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Abstract 

In oil and gas (O&G) exploration the well casing, in the form of a long steel tube, maintains the 

opening of the drilled well hole. Mechanical equipment is often inserted into the well for the 

purpose of well monitoring, pressure control and various operations. This downhole equipment 

may be mechanically connected to the pipe casing by the outward radial motion of anchoring teeth 

such that the inner wall casing is indented. The connection between the tool and the casing must 

support significant mechanical loads in the longitudinal (axial) direction of the casing, i.e. 

transverse to the direction of indentation, while minimizing the indentation depth in order to 

preserve the stiffness and strength of the casing. Consequently, a determination of the ultimate 

strength of the connection is of critical importance. Failure of this connection involves intense 

shear of the inner wall of the casing, akin to a machining operation. The critical load for axial slip 

can be determined experimentally or numerically (or by combination of both). In this study, 

detailed simulations are performed using the shear-extended GTN (Gurson-Tvergaard-

Needleman) model. The choice of model is motivated by the need to  accurately the extensive 

plastic deformation associated with indentation as well as shear-dominated ductile failure on a sub-

millimeter scale.  

The shear-extended GTN model requires a careful calibration of the model parameters by an 

accurate measurement of the material response. Accordingly, the casing steel was characterized 

by appropriate measurements under a range of stress states. The calibrated model was used to 
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investigate an idealized two-dimensional representation of the anchoring problem, with a focus on 

the effect of indentation depth upon connection strength. Both the indentation of the casing inner 

wall by the anchoring teeth and the subsequent shear of the casing wall were simulated in detail to 

determine the load required to initiate and progress slip of the anchoring teeth. The results of these 

analyses show that the connection strength increases linearly with increasing indentation depth.  

1.  Introduction 

In the oil and gas (O&G) industry it is often necessary to install equipment inside the well bore, or 

‘downhole’, after the well has been drilled and lined with a steel casing. There is a wide range of 

uses of downhole tools inside the casing, which include the monitoring of casing motion and 

deformation, fluid pressure monitoring and fluid control [1]. Downhole tools are fixed in position 

by direct anchoring into the inner wall of the casing. This process (often referred to as setting, see 

Fig. 1 [2] & [3]) involves the radial expansion of connecting elements of the tool called slips. 

These slips feature externally protruding teeth that are forced into the inner wall of the downhole 

casing; the casing also expands radially. Indentation by the tool’s teeth into the inner wall of the 

casing provides an effective shear connection, such that the weight of the tool and ancillary 

equipment are supported. Typically, the teeth are designed to act as rigid indenters into the steel 

casing with different materials used to achieve this goal [2] & [3]. The integrity of the tool-casing 

connection is critical to the ability to perform various downhole operations and the design of these 

operations requires a knowledge of the ultimate strength of this connection. Additional background 

information on the downhole equipment and the anchoring process can be found in [2] & [3]. 

The general principle of the anchoring process as discussed above is used in multiple industries.  

However, the details of the tool are usually customized to support specialist operations. Multiple 

manufacturers offer unique designs that are often based on proprietary solutions. Consequently, 

standardization is difficult and a determination of the connection strength requires controlled 

experimental testing, possibly of the entire assembly (i.e. casing and the tool) supported by detailed 

simulations. In this paper, we focus on detailed simulation of the indentation and shear by the teeth 

into the casing to determine the connection strength as a function of indentation depth.   

An accurate determination of the ultimate strength of the connection by simulation requires a 

detailed knowledge of material failure. Extensive plastic deformation of the casing material during 

indentation must also be well represented. The casing material is subjected to a complex and non-
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proportional loading that involves extensive compression during indentation, followed by intense  

machining . Previous studies attempted to model the setting process and predict the connection 

strength using detailed FEM models. However, the ductile failure representations were limited to 

von Mises plasticity ( [4], [3] ).  Zhong et al [5] highlighted the need to address shear failure to 

achieve good agreement with experimentally observed behavior. Additionally, since the teeth are 

relatively small (~1mm) compared to the casing thickness, the relevant processes occur on the sub-

millimeter scale. Thus, an advanced micromechanics-based constitutive model is best suited to 

resolve material behavior.  

The micromechanics-based Gurson-Tvergaard-Needleman (GTN) ( [6], [7], [8, 9]) model is an 

ideal tool for the simulation of the anchoring (teeth indentation) and shearing processes. The GTN 

model has been formulated to describe ductile fracture under axisymmetric stress states, thereby 

accounting for the effect of stress triaxiality, as defined by the ratio of mean and effective stress. 

More recently, detailed experimental studies of ductile fracture by Bao and Wierzbicki [10] and 

by Barsoum and Faleskog [11] reveal that, in addition to the first two stress invariants (mean and 

effective stress), the third invariant of deviatoric stress is also important, especially under shear-

dominated stress states. This third stress invariant is commonly parameterized by the so-called 

Lode angle.  Based on the experiments of [10,11], as well as upon fundamental investigations of 

void growth mechanics (Needleman et al. [12]; Fritzen et al. [13]; Nielsen and Tvergaard [14]; 

Tvergaard [15], [16]), Nahshon and Hutchinson [17] proposed an extension of the 

micromechanical GTN model to account for shear fracture. Their shear-extended model features 

a phenomenological shear damage function dependent on the omega parameter, which can be 

regarded as a normalization of the Lode angle.  

An identification of the parameters for the GTN model presents a challenge, as discussed 

extensively by Hojo and Watanabe [18]. While unit cell simulations can be used to calculate the 

appropriate values for some of the parameters as well as relationships between them, a complete 

calibration of the model requires extensive experimental testing as shown by Faleskog et al. [19] 

and Kim et al [20]. A combination of tensile and shear tests is necessary, with the test specimens 

and loading carefully designed to promote failure under specific stress states (e.g. Faleskog and 

Barsoum [21], Xue et al [22], and Scales et al. [23]).  

In the present study, a shear-extended GTN model is used to investigate the performance of the 

downhole anchored connection. Multiple tensile and torsional specimens were used to characterize 
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the casing material and to calibrate the model parameters. After suitable calibration, the model was 

used to investigate the strength of the tool-casing connection in two steps. Indentation of the tool’s 

teeth into the inner wall of the casing was first simulated, followed by the application of a 

monotonically increasing displacement of the tool in the axial direction of the casing (transverse 

to the indentation direction). The force required to initiate and progress the tool’s slippage along 

the casing was then calculated. While this approach was developed specifically to address the 

problem described above, it can also be used to model other applications such as intense wear 

and/or machining processes.  

The paper is organized in six sections. Following the introduction, a brief overview of the shear 

extended GTN model formulation is given in Section 2. Sections 3 and 4 describe the experimental 

testing procedures and calibration of the model parameters, respectively. Section 5 presents the 

details of the investigation of the downhole tool-casing connection strength through combined 

simulation of the indentation process followed by shear. Conclusions are given in Section 6.   

2.  The shear-extended GTN model 

The shear-extended GTN model [17] is now summarized. To begin, the original GTN model ( [6], 

[7], [8], [9]) is given by: 

���� , ��� = 	 ���
�� + 2���∗ ���ℎ 	3��2 ���
� − �1 + ���∗�� 

where, �� = ���/3 is the mean stress and �� =  3�!"�!"/2 is the von Mises effective stress; the 

stress deviator reads  �!" = �!" − �1/3����#!" in terms of the Cauchy stress �!".  The equivalent 

strength of the undamaged matrix is denoted by �
, �∗ is closely related to the void volume 

fraction � (as explained below with reference to Equation 4) and the parameters ��, �� and �� are 

model-fitting parameters as proposed by Tvergaard [6]. It is useful to note that the yield surface as 

described in Equation (1) reduces to the von Mises yield surface when �∗ = 0, or  �� = �� = �� =
0.  Upon ignoring void nucleation, the evolution of the void volume fraction is ( [17], [24]): 

�% = �1 − ��&%��' + ()�*��!"� +,-./ &%!"0       (2) 

where the plastic strain tensor is &!"0 , the volumetric plastic strain is &��0
, the over-dot denotes the 

first derivative in time, and the material parameter () defines the damage growth rate in pure 

shear.  For the problem of the present study, void growth is the dominant mechanism and void 

(1) 
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nucleation is neglected (but with the assumption of a finite initial void volume fraction). This 

assumption allows a reduction in the number of experiments for a full calibration of the model, 

including the nucleation term [25]. The first term on the right-hand side of Equation (2) accounts 

for void growth rate associated with volumetric straining. The second term accounts for the effect 

of shear deformation, including void rotation, lengthening and subsequent softening, on the 

evolution of damage. We note that the shear extension is phenomenological and leads to the loss 

of physical interpretation of � as the void volume fraction.  The stress invariant *��!"� is defined 

by: 

*��� = 1 − 1�234�./4 5�
        (3) 

where 6� is the 3rd deviatoric stress invariant, such that 36� = �!"�!��"�. The value of * lies in the 

range 0 ≤ * ≤ 1 such that *=0 for an axisymmetric stress state and ω=1 for a shear stress and 

superposed hydrostatic stress [17]. The invariant ω is related to the Lode angle (L) by 

* = 27�8� − 1��
�3 + 8���  (4) 

where L is given by  

8 = 2�99 − �9 − �999�9 − �999  (5) 

and lies in the range -1 ≤ 8 ≤ 1 [22].  A widely used approach to account for the onset of void 

coalescence is included [24]: 

�∗ =
:;
<
;= 

�
�> + �@̅ − �>�@ − �> �� − �>� 
�@̅

              � ≤ �>
              �> < � < �@,    
               � ≥ �@

�@̅ = �� +  ��� + ����  

where �> is the critical void ratio at which void coalescence begins, and �@ is the final void ratio at 

which the material element has zero strength.  

The flow rule and hardening behavior adopted in this paper follows the original GTN model. The 

plastic strain rate  &%!"0  is given by the normality relation: 

(6) 

(7) 
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 &%!"0 = D% EF
E.,- = D%G!"   

where D% is the plastic strain-rate multiplier and the normal to the yield surface G!" is defined by: 

 G!" = �+,-.HI + @∗JKJI.H sinh ��JI.P�.H �#!"    

The plastic work increment in the matrix material is related to the macroscopic plastic work 

increment via: 

 �1 − �∗��
&%
0 = �!"&%!"0  

Consequently, the matrix stain hardens at a rate �%
 such that: 

 �%
 = QH.,- R% ,-S��T@∗�.H 

where ℎ
 is the plastic modulus of the matrix material in uniaxial tension, and is stated in terms 

of the true stress in uniaxial tension and the resulting logarithmic plastic strain: 

 ℎ
 = U.HURHS  

The above equations, which describe the hardening behavior, are identical to those of the original 

GTN model with the exception of an additional term for shear damage in Equation (2).Additional 

definitions required to compliment the definition of the model are detailed in [26]. 

3.  Experimental Protocol 

Detailed tests are required to characterize the material and calibrate model parameters. In this 

study, we follow the approach of [26] and [22]. The following experiments were performed: 

A. Tensile tests on round dogbone (RDB) specimens at several strain rates. 

B. Tensile and torsion tests on round notch bar (RNB) specimens of selected notch radius. 

The test specimens were machined from an AISI 4140 steel casing (of outer diameter 175 mm, 

and wall thickness 15.9 mm). The deformation within the gauge length was observed by a 

combination of clip gauge, laser gauge and a 3D Digital Image Correlation (DIC) system. 

Additional information on specimen manufacture and the instrumentation employed is given in 

supplemental material. 

3.1.  Round dogbone (RDB) specimen 

(8) 

(9) 

(11) 

(10) 
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An RDB specimen was machined, following ASTM A370 [27], to a length of 150 mm, a gauge 

diameter of 6 mm and a gauge section length of 30 mm. The tensile test was performed at 3 strain 

rates: 10-5 s-1, 10-4 s-1 and 10-3 s-1. A laser gauge and a clip gauge were used to measure axial strain 

in the gauge section. The engineering strain up to about 1% was measured by a clip gauge (of 

gauge length 12.5mm), whereas engineering strain at larger values (up to 10%) were measured 

using a laser gauge (of gauge length 23mm).  The clip gauge is vulnerable to overload when the 

specimen undergoes a tensile dynamic instability at the end of the test, and so it was necessary to 

remove the clip gauge from the specimen prior to fracture.  

The engineering stress versus engineering strain curve is plotted in Fig. 2 for the 3 different strain 

rates. As shown in Fig. 2, the steel displayed minimal rate sensitivity over the given range. A ‘cup 

and cone’ type of ductile failure occurred within the neck as shown on the macro fracture surface 

in Fig. 3.  The failure mechanism was microvoid coalescence.  

3.2.  Round Notch Bar (RNB) – Tension 

RNB specimens with a range of notch sizes were tested, see Fig. 4; the aim was to create a range 

of triaxiality of stress-state in the failure zone as discussed in [21] and [22]. Each specimen was 

instrumented with a clip gauge and a laser gauge straddling the notch in order to measure the 

opening of the notch. In addition, a virtual extensometer was used to monitor the evolution of 

strain within the notch from the DIC measurements. The gauge length of the virtual extensometer 

is listed in Table 1 for different notch sizes. In each test, the load was first applied up to a value 

close to the expected maximum load, or until the paint speckle cracks. The specimen was then 

unloaded, repainted, and loaded until failure. This procedure was followed to protect the clip gauge 

from the possibility of over-extension and to ensure that the DIC measurements were not affected 

by paint cracking. Following removal of the clip gauge, the notch opening during the reload tests 

was measured by the laser gauge.  

Snapshots from DIC imaging at localization and failure for the 1mm notch test are shown in 

Figs. 5a and 5b, respectively. Figure 6 shows the load versus extension response of the notched 

bars (3mm and 9mm radius) in tension. The engineering strain at localization is listed in Table 1 

for the different specimen sizes. The onset of localization is defined as the instant at which large 

local strains begin to develop in the middle of the notch, and softening ensues shortly thereafter. 

The onset of localization is marked on Figs. 6 and 7. As expected, and observed in previous studies, 
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the failure strain is higher for the blunter notches (larger root radius); this is attributed to delayed 

localization of the root section. 

3.3.  Round notch bar (RNB) – Torsion 

A similar set of RNB specimens was tested in torsion. The specimen geometries in Fig. 4 were 

modified to have 12mm x 12mm square ends for grippage. The torque versus end-rotation response 

for the 3 notch sizes is shown in Fig. 7. The shear strain at peak torque is almost independent of 

notch root radius, as summarized in Table 1. The shear strain is defined as 

     

v

x
γ

∂
=

∂   

where x is the axial direction of the specimen and ν is the displacement in the circumferential 

direction. Note that the 1mm notch test used a virtual extensometer of gauge length 0.5 mm while 

the 3 mm and 9 mm notch tests used virtual extensometers of gauge length 1 mm. Snapshots of 

the DIC imaging at localization and failure for the 9 mm notch test are shown in Figs. 8a and 8b, 

respectively. The above results point to the fundamental differences between failure in tension and 

in shear. The localization strain in tension is much more sensitive to notch size than in torsion. 

Failure in tension leads to the cup and cone typical ductile fracture, while the shear-torsion failure 

leads to a planar shear fracture. The variation of the notch size in tension has direct influence on 

the stress-state inside the notch, and consequently upon the failure profile and fracture strain. This 

observation is supported by simulations as reported below. 

4.  Model Calibration 

The shear extended GTN model contains several parameters that define the ductile fracture 

response; this allows the model to be used to analyze a wide range of loading regimes [17]. Once 

the model parameters have been calibrated by appropriate experiments, the model can be used to 

represent the initiation and propagation ductile fracture under multi-axial loading. In this section, 

the process of calibrating the model parameters from the experimental results of Section 3 is 

discussed. Based on the lessons learned from previous studies ( [26], [21], [22]) the calibration 

process was carried out in the following order: 

1. Calibration of the hardening curve, hardening parameters (�� , ��, and ��) and initial void 

ratio based on RDB tension response. 

(12) 
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2. Calibration of the failure parameters: critical and final void ratio (�V and �W) and shear factor 

(X based on RNB tension and torsion data. 

Given the complexity of the model, the relatively large number of parameters and experimental 

data points, it is expected that the calibrated parameter set is non-unique. The issue of non-

uniqueness of GTN parameter sets has been documented elsewhere [28]. Here, the performance 

of calibrated parameter sets was evaluated through four evaluation criteria: 

• Yield force (in tension) or torque (in torsion) 

• Maximum force (in tension) or torque (in torsion) 

• Maximum displacement (in tension) or rotation (in torsion) 

• Mechanical energy dissipated  

The initial values of the model parameters were selected based on published guidelines  [21, 26, 

22]. The optimization operation was performed by minimizing the error between the measured and 

calculated responses across all types of specimens used on the experimental study. The error was 

defined as a linear combination of the four evaluation criteria defined above. In addition, the 

parameters were optimized to represent specific aspects of the measured response such as necking 

and localization prior to crack initiation and propagation.  

The model was implemented as an explicit user material (VUMAT) [29] within the commercial 

finite element code Abaqus Explicit.  Element deletion was employed, with the deletion criterion 

based on the final value of the void ratio �@ as defined in Equation (6). Mass scaling was used via 

an artificially higher material density in order to increase the value of stable time-step in the 

explicit calculations [29], [30]. In each simulation, several initial trials were performed to ensure 

that the mass scaling does not significantly degrade the accuracy of the simulation results. It is 

recognized that mesh-dependence has been observed in the softening regime of GTN models 

following void coalescence, leading to fracture propagation; in the absence of an explicit material 

length scale, it is necessary to keep the element size to be of the same order of magnitude as the 

size of the pre-existing voids [26]. The element size in the following simulations was kept in the 

range of 40 to 150 μm, as suggested in previous studies ( [31], [32], [26], [33] ). Details of finite 

element model used to represent each specimen are given in supplemental material. 

4.1.  Hardening Curve and Parameters 
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The plastic response in the shear modified GTN model is dictated by the model parameters:  the 

initial void ratio �Y and the � parameters. Note that, in the absence of voids (�Y = 0, � = 0), the 

GTN model reduces to von Mises plasticity. Accordingly, in order to isolate the effect of the 

hardening curve on the plastic response, the initial calibration of the hardening curve was 

performed assuming that voids are absent, i.e. �Y = 0, � = 0. This allows calibration of the yield 

surface of the undamaged matrix material [24, 26]. The data retrieved from the RDB tensile test 

was used to calibrate the hardening curve. The primary reason is that the RDB specimen does not 

contain notches and provides an average representative undamaged stress-strain behavior up to the 

onset of localization. The hardening curve is obtained by suitable extrapolation of the true stress 

versus true (logarithmic) strain response in uniaxial tension between yield and maximum loads. 

Two possible options of extrapolated hardening curves were investigated: (i) extrapolation along 

the final slope of the curve at the peak load or (ii) an extension of the curve with a slope that is 

half that of (i). The two options are plotted in Fig. 9. In the following discussions, these options 

will be denoted as (i) “High HC” and (ii) “Low HC”. 

The plots in Fig. 10 show that the force versus displacement prediction using the High HC aligns 

with that of the experimental curve. We emphasize that this prediction assumes that voids are 

absent, thus it is expected that the simulated response will demonstrate lower resistance (force) 

after voids have been introduced in the GTN model. In Fig. 10, the Low HC curve undershoots the 

response in the experimental curve. Despite the conclusion that the High HC plot leads to a better 

match in the RDB simulations, we will show below in section 4.2 that the Low HC gives a more 

accurate match to experimental data in shear loading cases. 

The set of values of the � parameters (�� = 1.5, �� = 1.0 and �� = 2.25) was taken from previous 

studies [6], [7]. Fig. 11 shows the effect of increasing �Y from 0.1% to 0.9% upon the High HC 

and Low HC responses. A combination of Low HC and �Y = 0.9% leads to considerable undershoot 

of the force-displacement response. 

4.2.  Failure parameters 

A calibration of the void ratios (�V  and �W) and the shear damage factor (X  is central to the 

description of the multiaxial loading response of the model. Following an initial parameter 

sensitivity study, it was concluded that four sets of values provide the best match between 

experimental and simulated responses, see Table 2. Detailed force versus displacement and torque 
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versus end rotation plots, showing the sensitivity to the choice of parameters, are provided in 

supplemental material.  

4.3.  Performance evaluation 

The performance of the four parameter sets is evaluated using the above-mentioned criteria. A 

graphical representation of the evaluation is shown in Fig. 12. The numerical comparison indicates 

that Set 4 exhibits the smallest combination of errors. Although Set 4 provides the best overall fit, 

other Sets may provide better representation in specific cases. For example, Set 3 is a viable 

alternative for the modeling of the torsional responses. 

5.  Assessment of anchored connection strength 

5.1.  The Finite Element Model 

As previously discussed the downhole equipment anchoring process involves the radial movement 

of protruding teeth of the slips into the inner wall of the downhole casing. During this indentation 

event the casing expands radially but the loading is not truly axisymmetric, since the teeth are not 

continuous around the circumference (see Fig .1). Additionally, casing expansion is an important 

element of the process and the complete evaluation of the connection strength would require an 

accurate representation of this expansion. However, a detailed assessment only makes sense for a 

specific scenario since the casing expansion is dependent upon the casing material and geometry 

in addition to the properties of the well, which acts as an elastic foundation for the casing. This is 

not the objective of this work. Rather, we aim to investigate the fundamental dependence of 

connection strength upon indentation depth, and this can be achieved by assuming plane strain 

conditions and no expansion of the casing . An extension of this work to include the full 3D 

representation with the radial expansion is future work, beyond the scope of the present study.  

The 2D plane strain finite element model used to assess the tool-casing connection strength as a 

function of indentation depth is shown in Fig. 13. The average element size in the refined portion 

of the model, i.e. in the region of indentation, is 75μm. Reduced integration 8-node continuum 

elements (ABAQUS C3D8R elements) were used throughout the finite element model. The model 

is one element deep in the out-of-plane-direction, with symmetry boundary conditions applied to 

the planar faces (near and far sides) to enforce plane strain. The bottom, right and left boundaries 

were supported by rollers. The overall extent of the model was sufficient to ensure that boundary 
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effects did not influence the local response around the teeth, and did not affect the overall force 

versus displacement response. 

The tool is treated as rigid and the contact condition includes a nominal steel-on-steel Coulomb 

friction coefficient of 0.6 (a sensitivity study showed that the response is not highly sensitive to 

the choice of coefficient of friction). The tooth internal angle is 54°; this choice is commonly used 

in practice. The model can be modified to represent other angles in a  straightforward fashion; 

however, this parametric study is beyond the scope of this paper.  

The loading was applied in two-steps: 

 1) the indenter (rigid tool) was pushed into the casing material along the y-direction (see Fig. 13); 

2) the slips with the indenters (teeth) were translated in the x-direction (transverse to the 

indentation direction) to represent the loading on the anchored connection.  

Displacement controlled loading was used with a monotonic increase and the number of the load 

steps automatically controlled by the stable time step. Large deformation elements were used to 

account for the expected geometric non-linearity. Two material models were considered for the 

steel specimen:  

1. the shear-extended GTN model with calibrated parameters as defined in Section 4.  Element 

deletion is set to occur when the void ratio reaches the final void ratio �@defined in Equation (6);  

2. the von Mises plasticity model (that is, J2 flow theory) with Low HC and element deletion 

criterion based on the critical level of the equivalent plastic strain (i.e. 200%). The value of 200% 

was chosen to resemble the equivalent plastic strain in most severely strained elements in Set 4 

RNB-Torsion simulations at failure.  

A comparison between the shear-extended GTN and von Mises models is discussed in Section 5.2. 

The sensitivity of indentation force and connection strength to the number of indenting teeth is 

explored in Section 5.3. We note that the maximum indentation depth in Sections 5.2 and 5.3 

exceeds the typical depth applied in reality; this is done so to reveal the stress-state around the 

teeth in detail. In practice, a large indentation depth may lead to degradation of casing integrity. 

The effect of indentation depth on the shear resistance of the connection is investigated in Section 

5.4. 

5.2.  Predictions by the shear-extended GTN and von Mises material descriptions 
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The equivalent plastic strain after indentation and slippage, as calculated using the extended GTN 

model and the von Mises model are plotted in  Fig. 14a-b and 14 c-d respectively. The shear force 

versus tool horizontal displacement is reported in Fig. 15 for both models. Quantitative differences 

are expected in the overall force-displacement due to the overall changes in the geometric design. 

However, variations in the design of the anchoring tool are expected to yield qualitatively similar 

results, and in the width of the shear planes in Fig. 14 will remain representative because this is 

primarily controlled by material behavior.  

The response calculated using the shear-extended GTN model exhibits significantly more 

hardening than the corresponding solution obtained using the von Mises model. Since failure in 

the von Mises model is approximated simply by the removal of an element once its equivalent 

plastic strain has reached a critical level of 200%, progressive failure occurs along the shearing 

line (i.e. unzipping) as observed in other studies ( [2], [4] and [3]). But this mechanism neither 

matches other observations ( [5], [34]) nor field observations, and this motivates a more detailed 

investigation using the extended GTN model, given its ability to account for the triaxial stress state 

on ductile failure.  

Initial simulations using the calibrated extended GTN model experienced computational 

challenges. As shown in Fig. 14b and 16b, elements in contact with the tool experienced extreme 

deformation, which led to increased run time and convergence issues. Compression of these 

elements during indentation led to a reduction in void ratio f (Eq. 3), which corresponds to a 

gradual reduction in void size until the voids vanish (Fig. 16a and 16b). This behavior is unphysical 

since, in reality, voids flatten into crack-like features under hydrostatic compression rather than 

shrink uniformly ( [35], [36]). In order to address this challenge, an additional condition was 

introduced: �% ≥ 0, which prevents the void ratio from dropping below the current value throughout 

the simulation. The simulations performed using the ‘no-void-closure’ condition led to improved 

computational performance with no severe unphysical distortions of the elements. Additionally, 

the indentation loads and subsequent shear forces were less than those obtained for void shrinkage 

(Figs. 17 and 18). This response is consistent with the fact that void shrinkage leads to a stiffening 

response. In the presence of other combinations of volumetric and shear stress states, the 

introduction of the no void shrinkage condition could alter the void evolution, which was not 

observed here.  
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Note too that the Mises model successfully captures the overall force-displacement behavior. For 

practical applications, a well-calibrated Mises model may require a lower computational cost than 

the shear-extended GTN model, but full confirmation of this conclusion would require additional 

investigation. 

  

5.3.  Sensitivity of indentation and subsequent shear response to number of teeth 

The main objective of the present study is to assess a dependence of the tool-casing connection 

strength as a function of the indentation depth. It is also of practical importance to determine the 

shear force per tooth as a function of the number of teeth, with the expectation that it would 

asymptotically approach a constant value with increasing number of equally spaced teeth. A 

parametric study was performed to determine the minimum (threshold) number of teeth required 

in order to attain a constant shear force per tooth of the connection. The parametric study includes 

1, 2 and 3 teeth on the side of the tool. As an additional note, it is worth adding that a single tooth 

with a periodic boundary condition could be analyzed in lieu of analyzing multiple configurations. 

However, the extent of the movement of each tooth exceeds the spacing between the teeth and 

therefore the boundary line, which presents significant computation challenges.  

Plots of the equivalent plastic strain from the three cases are shown in Fig. 19. The indentation and 

shear force per tooth are plotted in Fig. 20. Several observations can be made from these figures. 

First, the most intense local loading occurs near the trailing, leftmost tooth along the shear plane 

between teeth. The material between the subsequent teeth slides along a shear plane, but 

localization and fracture occur adjacent to the trailing tooth. It is also noted that the difference 

between the two teeth and the three teeth is minimal in Fig. 20, which indicates that the use of 

three teeth is sufficient for the calculation of the indentation and shear force per tooth. 

5.4.  Relation between shear strength and indentation depth 

It is generally recognized that, as the indentation depth increases, the strength of the anchored 

connection increases but the integrity of the casing decreases. A quantification of the relation 

between the connection strength and indentation force (applied to set the tool) is an important 

factor in the design of the connection and casing. The indentation depth was varied by increments 

of 20% of total tooth depth {that is, 20%, 40%, 60%, 80%, 100%}. Both the shear-extended GTN 

model and the von Mises model were considered and the shear strength of the connection was 
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plotted as a function of average indentation force per tooth in each simulation, see Fig. 21. Two 

values of strength are reported in Fig. 21: the “yield” strength, which is simply the strength 

recorded at the point in which the shear force displacement response becomes non-linear, and the 

second is the “maximum strength” which is the force recorded at a shear displacement of 2 mm, 

as shown in Fig. 18. The plot shows that the relationship between shear strength and indentation 

force is linear for this 2D plane strain idealization. The shear-extended GTN and von Mises models 

give similar predictions for the yield load in shear, and this may be adequate for design purposes.  

Note that the yield and maximum values of shear force almost coincide for the von Mises model, 

but diverge for the shear-extended GTN model. In broad terms, the shear-extended GTN model 

suggests that a greater safety margin exists than does the von Mises criterion. We emphasize that 

these conclusions may be sensitive to the modeling assumptions made here, e.g. the plane strain 

idealization.  

6.  Summary and Conclusions 

This study introduces a novel approach for the calculation of the strength of downhole tool-casing 

connection used in the oil and gas industry. The connection was formed by indentation of small-

sized (~1mm) teeth into the inner wall of the downhole casing. Given the scale of the teeth as well 

as the indentation and shearing phenomenon, a high-fidelity micro-scale analysis is required to 

calculate the connection strength. The calculations presented here were obtained using both the 

shear-extended GTN material model and the von Mises plasticity model to predict the deformation 

and failure of the casing material. The study is underpinned by a detailed experimental testing 

campaign aimed at characterization of the casing material and calibration of the model parameters. 

The calibrated material model was used to calculate the connection strength in a two-stage 

simulation: 1) indentation, and 2) slippage of the teeth against the casing (in the longitudinal casing 

direction) leading to shear failure on the surface of the casing. The simulations were performed 

using idealized two-dimensional plane strain conditions. 

The current study highlights the fact that void growth in an elasto-plastic matrix is irreversible:  

plastic straining with a high compressive component does not shrink voids but converts them into 

crack-like features that continue to soften the solid. A straightforward, pragmatic approach to 

satisfy this requirement, is to enforce that the void volume fraction can never decrease in 

magnitude, regardless of the loading path, as done herein.  
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The finite element model developed in this study has been used to perform several parametric 

studies. First, the number of teeth was varied to investigate the minimum number of teeth required 

to represent a given connection. The results suggest that two teeth are sufficient to calculate the 

connection shear strength per tooth. The second parametric study investigated the effect of teeth 

indentation depth upon anchorage shear strength. We find that the shear strength scales linearly 

with indentation force.  We stress that these findings are for 2D plane strain simulations and more 

general conclusions require further work.   
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Table 1.  Gauge length of virtual extensometer in notch root 

Notch size 

[mm] 

Virtual Extensometer gauge 

length [mm] 

Nominal axial strain at 

notch root [%] 

(Tension test) 

Shear strain at notch 

root [%] 

(Torsion test) 

1.0  0.5  16.2 100 

3.0  1.0  17.9 100 

9.0  1.0  18.8 110 

Table 2. Calibrated parameter sets 

Set ID HC �Y �>  �@ () 

Set 1 High 0.009 0.075 0.075 2.5 

Set 2 Low 0.009 0.065 0.065 1.75 

Set 3 High 0.009 0.065 0.065 1.8 

Set 4 Low 0.009 0.065 0.065 1.4 

 

 

 

a) Schematic of downhole tool with 

protruding teeth [2] 

 

b) Schematic of the setting process [3] 

Fig. 1. Setting process schematic from  [2] & [3]. The schematic shows the tool setting on 

casing pipe, which is achieved by indentation of slips into the casing wall. 
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Fig. 2. Uniaxial tensile response from 3 round dogbone (RDB) specimens 

 

  

Fig. 3. Plan view of fracture surface, for test of strain rate 10-4 s-1. 
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Fig. 4.  Round notched bar (RNB) specimen geometries 

 

 

(a) R=1mm notch test DIC image at localization 

 

(b) R=1mm notch test DIC image at failure 

Fig. 5. RNB R=1mm notch test DIC images at (a) localization and (b) failure 
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Fig. 6. Load versus extension for R=3mm and R=9mm round notched bars (RNBs) in tension 

 

Fig. 7. Torsion test results, torque versus end rotation of specimen  
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(a) R=9mm notch test DIC image at localization 

 

(b) R=9mm notch test DIC image at failure 

Fig. 8. RNB R=9mm notch test DIC images at (a) localization and (b) failure 

 

Fig. 9. Extrapolated Hardening Curves 
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Fig. 10. RDB comparison of hardening curves 

 

 

Fig. 11. Force displacement response of RDB simulations 
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Fig. 12.  Performance evaluation of calibrated parameter sets 

 

 

Fig. 13. FEA model of setting representation – mesh and dimensions. The rigid tool indents 

through casing (motion in y-direction), then shears through (motion in x-direction). The model 

has roller supports on the edges in x- and y-directions, and out of plane symmetry boundary 

conditions. 

 



 

27 

 

(a) Extended GTN – Indentation – Equiv. 

plastic strain 

(b) Extended GTN – Shear – Equiv. plastic strain 

 

(c) von Mises – Indentation – Equiv. plastic 

strain  

(d) von Mises – Shear – Equiv. plastic strain  

 

Fig. 14. Equivalent Plastic Strains with: (a) extended GTN model after  80%  indentation, (b) 

extended GTN model after shear, (c) von Mises model after  80%  indentation and (d) von 

Mises model after shear. The extended GTN model uses the Set 4 calibrated parameters and 

the von Mises model uses the Low HC curve. 
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Fig. 15. Shear force vs shear displacement response of setting simulation with extended Gurson 

and von Mises models. The extended GTN model uses the Set 4 calibrated parameters and the 

von Mises model uses the Low HC curve. 

 

(a) With void closure – Indentation – Void 

ratio 

(b) With void closure – Shear – Void ratio 

 

 

(c) No void closure – Indentation – Void 

ratio 

 

(d) No void closure – Shear – Void ratio 
 

Fig. 16. Void ratio with: (a) extended GTN model after 80% indentation with possibility of void 

closure, (b) extended GTN model after shear with possibility of void closure, (c) extended GTN 

model after  80%  indentation with no void closure allowed, (d) extended GTN model after shear 

with no void closure allowed. The extended GTN model uses the Set 4 calibrated parameters 

and the von Mises model uses the Low HC curve. 
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Fig. 17. Indentation force vs indentation depth calculated from three models: von Mises model,  

extended GTN  model with void closure, and extended GTN model without void closure. Results 

presented are from two-tooth simulation. The extended GTN model uses the Set 4 calibrated 

parameters and the von Mises model uses the Low HC curve. 

 

 Fig. 18. Shear force vs shear displacement calculated from three models:  von Mises model,  

extended GTN model with void closure, and  extended GTN model without void closure . 

Results presented are from two-tooth simulation. The extended GTN model uses the Set 4 

calibrated parameters and the von Mises model uses the Low HC curve. 
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(a) 1 Tooth 

 

(b) 2 Teeth 

 

(c) 3 Teeth 

Fig. 19. Equivalent plastic strain in (a) 1, (b) 2 and (b) 3 tooth models. All 

models feature 100% indentation. The simulations use the extended GTN model 

with Set 4 calibrated parameters. 
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(a) Normalized indentation force per tooth vs indentation depth 

 

(b) Normalized shear force per unit width per tooth vs shear depth 
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Fig. 20. Force displacement response per tooth in (a) indentation and (b) shear. The 

simulations use extended GTN model with the Set 4 calibrated parameters. 

 

Fig. 21. Connection strength vs indentation force for the two-teeth model 
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Supplemental Material 

A – Experimental Setup 

Specimens were machined from a 0.5m length of AISI 4140 casing (outer diameter =6.85in., wall 

thickness = 0.625in.).  Specimens were aligned with the axis of the casing in the longitudinal 

direction. Tension tests were performed using a screw-driven test machine, with serrated wedge 

grips of 100kN load capacity. The tensile axial load was measured using the load cell of the test 

machine. The relative displacement of the ends of the specimen were measured by the 

displacement transducer of the test machine. In addition, a laser gauge, clip gauge and a 3D Digital 

Image Correlation (DIC) system were employed to measure the axial strain.   

Torsion tests were performed using a suitable instrumented torsion machine: a torque was applied 

to the ends of each specimen by a geared system. The specimens had ends of square cross-section 

12mm x 12mm in order for the torsional load to be transmitted from the test machine.  The torsional 

load was measured via a lever arm of length 0.45m, with the end of the lever arm bearing on a 2kN 

compression load cell. This compressive load was recoded along with images of the notch root. 

The relative rotation of the 2 ends of the specimen were measured by a potentiometer and the 

rotation was recorded. The 3D DIC system was employed to measure the shear strain at the notch 

root during each test under increasing relative rotation of the 2 ends of the specimen. 

 

B – Finite Element Modeling and Calibration Results 

The RDB specimen was modeled using an axisymmetric model as shown in Fig. B1. The element 

size in the gauge section was 50 μm x 50 μm. The loading was applied through incremental 

displacement of the boundary at a constant velocity. 
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Fig. B1. RDB finite element model and mesh 

 

The abbreviations RNB1, RNB3 and RNB9 are used to denote the 1mm notch, 3mm notch and 

9mm notch specimens, respectively. As shown in Fig. B2, the RNB-tension specimens were 

modeled using axisymmetric models. The loading is applied as incremental boundary 

displacement (constant velocity) and the mesh size in the notch section is 40μm x 6μm. 

 

(a) RNB3 tension model      (b) RNB9 tension model 

Fig. B2. Tension finite element models and mesh for (a) RNB3 and (b) RNB9 

 

The nature of the torsion loading and the stress state developing inside the specimen lead to the 

need to model the specimen in full three-dimensional detail as shown in Fig. B3. Relatively larger 

element sizes are used in the notch zone to improve the computational cost, the element size in the 

circumferential direction is kept at 150-170 μm. 
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Fig. B3. RNB Torsion finite element models and meshes for (a) RNB1, (b) RNB3 and (c) RNB9 

 

B.1. RNB Tension: RNB3 & RNB9 

The force-displacement resulting from the calibrated shear-extended GTN model with parameters 

defined from the four sets in Table 4 are compared against the experimental data in Figs. B4 and 

B5 for RNB3 and RNB9 respectively. Several key observations can be drawn from these plots: 

• The four sets provide a reasonable match to the experimental response except the results 

from Set 3 which tends to overestimate the maximum displacement 

• The variation of kw (comparing Set 2 to Set 4) has an insignificant effect on the model 

response 

• Both of the High HC and Low HC sets fall on the top of each other for RNB9, but there is 

a more significant difference between High HC and Low HC in RNB3 results. This 
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indicates that the choice of the hardening curve has a larger influence on more localized 

stress states in smaller notch sizes.  

The pre-fracture stress localization observed in the model is compared to DIC images in Fig. B6 

for the R=3mm notch size. 

 

 

 

Fig. B4. RNB3 tension simulation force-displacement response 
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Fig. B5. RNB9 tension simulation force-displacement response 

 

(a) RNB3 Experiment   (b) RNB3 Simulation 

Fig. B6. Comparison of (a) experiment and (b) simulation at localization (RNB3) 

 

B.2. RNB Torsion: results from RNB9, RNB3 and RNB1 
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Torque-rotation response of the 1mm, 3mm and 9mm models is compared to experimental data in 

Figs. B7, B8 and B9 respectively. 

Several key observations can be made from the torque-rotation plots: 

• increasing (X  has a direct and significant effect on defining the final portion of the curve, 

more specifically, the rotation at which abrupt damage kicks in and torque capacity drops 

• unlike all tension results, both High HC and Low HC sets tend to overshoot the torque 

response, the Low HC sets provide a better match 

• the response from all four sets tends to show earlier failure that experimental response as 

the notch size decreases 

 

 

Fig. B7. RNB1 torsion simulation response 
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Fig. B8. RNB3 torsion simulation response 

 

  

Fig. B9. RNB9 torsion simulation response 


