I. Mech. Phys. Solids, 1964, Vol. 12, pp. 11 to 24. Pergamon Press Ltd. Printed in Great Britain,

PLASTIC STRESS-STRAIN RELATIONS OF F.C.C
POLYCRYSTALLINE METALS HARDENING
ACCORDING TO TAYLOR’S RULE*

By J. W. HurcHINSON
Rigensgade 13, Technical Univ. of Denmark, Copenhagen K, Denmark

(Recetved 1st August, 1963)

SuMMARY

SEVERAL stress-strain relations, including simple tension and pure shear, are calculated for
face-centred cubic aggregates of single crystal’s which harden according to Taylor’s rule. The
calculations are based on the theoretical model suggested by Bupiansky and Wu (1962) and
KRrONER (1861). A simple correspondence is demonstrated between this model and Lin’s (1857)
extension to Taylor's model.

1. INTRODUCTION

TAavLOR’s (1938) model for predicting the stress-strain relation of f.c.c. poly-
crystalline metals subject to large plastic strains was extended by Bisaop and
Hir1 (1951) to polyaxial stress states and was later extended by Lin (1957) to predict
the stress—strain relation for both large and small strains. Lin retained Taylor’s
assumnption that the strain in each grain was homogeneous and equal to the macro-
scopic polycrystalline strain. This assumption is abandoned in the model used
in the present calculations and is replaced by what is perhaps a more intuitive
model of the interacting single crystals. This model was suggested by BupiaNsky
and Wu (1962) and Kr6NER (1961).

The single crystals comprizing the polycrystalline aggregate are assumed to
harden according to Taylor’s rule and for calculation purposes a linear version of
qhis rule is chosen. Both simple tension and pure shear stress—strain relations are
calculated. In addition, a Bauschinger effect calculation is presented. In con-
junction with this latter calculation it is noted, as Czvzak, Bow and PAYNE (1961)
had reported, that small amounts of plastic strain are predicted upon diminishing
the tensile load. This region is usually considered elastic. Furthermore, a caleula-
tion revealed that an accumulation of positive plastic strain is predicted if the
tensile specimen is first loaded to an initial stress into the plastic region and then
cyclically unloaded and reloaded to the initial tensile stress, In Section 6 a
remarkably simple correspondence between the Budiansky-~Wu model and Lin’s
extension to Taylor’s model is demonstrated. This correspondence, which was
apparently unnoticed by Budiansky and Wu, enables the stress-strain curve as
predicted by one theory to be determined directly from the other.
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12 J. W. HUTCHINSON

2. THE POLYCRYSTALLINE DEFORMATION MODEL

Consider a polycrystalline metal, of randomly oriented single crystals, deformed
plastically. While there is a macroscopic stress and strain associated with the
polycrystalline aggregate, the local stresses and strains vary not only from crystal
to crystal, but also from point to point within the crystals. Each crystal is
surrounded by crystals of different orientation and at the crystal boundaries
single crystal slip is interrupted. The Budiansky—Wu theory is an idealized
model of this interaction between the slipping crystals. The stress and strain in a
single crystal surrounded by its plastically deformed neighbours are approximately
obtained by considering the deformation of a spherical single erystal embedded
in an infinite matrix. The matrix is subject to a stress at infinity which is equal to
the macroscopic aggregate stress, and the plastic strain in the matrix is uniform
and equal to the aggregate plastic strain. The stress and plastic strain in the
spherical grain are simply related through a modified form of an ellipsoidal inclusion
solution obtained by EsHELBY (1957). Bubiansky, HasumN and SANDERs (1960)
first employed this solution to solve for the stress and strain in a spherical crystal
embedded in an elastic matrix. Kr6~NER (1961) modified the Eshelby solution even
further to include the effect of a plastic strain in the surrounding matrix and,
thus, to account for the plastic grain interaction. Later, using somewhat different
reasoning, Budiansky and Wu arrived at the same relation between the stress and
plastic strain in the spherical crystal that Kroner had obtained. This formula is
introduced in the following paragraph.

An elastically isotropic spherical single crystal is embedded in an infinite
matrix which is subject to a stress, %, at infinity. The matrix is elastically
isotropic with the same elastic moduli as the spherical grain. The plastic strain
in the matrix, EPy, is uniform and is a deviator strain, that is E?y = 0. If the
plastic strain in the spherical grain, €?, is uniform and a deviator, the stress in
the grain is also uniform and is given by

2(7 — 5v)

=M T B =)

G (ePiy — Evy) )
where » and G are the Poisson ratio and elastic shear modulus of the material.

The stress imposed on the matrix at infinity, o9y, corresponds to the macro-
scopic stress of the polycrystal and the plastic strain, E?y, is the macroscopic
plastic strain. This strain is defined as the average of the plastic strains in all the
grains. The stress—strain history of the spherical embedded grain is dependent
on the orientation of the grain axes relative to the specimen axes; and since the
orientation distribution is assumed random, the polycrystalline plastic strain is
the average over all orientations of the plastic strains in the spherical crystal. Thus

1 .
B2y = (ig)ave = i ff sin 9 dn df f dé ey 2)
H -7

where 5, 8 and ¢ are the Euler angles defined in Fig. 1 which fix the grain axes
with respect to the specimen axes and where H is the hemisphere defined in that
figure. Equation (1) is consistent with the assumption that macroscopic stress
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is equal to the average of the stresses in all the grains. TFor since EPy is defined by
B2y = (P11} ape. 1t 15 noted that o%y; = (o47)ave.

In what follows it is convenient to introduce the two stress deviator tensors,
sip = oy — Loppdiy and 5% = % — $0%,3y;, and to write (1) in deviator form as

2(7 — 5v) 2 (7 — 5v)
. — So —  TGEP; — (el 8
G Gy T T Ba =y Y ®)
In simple tension 5%, = %0, §%, = 8%, = — Lv and EPy = — 2FP,, = — 2FP,

{other components of these two tensors are zerc); and thus it is possible to define
a deviator tensor, Koy, so that

2(7 — 5v)
Roy = §o kP 4
i if+15(1_v) 7 {4)
where Re, = — 2R%, = — 2R¢,, (the other components of this fensor being

zero), Similarly in simple shear since 59, (= 8%;,) and EP,, (= [£¥,) are the only
non-zere components of the polyverystalline stress and plastic strain tensors, it is
possible to define another such R%; where only the component R, {= R%,)
18 non-zero. For these two stress histories with R9; dclined as above, (3) can
be written as

2{7 — 5v)

=R = gy

Gepyy. (5)

In this equation the aggregate plastic strain does not explicity appear.  With the
constitutive relations specified, the stress—strain history of each grain is determined
as a function of Ry, then the peolyerystalline plastic strain is found as a funetion
of Ry and, finally, the polycrystalline stress is found from {4). Since the term
vy in {8) is dependent on the plastic strain in cach of the grains the calculation
procedure for an arbitrary stress-strain history is not as straightforward as deseribed
above. For any history other than simple tension or simple shear the calculation
must proceed in an iterative fashion to determine the average quantities as well as
the individual grain histories in incremental steps.

An f.e.c. single crystal can slip on each of its four (111) crystallographic planes
and on each of these planes in the three (110) type directions. With n; as the
normal to the slip plane and iy as one of the slip directions associated with this
plane, the plastic strain resulting from a shear strain y on this slip system is

Py = Ty (Mg 1y + My ng) = yoyy

The total plastic strain of the grain is the sum of the contributions of the slips

on all systems, so that
Py = 2 ) gy, (6)

With symbols topped with dots denoting the increments of these quantities, the
incremental form of the above equations is

Py = E ) gy tnd, (7}
n

Slip occurs on the nth slip system when the magnitude of the resclved shear
stress on that system, |r%'|, reaches the yield stress of that system, 7y, where
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7Y = gy ay) = sy wy®). Corresponding to a positive or negative shear stress,
there must be a positive or negative shear straim. The following convention is
introduced for notational simplicity. Instead of allowing both positive and
negative slip on each slip system, only posilive slip resulting from a positive shear
stress is permitted. To account for negative slip resulting from a negative shear
stress on any physical system, a twin system is introduced such that the oy delining
the second slip system is negative the oy of its twin. With this convention the
number of slip systems is doubled and the vield stress of each system is positive
as is the shear strain.

The strain hardening rule chesen to represent the single erystal behaviour was
suggested by Taylor, namely the yield stress on each system is equal to =, where

7y = F [2 yml] . (8)

{(n)

The yield surface of the single crystal as viewed in stress space undergoes a uniform
expansion. Certainly this is in contradiction to the Bauschinger effect of the single
crystals and this rule weould not be valid for reversible stress histories.

With the relations between the stress and plastic strain of the embedded
crystal given by (5) and the constitutive relations specified. the entire stress—strain
history of the embedded crystal for the case of either simple tension or simple
shear can be caleulated. The stress in the crvsial is ¢y A change in Ry, oy,
results in a change of the stress in the crystal, ¢;;. If for the nith slip system

o) .'Lijm = Siy %ij An) = Ty (9)

then this system is said to be potentially active. Either this system remains
active, in which case the resolved shear stress on this system remains equal to the
vield stress

‘S:U Otijm) = Ty and ‘}'/(7” =0; (10)

or this system unloads and becomes inactive. For an unloading system

$ig gy < 7y and  y® =0, {11)
If a system is not potentially active it is said to be inactive and

syoyg®h < 7y and  pin) =0, (12)

With the incremental form of (5) and (7) and a linear version of (8) substituted
into (10) and (11), a set of linear algebraic equations for the unknown incremental
y@¥s along with auxiliarv conditions is obtained. For example, (10) for all poten-
tially active systems which do not unload becomes

Re my 2 ({ — ) m) g tml g ) (m) 3
i %y P gyt oy ¥ {13)

10(1———1}

where b is the linear Tavlor hardening parameter, The equations for potentially
active systems which unload are similar.

A solution to the above equations consists of a set of s wlhich satisfies all the above conditions.
From this set all the other physically significant quantities can be determined. At any stage in
the calculation the potentially active systems will be known. From this set of n» systems a trial
set of m active systems is chosen. The m ¥’s associated with this choice are determined from
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the set {13), m cquations and m unknowns. The Temaining n-m ¥’s are supposed zero. If the
m s are not negative, and if the shear stress increment on each of the remaining n-m slip systems
ig either equal to or less than but nct greater than that on the active systems, then a solution
has been obtained. If one of the above criteria is not satisfied then a different trial sct must be
chosen. It can be shown that if the set of s alphas are linearly dependent then the corresponding
m % e determinant of the set (13) is zero. As no more than five slip systems can be independent,
the set of equations to be inverted will never be greater than five by five. The set of #’s obtained
is not neeessarily unique, but both ¢7;; and %y as well as the set of unloading slip systems can be
shown to be unique. Onee the 3’s have been determined they are linearly dependent upon Ro;
until one of the inactive slip systems becomes potentially active. At this point the procedure
must again be repeated.

The ideal plasticity solution, i.c. with & = 0, is of special interest. This sclution for the f.c.c.
structure was obtained by Buniaxsky and YWu (1962). It can be seen from (13} that once five
independent slip systems become active, & = 0 and no further slip systems become active or
unload. Such a situation is referred {o Ly saying the stress has reached a corner of the yield
surface. The macroscopic stress of the aggregate is the average of the slress in the individual
crystals. As R%; increases, the state is approached in which the stresses in zll the crystals reach
corners: and thus. since the maeroscopie stress is just the average of these corner stresses, it also
approaches a limit value. By the incremental form of (5) it is seen that, once §;; = 0 in a crystal,
€y =15 (1 — »)[2(7T — 5v) G Roij. Thus, as I%; increases, the state s asymptotically
approached in which the plastic strain increments in all the crystals are equal. This was the
assumption Taylor used in his polyerystalline deformation analysis for large sfrains. With
b % 0 it will be seen that five independent slip systems do not necessarily ever become active,
and the plastic strain increments in the erystals de not become equal.

3. Tue Tavror HARDENING S0LUTION

The deformation of the spherical crystal obeying Taylor’s strain hardening
rule can be given in terms of the solution for the ideally plastic grain. The following
solution, produced under the assumption of linear Taylor hardening, can be
extended to other functional dependencies on the total slip. The equations for
the single crystal deforming according to Taylor’s rule, (9) through (13), are the
equations governing the deformation of an ideally plastic single crystal if b is
taken to be zero. The Taylor hardening solution is given in terms of the ideal
plasticity solution for a grain of the same orientation by

Ry = /\}__L’Oij, Sij == ASy, Py = AéPy, pind — jpin) (14)
where bars denote ideal plasticity quantities and

A= ! - (15)

=)
- — )
1 5 gl

¥ n

A has been obtained from the equation

,\Toy = 70, -} b 2 .y(nl = 7% + bA 2 ?(n)

and thus
S15 oqj(”" = A% ,-.,_U(nl = A79, = 7%, -} b § ,},tm)
m

for an active system, and



16 J. W. HurcriNsoN

845 0(4;‘”) — AEEJ a'.;j(’” < r\‘r‘?y — Toy _:, b E y(ml
m

for an inactive system. Clearly, the auxiliary conditions are also satisfied.
The sets of systems shich become active and those which uuload in the Taylor
hardening solution arc the same as those for the ideal plasticity solution; but

it is interesting to note that, if ) 2 ) = 7o, prior to stage where the last set
of slip systems is activated in the perfect plasticity solution, then this set will
not be activated in the Taylor hardening solution. It is to be cencluded in such
a case that five independent slip systems are never activated; and, as mentioned
previously, the plastic strain does not approuch a uniform value in each grain.

4, NuMmMERICAL CALCULATIONS

The procedure for calculating the stress—strain history of a grain of any orientation has been
described. The averaging integral defined by (2) must be replaced by & numerical integration.
The symmetry of the f.c.c. erystal is such as to divide the hemisphere of Fig. 1 into twenty-four
spherical triangles. For simple tension and simple shear the integration can be replaced by an
integration over any one of these spherical triangles. In addition, in simple tension <7, is inde-
pendent of ¢ and thus the integral can be replaced by a numerical integration over one of the
spherical triangles. To evaluate the integral the § variation (the hemisphere was chosen so that
0 < B < 1w) was divided into twelve equal divisions. Then the 5 variations corresponding to
each of the thirteen fixed values of § were divided into equal divisions ranging from one integration
station at g = 0 to thirteen stations at § = l=. In all, ninety-one orientation stations were
used for the numerical evaluation.

3

Fic. 1.

Yur ench of these ninety-one orientations the history of ¢?), was determined as a function
of R:j;. Then, for fixed values of 9, e?;; was averaged over all orientations in accordance
with (2). Once E?,; had been obtained, the corresponding value of the tensile stress, o, was obtained
from (4) as

2(7 - 5v)
=250 3 pge TN T "aopp |-
=g T 2 1750 ) GEPy;

These calculations were executed by a 7090 IBM computer with Poisson’s ratio set equal
to 1. To obtain an estimate of the accuracy, a calculation identical to the one described above
was made with twenty-eight instead of ninety-one orientation stations. The divergence between
the two predictions was nowhere greater than 0-4 per cent. It would be expected that this is
the order of magnitude of the error of the ninety-one station calculation.
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The calculation of bolh the Bauschinger effeet and the eyclic tensile loading were performed
with twenty-eight ovieniation stations. The reduction in the number of orientation stations
resulled in & preportional saving in ealeulation time and yet did not sacrificc much accuracy.,

While <Py, is independent of ¢ in the tensile caleulation, €2, is dependent on this angle in simple

shear. The variation in ¢, 0 to Lr, was divided into ten equal divisions. For each fixed value of

¢ Lthe 5 and B integration was replaced by a nwmerical infegration over Lwenly-eight stations as
described above. Thus 280 orjentation stations were used.

5. THERORETICAL PREDICLIONS
{a} Tensile stress-strain relations

The tensile stress—strain curve for a polycerystal of ideally plastic single crystals
was obtained by Buptaxsky and Wu (1962), The relationship between the stress
and strain in a grain of the Taylor hardening solutien and similarly oriented grain
of the perfect plasticity solution gives rise, as will be seen in the next subsection,
to a very good approximate formulac for the stress—strain curve of the Taylor
hardening polyerystal in terms of the corresponding curve for the ideally plastic
polyerystal. Exact caleulations were made for several values of the strain bardening
parameter, 5. The results of these calculations are given in Table 1 and shown in
Fig. 2 along with the perfect plasticity curve. As the tensile strain increases, the
tensile stress of the polyerystal of perfectly plastic single crystals becomes asymp-
totic to a limit value. while the slope of the stress—strain curve of the Taylor
hardening polyerystal approaches a limiting value. Both of these properties have
significance in terms of work done previcusly by Taylor.

L | 1
3]

|
3
£

m
ol

Fie. 2. Tepsile stress—strain curves for varions values of the hardening parameter, b/G.
oy and %y, are the siress and strain assoclated with the initial elastic limit, » = 1.

At this peint it is appropriate to mention one of the inadequacies of the Taylor
formula (8). Experiments with single crystals of aluminium, such as those by
Davis et al. (1957), valid for strains larger than thosc of direct interest in this
analysis, have shown that the parameter & of the linear strain hardening rule is
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dependent on the particular set of slip systems which is active. Such a parameter
dependence could be incorporated into the present calculations without difficulty.
Unfortunately, no data valid for small strains exist which would permit such a
calculation. Furthermore, it seems that it would be very difficult to obtain single
crystal multi-slip data for such small strains since this would require very accurate
orientation of the single crystals relative to the tensile axis.

TaBLE 1
bjG =0 b/G = 0-02 b/G = 0-10
o/o0y E?|e0, oa%y, E?[¢%, o/ E?[e0),
1-125 0-125 1-128 0-120 1-138 0-104
1-195 0-841 1-204 0-326 1-232 0-280
1-252 0-580 1-268 0-554 1-817 0-471
1-8638 1-228 1-327 0-789 1-400 0-667
1-447 2-422 1-424 1-293 1-630 1-283
1-520 9-30 1-561 2-398 1-984 2-360
1-581 20-95 2-131 9-948 4-556 10-91
1-536 ] 2:85 20-42 7-54 20-10

(b) Taylor's formula for large plastic strains

If the plastic strain is large TAvLOR (1938) assumed the strain in each grain
is homogeneous and equal to the macroscopic strain of the polycrystal. Since
the strain is assumed large, the elastic strain is ignored. To achieve the prescribed
uniform strain in general slip must occur on five independent slip systems in each
crystal. Taylor assumed each of the slip systems hardened uniformly in accordance
with (8). Of all the possible combinations of slips which give the prescribed plastic
strain, the combination for which the sum of the magnitudes of the slips, Z y @),

n
is a minimum is chosen. The relation between the plastic strain and stress of the
polycrystal in simple tension is

o = [F (m Ep) m]aue. (16)
Here, as in the present model, the average is over all the possible orientations
of the grain axes relative to the tensile axis and m is the quantity 2 y®)E?,

n
associated with each orientation. The above formula may be approximated,
as Taylor seems to have done, by assuming for any given plastic strain that each
grain has hardened equally, and

o = F (mav¢ EP) Maye. (17)
For linear hardening
o= (mavg)z b Ep- (18)

The value for mgye which Taylor obtained for the f.c.c. tensile calculation
was 3-06. Taylor’s procedure was extended and verified by Bismop and HiLL
(1951) who made additional calculations using a simplified procedure. The final
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slope of the stress—strain curve as predicted by (18) is compared with the prediction
of the present theory in Fig. 3. Also included in this figure is the final slope as
predicted by Lin’s extension of Taylor’s model. These results were obtained
by making use of a correspondence between the Lin model and the Budiansky-Wu
model demonstrated in Section 6. For /G = 0-1 the final slope, ¢/E?, predicted
by (18) is about 15 per cent higher than the corresponding value of the present
analysis. As was noted previously the slip systems activated in the latfer stages
of plastic deformation in the perfect plasticity solution remain dormant with
Taylor hardening. Thus, for larger plastic strains, instead of five slip systems
contributing to the plastic strain as assumed by Taylor, in mest of the grains
only three or four slip systems contribute. The strain in each grain does not become
uniform, and divergence from Taylor's formula should be expected. This effect
is more pronounced the larger the strain hardening parameter. With bars denoting
the perfect plasticity quantities, equations (14) and {15} can be averaged directly
under the assumption of uniform hardening to give for simple tension
P S 7 Er = % En,
1— Tmapr 1 —'TmmveEp
Ty Ty

Although the number, mgy,, is only appropriate when five slip systems are active
and not in the initial stages of slip, this formula nevertheless gives very close
agreement with the exact calculations for small values of the strain hardening
parameter. For large values the formula displays about the same error as was
noted in the discussion of the Tayvlor formula (18).

4
TAYLOR
FORMULA
_aE LIn
g THEORY
e
£* PRESENT
[ THEORY

| | | | ]
.02 .04 .06 .08 Rle}
b/G

Fie. 8.

The limit yield stress of the f.c.c. polyerystal comprized of perfectly plastic
single crystals is ¢/e?, = 1-536 in agreement with values obtained by both Taylor
and Brsmop-HivLk, as required theoretically.
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{¢c} The stress—strain curve in simpl. shear

Again this eurve for a polycrystal comprised of perfectly plastic single erystals
was obtained by Bupransky and Wu (1962). The limit vield stress of this solution,
T1itm{ 7%, 15 1-656 in agreement with the value obtained by Bishop and Hill. When
the stress-strain curve in simple tension is known, it is possible to calculate the
stress—strain curve in simple shear by assuming cither J, theory or the ..
yhax theory. The affinity relationships of these two phenomenological theories
are

VS,

2 o P 4/(8) BP
J, theory : — — - L= gl
h Y 7y \/(‘ ) 0° Y’y 1+ v €%
) T o P 3 Er
Tmax Vs, 'yir\mx thCOI'y : T = e ‘/ T

™y 0% VY "(1TV)EJ

Batporr (1950) interpreted some biaxial experiments with aluminium poly-
crystals by Oscoop (1947) in terms of J, and 7, vs. ¥}, theories. Using the
experimental tensile stress—strain curve in conjunction with the two phenomeno-

a

/\ /
.01 / N J, THEORY

= # //,/’ \- PRESENT THEORY
/ oo ~
/ e \
g N
/‘ S T V8 e THEGRY
15
g R IS (JRRUSEIS | ST S AU SO [
2 4 6 8 10 12
BP
5

Fic. 4. Comparison with phenomenological theories.

logical theories, he could predict the pure shear curves and then compare these
with the experimental shear curve. Tavior (1031) made a similar comparison
with copper polycrystals. He employed, however, Mises (J,) theory and Tresca’s
hypothesis. If his results are reinterpreted in terms of J, theory and =, vs.
yP o theory, they are seen to be very similar to the findings of Batdorf. The
experimental shear curve lies more or less half way between the two phenomeno-
logical shear curves approaching the 7, vs. yh, curve as the plastic strain
increases. A comparison in the same spirit was made with the tensile and shear
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curves predicted by the present model; b/ was chosen to be 0-02 as a representative
value of hardening. The relationship between the three curves, the two phenomeno-
logical curves as determined from the theoretical tensile curve and the theoretical
shear curve, is shown in Fig. 4 and is similar to that described for the Batdorf
and Taylor plots.

(@) The polycrystalline Bawschinger effect

As is well known, the tensile elastic limit of a polyerystal is increased by plastic
extensicn and the magnitude of the compressive clastic limit is diminished. This
phenomenon 1s commonly called the Bauschinger effect. The experimental data
on fension-compression stress—strain relations of single crystals are not complete
enough to warrant a calculation of the pelyerystalline Bauschinger effect as

t |
10 12

“SCOMPRESSIVE
ELASTIC LIKIT

116, 5. Polyerystalline Bauschinger effect.

dependent on these of the single erystals.  On the other hand, an analysis based
on perfectly plastic single crystals (the yield stresses being constant and equal on
all systems) predicts a polycrystalline Bauschinger effect. A similar result was
first obtained by Czyzax ef «l. (1961} using Lin’s extension to Taylor's model, As
shown in Section 6 there is reason to expeet that the caleulations of Czyzak
et al. are in error. The correspondence between the fwo theories enables the
corrected results to be obtained along with the predictions of the present theory,

A serles of stress—strain curves of f.c.e. polyerystals under tension and
subsequent compression have been caleulated for different values of initial plastic
extensions. These results are shown in Iig. 3. When the tensile load on the
polycrystal is diminished it would seem that the strain increments in all the
crystals would become pure elastic. But according to this model, as well as that
of Lin, this is not the case. Upon decreasing the applied tensile stress after a large
initial plastic extension a small amount of plastic strain oecurs in almost one
quarter of the crystals. The plastic strains in these crystals combine to contribute
a maecroscopic plastic strain totalling only about 8/2 per cent of the elastic strain.
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The amount of plastic strain in this nominal elastic region decreases for diminishing
values of the initial plastic extension, a fact which can easily be explained. The
slip systems that continue to remain active after the tensile stress has been
diminished are those which are activated in the latter stages of slip. Thus, if
the stress on a crystal is such that the last stages of slip are not activated, the
crystal will deform elastically instead of plastically when the tensile stress is
diminished. Since there is not a truly elastic range under reversed loading, the
compressive elastic limit was established by assuming the nominal elastic range
included the region in which the plastic strain contribution was less than 2 per cent
of the elastic strain contribution.

It is noted that following a very large plastic extension the compressive elastic
limit is o/¢% = — 0-17. The theoretical results also show (see Fig. 5) that the
width of the nominal elastic region shrinks as the initial plastic extension increases.
This phenomenon has been reported for aluminium polycrystals by Ivey (1961).
Any completely successful prediction of the polycrystalline Bauschinger effect
must necessarily include these same single crystal effects, but the present analysis
indicates that the grain interaction contributes to this effect in a significant way.

(e) Cyclic tensile loading

The perculiar prediction of small plastic strain contributions upon reversal
of the applied load, noted in conjunction with the Bauschinger effect, would lead
one to suspect that the model might predict an accumulation of plastic tensile
strain under cyclic tensile loading. The following calculation was made. The
f.c.c. specimen of perfectly plastic single crystals was given an initial tensile stress
which deformed the specimen plastically; then the tensile stress was reduced to
zero. Next, the stress was increased again to its initial value and the resulting
increment in tensile plastic strain, AE?[e?,, over this cycle was calculated. This
procedure was repeated for several cycles until either the plastic strain increments

TaBLE 2
EPyje0y = 140 ED,y[e9, =176 ED,e0y = 40
cyele AED?[eo, cycle AED|e0), cycle AE?P[¢0,
1 1-38 1 0-89 1 0-15
2 0-50 2 0-06 2 elastic
8 045 8 elastic
4 0-87

became small or the specimen started to behave elastically throughout the entire
cycle. In a typical cycle the specimen deforms with a small plastic strain as the
load is diminished from the initial stress to zero stress. As the load then increases
from zero the specimen deforms elastically until a stress, lower than the initial
stress, is reached at which the specimen begins to deform plastically. It is in this
stage that the major contribution to the cyclic plastic strain increment is made.
If, in any cycle, the specimen deforms elastically upon diminishing the stress
from the initial tensile value, the behaviour will be purely elastic in all the subse-
quent cycles. The results of this calculation for several values of the initial plastic
extension, E?,[e%, are given in Table 2.
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There do not seem lo be any data which would verify either the prediction of
small amounts of plastic strain upon reversal of the tensile loading or the prediction
of eyelic plastic strain increments. Indeed, high accuracy of measurement would
be required and these phenomena wowd be obscured by such phenomena as
creep and the elastic after effect. Further insight can be gained by considering
the effect of strain hardeming. With all systems hardening equally according fo
Taylor’s rule it was scen that, the higher the strain hardening, the more the tendency
that the final slip systems to be activated in the perfectly plastic crystal would
remain dormant in the Taylor hardening crystal. Since these are the slip systeras
which conftribute the plastic strain upon reversal of the tensile load, it is to be
expected that the phenomena which we are considering will not be observed in
specimens which display high strain hardening. The assumption of equal hardening
on all slip systems is certainly only an approximation. If the latent shp systems
tend to harden slower than the active slip systems than these phenomena should
be expected to be amplified and vice-versa.

6. CORRBESPONDENCE BETWEEN LIN’s MobDEL anxD TuHE PrEsext MODEL

Each crystal of the Livw model {1957) 1s assumed to have the same total strain
as the polycrystalline aggregate as in Taylor’s model.  Lin included the elastic
strain and thus did not restrict his analysis to large plastic strains.  As in the
present theory, the plastic strain is obtained for each orientation; and then the
aggregate stress and plastic strain are obtained as an average over all the orienta-
tions. The total strain deviator, ey, is imposed on each grain and is the sum of
the plastic strain, fy, and the elastic strain deviator, ¢®y. The constitutive
equation for each deforming crystal ave the same as those of the Budiansky -Wu
model, equations (8) to (12), but the relation between stress and plastic strain
in each crystal is not given by (5) as in the present theory but by

sy =2 G ey

where e‘Er,;f =ey — Py and Py = é plad gyt

I

Thus, for example, for a potentially active system not unloading,
926 [é” oy — E Y gy itm) Mij(”)] —} E pm) and g =0,
m m

Recalling that Ry 1s the independent wvariable in the present caleulations
while e;; is prescribed in Lin’s calculation, we set (with the circumflex accent denoting
Lin model quantitics)

R‘f’,éj — ﬁ E?ij
Refercnce to the equations of the Budiansky-Wu model, {9)-{13), and to those
above reveals that a sohition to the Lin equations is a solution to the Budiansky—
Wu equations if
7 — 5 .15 (1 — )

Epij’ b —

- b,
15 (1 —») 7 — by

=i

The polycrystalline stress and plastic strain of the Lin model, just the average
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of these quantities over all orientations, are given in terms of the guantities of
the present analysis by
T — b

$ =80; and APy —__
($4r)ave i A ey —

Enﬁ.

The relationship between the two models is now clear, For perfect plasticity,
b =}h =0, if corresponding to a stress, ¢ (simple tension), the present theory
predicts a plastic strain, L», then the Lin theory predicts a plastic strain of
[7 — 5¢/15(1 —v)]EP. With v = 1/3 the latter strain is 8/15 of the value predicted
by the Budiansky-Wu model. By the equation for the polycrystalline stress the
limit yield stress predicted by hoth theories is the same. Cayzalk et al. have made
several calculations on the basis of Lin’s model, including the tensile stress-strain
curve of a polycrystal comprized of ideally plastic f.c.c. erystals. Their calculation
provided the value gy,/o?%, and this is in agreement with the value obtained.
A figure comparing the tensile curves of the two theories is given by Budiansky
and Wu but is inaccurately plotted. A similar correspondence can be made
with non zero strain hardening, but account must be taken of the relation
b= [15 (1 - ) (7 — 52)] b. The final slope of the stress-strain curve of the Lin
model is compared with that of the Budiansky—Wu model and also the Taylor
formula (23) in Fig. 8.

The Bauschinger curve according fo the present theory has been caleulated.
A similar calculation for f.c.c. polyerystals based on the Lin model has been made
by Czyzak ef al. When these two calculations are brought into comparison through
the correspondence noted above, considerable disagreement i1s apparent. It is
immediately seen that limit yield stress in compression according to the present
calculation is exactly the negative of the value cbtained for fension. This can be
shown to be a theoretical requirement of both theories. Refercnce to the curve
on p. 65 of Cayzak et al. {1961) indicates that their calculation is not in agreement
with this theoretical requirement, and thus it is suggested that the authors have
made an error at some point in their calculation.
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