectrum is that for 

sufficiently short wavelengths the eigenvalue becomes independent of the wavelength and given 

by 

 0 1.2872
V

h

ε

µ
Ω = =         (5.4) 



It can be seen from Fig. 9 that this limiting result is the critical eigenvalue governing planar 

stability of the layer and, moreover, the eigenvalue for a wavelength as large as / 1h =ℓ  is less 

than 0.1%  above (5.4).  Although not evident from (5.3), the mode becomes increasingly 

concentrated at the top surface of the layer as the wavelength gets shorter and shorter.  

The problem for the short-wavelength limit in which the eigenvalue becomes 

independent of the wavelength is readily formulated.  It corresponds to an infinitely deep layer 

with a conducting surface subject to an electric field in the vertical direction producing a gradient 

in the voltage potential of magnitude equal to 
0 /V h (h is no longer the layer thickness).  In this 

formulation, with the vertical coordinate y taken with its origin at the top surface, the short 

wavelength eigenmodes associated with the critical eigenvalue (5.4) turn out to be 

 ( ) ( )1 2(1 ) sin( ), 1 2 cos( )ky ky

x y
u ky e kx u ky e kx= − + + = −ɺ ɺ  

In this form, it is evident that the bifurcation mode decays exponentially into the layer scaled by 

the wavelength 2 / kπ=ℓ .  This surface instability has much in common with the instability of 

a compressed neo-Hookean half-space with a traction-free surface first analyzed by Biot [12], 

although in the present problem the pre-bifurcation state is hydrostatic compression with no 

strain.  Because the arbitrarily short wavelength modes are localized near the surface, the result 

in (5.4) implies that surface instabilities will occur at any location on a conducting traction-free 

surface when the magnitude of the electric field gradient normal to the surface exceeds the limit 

associated with (5.4), assuming the elastomer is constrained below the surface. 

 To address the relevance of (5.4) to the 2-component coaxial fiber with the rigid core, 

consider geometries such that the distance between the conducting surfaces of the fiber, 0 0h b a= − , 

the inner one fully constrained and the other unconstrained, is relatively small compared to 0b .  If 

h is replaced by 0 0b a−  in (5.4) one obtains 
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b b
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        (5.5) 

with the modulus identified as that of B .  This is the result plotted as a dashed line in Fig. 7.   



 The post-bifurcation analysis of the constrained layer in [7] sheds light on the nature of 

the instability at bifurcation.  The short wavelength modes are highly unstable, and the maximum 

attainable voltage is reduced below the bifurcation value by small imperfections in the system.  

In the physics community such instabilities are referred to as sub-critical implying a bifurcated 

solution is associated with falling voltage.  Experiments on constrained planar layers [10, 11] 

reveal that the instability occurs as a dynamic snaping from the nominally planar state to 

localized creases.  Therefore, it is logical to conclude that the short wavelength modes on the 

fibers with rigid cores will similarly be highly unstable and imperfection sensitive.  Post-

bifurcation analyses have not been performed for the coaxial fiber modes with small 

circumferential wavenumbers, i.e., m=1,2,3,…, nor have experimental observations been 

reported which would indicate whether the bifurcation is sub-critical or super-critical.   

6.  Conclusions 

Current co-axial elastomer fibers are produced by co-extrusion of the core, dielectric and 

outer electrode so there exists the possibility of local variations in the radii of these components 

as well as leading to non-perfect axial symmetry of the fibers. No direct evidence for the 

formation of any voltage-induced bifurcations has been observed, although as discussed below 

the electrical breakdown which terminates the actuation strains in [6] may be triggered by the 

instability.  Neither has any crease-like post-bifurcation associated with short wavelength surface 

modes yet been observed for the fibers. However, the analysis presented in this work suggests 

they may exist although at electric fields not hitherto reached because electrical breakdown has 

intervened. Of particular interest, since complex shapes can be produced by 3D printing, is the 

possible occurrence of instabilities in lengths of fibers bent prior to the application of a voltage.  

In a bent co-axial fiber, there will be azimuthal variations in the thickness of the dielectric and 

consequently non-axisymmetric electric fields. 

The behavior of the coaxial fibers tested in [6] compared with the theoretical predictions 

for their perfect counterparts in Fig. 2b, reveals that noticeably larger axial strains than those 

predicted begin to appear at voltages which are roughly ½ of the voltage predicted for the onset 

of instability.  It is possible that this might be due to the manufacturing imperfections referred to 

above, particularly if the critical bifurcation turns out to be sub-critical, which has yet to be 

established except for the short wavelength modes.  If bifurcation for the modes with m=2,3,4,… 



is also sub-critical, then it is possible, and perhaps even likely, that the maximum voltages 

achieved in the experiments in [6] could be due to the instabilities investigated in this paper.  In 

the experiments, the maximum voltage is associated by electrical breakdown occurring in the 

range between 50% to 80% of the bifurcation prediction (c.f., Fig. 2b).  Imperfections.in the fiber 

could be responsible for prematurely triggering the instability which in turn would bring about 

the electrical breakdown. 
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 Equation numbers in the Supporting Materials use the designation (SM.--) while 

reference to equation numbers and figures in the paper are the same as those in the paper.  

References to published papers refer to those listed in the paper. 

The electro-static fields, tractions and energy. 

The set of plane strain bifurcations (with z
λ  fixed at the value given by (2.14)) from the 

pre-bifurcation state have displacement increments of the separable form 

 ( )cos , ( )sin , 0, 1r zu U r m u V r m u mθθ θ= = = =ɺ ɺ ɺ       (SM.1) 

with incompressibility requiring 

 
1( ) 0U r U mV−′+ + =           (SM.2) 

and with ( ) ( ) /d d r′ = .  The mode in (SM.1) implies that to lowest order in the bifurcation 

perturbation, the interfaces and the outer surface undergo a shape change proportional to the 

deflection normal to the surface, cosU mθ .  Take the center of cylindrical interfaces, r a=  

and r b= , in the pre-bifurcation state to be the origin of the ( , )r θ  coordinate system, and 

let ( )/
A

U a aδ =  and ( )/
B

U b bδ =  be the perturbation parameters characterizing the perturbed shape 

change of interfaces AB  and BC .  For interface AB  the perturbed location is specified by 

( )1 cosAr a mδ θ= +  and for BC  it is ( )1 cosBr b mδ θ= + .  For the case 1m = , the surfaces 

remain circular (to lowest order) and simply undergo a lateral translation relative to one another, 

as depicted in Fig. 1.  With ϕ  as the electric potential satisfying 
2 0ϕ∇ =  in component B  with 

0ϕ =  on interface A and 0Vϕ=  on interface BC , the perturbed potential is 
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 (SM.3) 



The perturbed charge/area distribution on each of the two interfaces is given by the normal 

gradient to the interface, / nρ ϕ= ∂ ∂ , where the normal points into B  yielding 
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The traction vector acting on each of the interfaces is given by 
1

2
ερ ϕ= ∇T
�

 leading to the 

expressions given in (3.3) and (3.4) with the accuracy required for the present study.  

 The mechanical work (per unit length in the axial direction in the pre-bifurcation state of 

fiber) done by the device supplying constant voltage 0V  across the interfaces of component B  

due to the shape perturbation is 
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where the coefficients AAH , ABH  and BBH  are given in conjunction with (3.5).  The positive 

definiteness of this form has been established by straightforward numerical evaluation for 

individual m .   

The elasto-static fields in the bifurcation problem. 

 In the deformed pre-bifurcation state, the functional defining the eigenvalue problem for 

bifurcation is also defined per unit length of fiber 

 elastic electric
∆Ψ=∆Ψ −∆Ψ         (SM.7) 

where the electro-static contribution is given in (A.6) and the elasticity contribution is given as 

follows.  In cylindrical coordinates ( , , )r zθ  identifying material points at bifurcation, ( , . )
r z

u u uθ
ɺ ɺ ɺ  



are the modal displacement increments.  Physical tensor components will be used in what 

follows.  With dots denoting increments from the current pre-bifurcation state, the quadratic 

functional governing the incremental elasticity behavior is  

 ( ); ;

1

2
elastic ij ij ij k i k i

S

u u dSτ η σ∆Ψ = + ɺɺ ɺ ɺ        (SM.8) 

Here, in the pre-bifurcation state the non-zero true (Cauchy) stresses, 
ijσ , are ( , , )

r zθσ σ σ  which 

have been given in Section 2 and are uniform within each component.  The increments of the 

symmetric Piola-Kirchhoff stress ijτ  are ijτɺ .  This stress is work conjugate to the Lagrangian 

strain 
ijη  and coincides with the Cauchy stress 

ijσ  at bifurcation for an incompressible material in 

this reference system.  The integrand is independent of the z  coordinate for the plane strain 

bifurcations under consideration so the integration is over the areal region S which extends over 

the cross-sections of the three components.  In physical components,  

 
1

, ,/ , ( / ),r r r r ru u r u r u uθ θθ==∂ ∂ = ∂ ∂ −ɺ ɺ ɺ ɺ ɺ  
1

, ,/ , ( / )r ru u r u r u uθ θ θ θ θ θ==∂ ∂ = ∂ ∂ +ɺ ɺ ɺ ɺ ɺ    

and , ,( ) / 2ij i j j iu uη = +ɺ ɺ ɺ .  At bifurcation, the principal axes of stress coincide with the cylindrical 

coordinate system.   

Increments of ijτ  are related to the Jaumann-rate increments of the Cauchy stress, ˆ
ijσ , by  

 ˆ 2rr rr r rrτ σ ση= − ɺɺ , ˆ 2θθ θθ θ θθτ σ ση= − ɺɺ , ˆ 2zz zz z zzτ σ ση= − ɺɺ  

 ˆ ( )r r r rθ θ ϑ θτ σ σ σ η= − + ɺɺ ,  ˆ ( )rz rz r z rzτ σ σ σ η= − + ɺɺ ,  ˆ ( )z z z zθ θ θ θτ σ σ σ η= − + ɺɺ  

These apply for general cylindrical symmetric stress states ( , . )
r zθσ σ σ and arbitrary increments 

from such states.  For the incompressible neo-Hookean material in (2.4) with shear modulus µ  ,  

 
2ˆ 2rr r rr qσ µλ η= −ɺ ɺ ,  

2ˆ 2 qθθ θ θθσ µλ η= −ɺ ɺ ,  
2 2ˆ ( )r r rθ θ θσ µ λ λ η= + ɺ  

Combined, the above two sets of equations give the incremental relation 



 ij ij ijM qτ η δ= −ɺɺ ɺ    with  ( ) ( )2 2 22 2

3 3
r z r z

M θ θµ λ λ λ σ σ σ= + + − + +     (SM.9) 

 Equilibrium equations governing bifurcation displacements within the components are 

obtained by rendering elastic∆Ψ  in (A.8) stationary.  For the present class of problems with ( , )ru rθɺ , 

( , )u rθ θɺ  and 0zu =ɺ , one has 

 
2

2

( )
0rrr r r

r r

u ur u u
r u

r r r r r

θ θ θ θ θ
θθ

τ σ στ
τ σ

θ θ θ θ

 ∂ ∂ ∂∂ ∂ ∂∂   
− + + + − − + =    

∂ ∂ ∂ ∂ ∂ ∂ ∂    

ɺ ɺ ɺɺ ɺ ɺ
ɺ ɺ    (SM.10) 

 
2

2

( )
0r r r

r r

r u uu u
r u

r r r r r

θθ θ θ θ θ θ
θ θ

τ τ σ σ
τ σ

θ θ θ θ

 ∂ ∂ ∂ ∂∂ ∂∂    
+ + + + − + + =   

∂ ∂ ∂ ∂ ∂ ∂ ∂    

ɺ ɺ ɺ ɺɺ ɺ
ɺ ɺ  (SM.11) 

Conditions at interfaces require continuity of displacement-rates, ( , )
r

u uθ
ɺ ɺ .  Conditions on the 

traction-rates, ( / , / )r rr r r r rT u R T u Rθ θ θτ σ τ σ= + ∂ ∂ = + ∂ ∂ɺ ɺɺ ɺ ɺ ɺ , at the interfaces and outer surface will 

emerge from full the coupled analysis.  The field equations for the bifurcation problem comprise 

the equilibrium equations, (SM.10) & (SM.11), the incremental constitutive relations, and the 

expressions for ijηɺ , together with conditions across the interface and at the outer surface to be 

discussed.  The displacement-rates must also satisfy the incompressibility equation: 

 
( )1 1

0r
uru

r r r

θ

θ

∂∂
+ =

∂ ∂

ɺɺ
         (SM.12) 

 Within each component M  is uniform as is the axial stretch and the stresses, which also 

satisfy r θσ σ σ= ≡ .  For completeness, we list the expressions for these quantities derived in 

Section 2.  The axial stretch z
λ  in the pre-bifurcation state given by (2.14) depends on 

2 2

0 / BV bε µΩ=  according to 

 
( ) ( )

3

2 2 2
1

ln( / ) ( / ) / 1 ( / ) ( / ) 1 /
z

A B C B
b a a b a b c b

λ
µ µ µ µ

− Ω
− =

 + − + − 

 

Recall that 0 0/ /a b a b=  and 0 0/ /c b c b= .  The stresses in the components are 



 
2

2 1

2

1 ( / ) 1
, ( )

2 ln( / )

AA A

B z
z z

A A A A

b a

b a

µ σσ σ
λ λ

µ µ µ µ
−−

= Ω = − +  

 2 1

2

1 1
, ( )

2 ln( / )

BB B

z
z z

B B B
b a

σσ σ
λ λ

µ µ µ
−= − Ω = − +  

2 10, ( )
CC

z
z z

C C

σσ
λ λ

µ µ
−= = −  

The modulus in each component defined in (SM.9) depends on the axial stretch and the above 

stresses. 

Equations (SM.9)-(SM12) admit separated solutions in the form (3.11) such that the 

ode’s governing ( , , )U V Q  are 

 

1 1

1 2

( ) ( ) ( ) / 2

( ) (( 1) 2 ) 0

rU rQ r mV U mr mU V rV

rU r m U mVσ

− −

−

′ ′ ′ ′− − + + − − +

′ ′ + − + + = 
   (SM.13) 

 

1 1

1 2

( ) ( ) / 2 ( ) / 2

( ) (( 1) 2 ) 0

mr mV U mQ r mU V rV mU rV

rV r m V mUσ

− −

−

′ ′ ′′− + + + − − + + − +

′ ′ + − + + = 
  (SM.14) 

1( ) 0U r mV U−′+ + =         (SM.15) 

with / Mσ σ=  and /Q Q M= .  This system of ode’s is equi-dimensional having solutions of the 

form 
1( , , ) ( , , )s s s

U V Q ar br cr
−=  where a , b  and s  are constants.  Substitution of this representation 

into (SM.13)-(SM.15) gives after reduction the results listed in (3.12) and (3.13) for the four 

linearly independent solutions for each integer m . The logarithmic terms in (3.12) arise because 

of the double root 0s =  for 1m = . 

 With /r r b=ɶ , /c c b=ɶ  and ( , ) ( , )/UV UV b=ɶ ɶ , the elasticity bifurcation functional 

(SM.8) can be expressed in the dimensionless form given by (3.8).  When the functionals (SM.6) 

and (SM.8) are combined to give the functional governing bifurcation,  elastic electric∆Ψ=∆Ψ −∆Ψ , one 



obtains the dimensionless expression (3.11) in the paper made up of the two terms (3.8) and 

(3.9).   

 As described in the body of the paper, the bifurcation solution has the form of either 

(3.12) or (3.13), depending on m , with separate sets of undetermined coefficients in each of the 

three components.  Conditions on analytic behavior at the origin, continuity of displacements 

across the interfaces, and the requirement of a traction-free outer surface at r c=  enable the 

solution to be reduced to one where only the four (three for 1m = ) coefficients in component B  

are independent unknowns.  The solution process ensures that traction conditions at the 

interfaces are satisfied.  The traction-free conditions on r c=  are 0r rrT τ= =ɺ ɺ  and 0rTθ θτ= =ɺ ɺ  because 

0
r

σ =  in C , and these require, respectively,  0U Q′− =  and 
1( ) 0V r mU V

−′− + = . 

 The bifurcation functional ∆ Ψɶ  in (3.8) is homogeneous of degree 2 in the 

displacement increments (3.12) and (3.13), which in turn depend uniquely on the coefficients 

, 1,4
i

b i=  in component B .  The dimensionless parameters specifying ∆ Ψɶ  are the geometry 

ratios, /a a b=ɶ  and /c c b=ɶ , the modulus ratios, /
A B

µ µ  and /
C B

µ µ , and the eigenvalue 

2 2

0 / BV bε µΩ= .  For 2m ≥ ,   

 
4

1, 1

ij i j

i j

A bb
= =

∆Ψ = ɶ         (SM.16) 

where the components of the symmetric 4 4×  matrix can be calculated in a straightforward 

manner to high precision for any set of Ω  and the other dimensionless parameters.  The lowest 

eigenvalue for a given m  is smallest value of Ω  for which the determinant of ij
A vanishes.  For 

1m = , the only change is that three of the 
i

b  are unknown, as discussed in the body of the paper. 

The mode with 1m =  is not critical for the family of co-axial fibers in Fig. 4.  

Nevertheless, for completeness it should be noted that bifurcation in the plane strain mode with 

1m =  produces a bending moment in the fiber about the y-axis, y
M ,  due to the asymmetric 

offset displacement ( ) ( )U b U aδ = −  in the x -direction (c.f. Fig. 3).  There is no moment 



produced for modes with 2m ≥ .  For sufficiently small bifurcation amplitudes, i.e.,
0/ 1cδ << , 

the moment depends linearly on δ .  A dimensionless formula for 
yM  for 1m =  has the form: 

3

0 0 0

0 0 0

/
,

/

y B
M c a b

F
c c c

µ

δ

 
=  

 
       (SM.17) 

with dependence on the moduli is left implicit.  This formula neglects terms of order 2δ .  The 

dimensionless moment is plotted in the figure below.  An unconstrained fiber bifurcating in the 

mode with 1m =  would undergo bending, but we will not pursue this further owing to the fact 

that this mode is not critical.   

 

Dimensionless relation between the moment in the fiber about the y -axis, y
M , and the 

amplitude of the bifurcation deflection, δ , for the mode with 1m = .   The family of coaxial 

fibers considered has parameters chosen to be the same as the fibers tested in [6]. 
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