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A Survey of Some Buckling Problems

Berxanrn Brpransky anp JouNy W. Horcnissoxs
Harvard University, Canibridge, Mass.

Nomenclature

sliffener area

postbuckling coefficient (see Tig

shell bending stifiness [= E13/(12(1 — »2)} ]

Young's modulus

spherical cap rise (see Fig. 10)

stiffener moment of inertig

foundation moduli (see IMig. 7)

parameter in imperfection spectrum (=ee Fig. 8)

shell length

1/7 (buckle length)

eritical value of 7

classical buckling load per unir length

circumferential wave number in =pherical cap buckling

load

classical buckling load

staric buckling load of imperfect structure

dyvnamic buckling load

¢lassical buckling pressure

shell radius {evlinder, sphere, 1oroldal-<cgment bound-
arv); correlation function (see Fig. 7)

meridional radiux of curvature of toroidal =egment

stiffener eccentricity (zee Fig. 6)

power spectral density of imperfection (see Fig. 7)

deflection of column

initial deflection of column

curvature parameter | = (L?/Ft

buckling displacement amplitude

2)

1 — w»2)y2)

5_ = initizl di=placement amphitude
A = rmx initial displacement
o = JPoisson’'s ratio
IntroducLion
HIS paper contains a brief summary of the results of some
L vecent and current research on several buckling proh-
lems, The scope of the survey iz limited arbitrarily to in-

vestigations with which the writers have been directly or
indirectly concerned.  Discussion will be made only of phe-
nomena and numerical results, with all the derails of analvsis
omitted. Historical reviews of the backerounds to the vari-
ous problems are not included, nor is a comprehensive bibli-
ography of pertinent references provided in this survey.

Postbuckling Behavior and Imperfection-
Sensitivity

The notion of imperfection-sensitivity and its relation to
the postbuckling behavior of perfeet structures will plav
an essential role in the problems to be surveved. The solid
curves in Fig. 1. based on the studies of IKoiter,’:? illustrate
several kinds of bifurcations in the variation of load with
buckling dizsplacement which are encountered when buckling
of a perfect structure is analyzed as a linear eigenvalue prob-
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L PERFECT

BUCKLING DISPLACEMENT

Fig. 1 Posthuckling behavior and imperfection-sensi-
Livity .

leni.  Ineach case the abselssa 1s supposed to be a measure
of the amplitude of a unique buckiing mode corresponding,
to the buckling load associated with the lowest eigenvalue.
The first two sketches illustrate syvmmetrical bifurcations,
for which the initial postbuckling behavior iz independent
of the sign of the buckling displacement.  Only symmetrical
bifurcations occur jn all ef the problems of this paper, but
asymmetrical bifurcations illustrated in the last sketch also
are possible theoretically.  The dotted curves show how the
applied load varies with displacement when the strueturc
contains an initial deflection in the shape of the buckling
mode. If, as shown in the first sketch, the load on the perfect
structure drops after buckling, then the load on the imper-
fect strueture attains a local maximum that is lower than the
classical buckling load of the perfect structure.  Under dead
loading, thisz local maximum would be associated with a sud-
den, possibly catastrophic, increase in displacement which, in
a test, would be characlerized az buckling. 1, as in the case
lustrated by the second sketeh, the load on the perfect
structure nereases after buckling, the corresponding im-
perfect structure would exhibit a much milder growth of dis-
placement &% the load vreaches and cxceeds the classical
buckling load.  Finally, if the perfect structure has an asym-
metrie buekling bifurcation. snap buckling of the imperfect
structure would be expected for one =ign of the initial imper-
fection and nmild behavior for the opposite sign.  Because the
buckling strengths of structures characterized hyv the be-
haviors shown in the first and the last of the sketches in Fig.
1 are influenced by initial imperfections, in some cases mark-
edlyv so, such struetures will be called imperfection-sensitive.

The extent to which imperfections can affect the buckling
strengths of imperfection-sensitive shell structures iz shown
in Fig. 2. Suppose that the symmetrical postbuckling load
displacement relation is given by the equation

P/Pe =1+ b6 D2 (1

where Pe 15 the elassical buekling load; 6 1= the amplitude of
the buckling displacement; say normal to the shell; and ¢ is
the shell thickness. The coefficient & is then a measure of
the rapidity with whieh the load rises or drops after buckling.
TImperfection-sensitive structures would, of course, be char-
acterized by negative values of b, Let Ps be the buckling
load of the imperfect =trueture when it contains an initial
imperfection amplitude § in the shape of the buckling wmode.
Then the zolid curves on the right of Fig. 2 show how the
ratio Ps, Pe varies with the value of 84, As originally shown

(2

T : BUCKLING DISPLACEMENT AMPLITUDE 3-m

t® SHELL THICKNESS

IFig 2 Buckling of imperfeclion-sensitive shelis.
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in [Noiter, these curves are governed by the equation

P\¥: 3@, 8 (Ps
— = e pyise | 3 2
(l Pt-) g (O (P) )

and really should be regarded as correct only in an asvmptotic
sense for sufficiently small values of the initial displacement.

The most notorious imperfection-sensitive shell structure is
probably  the long thin-walled eyvlinder under axial com-
pression which, as iz well known, may buckle at values of
stress that are small fractions of the classical buckling stress.
Unfortunately, this system ix not described by the simple
sketches on the left of Fig. 2 because it has a multiplicity of
buckiing mode shapes associated with the classical buckling
mode.  However, a separate analyvsis, due to Koiter, gives
the lower dotted curve on the right of Fig. 2 for the effect of
initial axisvmmetrie imperfections on the buckling strengths
of such cylinders,  This curve provides a calibration for the
significance of the coeflicient & in the case of structures that
have just one buckling mode associated with a svmmetrical
bifureation. Thus, a value of & = —1 presumably would
imply imperfection-sensitivity about as scvere as that of a
cvlinder under axial compression. Note. however, that
values of b between —0.1 and —1 evidently alzo would have
quite zignificant implications, and even wvalues of b in the
neighborhood of —0.01 could imply buckling loads smaller
than the classical ones by amounts that are not entirely
negligible.

In passing, mention can be made of a recent study carried
out on another structure that has multiple buckling modes
associated with i< classical buckling load, namely, the
spherical shell under uniform external pressure. Tt has Jong
been suspected that this structure is about as imperfection-
sensitive as the evlindrical shell, and this has been verified
theoretically very recently? on the basis of, again, an asymp-
totie calculation based on IKoiter's general theorv: this theory
exploits the shallow shell equations appropriate to very thin
shells that buckle with very short wave lengths,  The van-
ation of Pe Pe with (878 found for the imperfect sphere
having a certain checkerboard pattern of initial displacements
is given by the dotted curve just above. and nearly coineident
with, the curve for the exvlinder,

10 3 100 200
2= (-2
Fig, 3 Classical buckling and imperfection-sensitivity of
=imply supported cylinders under hydrostatic loading.
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Attention now will he divected 10 the results of studies of
several configurations having symmetrical buckling bifurca-
tions with just one buckling mode. The point of these
studies was to discover whether, and to what extent, these
configurations are imperfection-gsensitive by caleulating the
postbuckling ceefficient 6. All of these calculations were
guided by the general theory ol postbuckling behavior which
was laid down by Woiter.  Within the framework of the shell
theories used (Donnell, shallow-shell, or a hylid combina-
tion of these), the calculations were exact.

Simply Supported Cylinders under Hydrostatic
Loading

The upper curve in Fig. 3 provides the classical hydrostatic
huckling pressure Pe of a eylindrical shell having conven-
tional simple support boundary conditions. The theoretical
results for the nondimensional buckling pressure Pef72/ 72D,
caleulated by Batdort* on the basis of Donnell's equationg,
are plotied agains=t the curvature parameter Z, introduced by
Batdorf.  The results are equally applicable to an isolaled
shell of length /. or to a very long shell continuous over rigid
frames having « <pacing of £, which provides no torsional re-
straint to the evlinder. In each case, however, prebuckling
defermations are neglected.  The lower part of the figure dis-
plays the new results just found® for the postbuckling coeffi-
cient I again plotted against Z.  As shown, the parameter b
is different for the fwo configurations even though the classical
buckling pressure 1= the same; the isolated cylinder turn< cut
to be substantially more imperfection-gsengitive over the low
range of Z than the cylinder continuous over frames. [{
might be mentioned that there have been previous investiga-
tions of the pestbuckling behavior of cylinders under hydro-
static loading, with resuits that could be described as ap-
proximate solutions for finite postbuckling deformations.
The present rvesults, in contrast, are asymptotically exact
solutions for vanishingly small posibuckling deflections, It
is felt that this present kind of solution has greater significance
and is perhaps more reliable as an index of imperfection-
sensitiviey.

The results of buckling tests from a variety of sources (as
collected by Powt) ave displayed in Fig. 3 for comparison
with the theoretical classical buckling pressures. The ex-
tent to which theory and experiment disagree in various
ranges of Z is in qualitative agreement with the degrecs of

2= (&) N

Fig. 4 Classical buckling and imperfection-sengitivity of
simply supported toroidal segments under hvdrostalie
loading,
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Fig. 5 Classical buckling and imperfection-sensitivity of
simply supported toroidal segments under tension.

imperfection-sensitivity implied by the neeative values of
bin these ranges.

Toroidal Segments under Hydrostatiec Loading

The top part of Tig. 4 shows vesults recently caleulated by
Stein and MeElman® for the classical hydrostatic buckling
pressures of simply-supported toroidal segments having vari-
ous ¢urvature ratios B/RK,, wheve R represents the radius of
the boundary circles, and /R, is the meridional curvature.
The caze B/, = 0 coincides with the cvlinder just discussed.
The results of recent calculations® of the postbuckling co-
efficient b are displaved in the bottom part of the figure.  The
most important implication here s that although the classical
buckling pressure inercases with increasing values of B/R,,
so does imperfection-sensitivity. In other words, increasing
the mervidional curvature of a toroidal shell would not
strengthen the shell against buckling as much as one might
hope for, on the basis of a classical buckling analysis alone.
Note that as R/R, approaches 1 from below, the spheri-
cal geometry is attained, for which postbuckling caleu-
lations, on the hasis of a unique eclassical buckling mode,
may no longer be valid, and so the curiously shaped curves
for B/R. = 0.9 and 0.95 should be discounted. It confi-
dently may be concluded, however, that, for hydrostatic
Joading, imperfection-sensitivity disappears only for toroidal
wegments of sufficiently large negative Gaussian curvature,

Toroidal Segments under Axial Tension

For positive values of E/R,, a toroidal segment under
axial tension acquires circumicrential compressive stresses
and therefore is susceptible to buckling. The vesults of
caleulations® for the claxsical axial buckling force per unit
length ¥¢ ave shown as a [unction of Z in Fig. 5 for several
values of R/R.. Tbe postbuckling cocfficient b was found
to vary, as shown in the hottom part of Mg, 5; [or esach
value of R/R. there ix imperfection-sensitivity only for Z
larger than the eritical value for which & gocs negative.  Sev-
eral testz have been performed by Yao® for the case R/R. = 1,
with results shown by the circles. Yao's speeimens were
clamped, rather than simply supported, but his own caleu-
lated buckling loads [or this case were only a little higher
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Fig. 6 Classical buckling and imperfection-sensitivity
of simply supported stiffened ceylinders under axial
compression,

than those given by the curve in Fig. 5. Thus, the discrep-
ancies between the test results and theoretically caleulated
buckling loads are consistent with the imperfection-sensitivity
implied hy the negative values of by these negative vulues
were found for simply supported toroidal segments in the
ranges of Z corresponding to the test specimens.

Stiffened Cylinders under Axial Compression

There has been much interest recently in the exciting re-
discovery of van der Neut’s early theoretical observation,
now well confirmed by tests, that outside stringers can be
much more effective than inside stringers in stiffening a
cireular evlinder against buckling under axial compression.
1t has been suggested occasionally that classical theories of
buckling should be reliable for the quantitative prediction of
the buckling loads of stiffened eylinders, regardless of whether
the stiffeners are inside or outside. Recent calculations!t
however, have shown this not to be so and an example is given
in Fig. 6 for a simply supported cylinder, If torsional stiff-
ness of the stringers is neglected, three parameters are needed
to characterize the stiffening. These are the area ratio
As/dt; the bending stiffness ratio EIs/Dt; and the eccen-
tricity ratio (1 — »3)V2(s/t) where s, the distance from the
skin center line to the centroid of the stringer, is considered
to be positive for outside stiffening and negative for inside
stiffening. The values chosen for these nondimensicnal
parameters in the present example correspond t¢ only mod-
erately heavy stiffening and ave shown in Fig. 6. The curves
at the top of Fig. 6 give, as a function of Z, the buckling Joad

x
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Fig. 7 Infinitely long column with random initial im-
perfections on a nonlinear foundation.
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per unit circumference of the stiffened cyvlinder divided by
the corresponding quantity for the unstiffened exlinder, and
were calculated on the basis of “smeared-out’ stiffener prop-
ertiez.  These vesults imply the superiority of outside over
inside stringers. This conclusion, however; clearly must be
tempered by the results for the posthuckling coefficient b
which show that the exvlinder with outside stiffening generally
1s much more imperfection-sensitive than the one with inside
stiffening. Tt should be emphasized that the coefficient b
in this figure still is defined with respect to buckling displace-
ments normalized by the skin thickness and not by any
larger effeetive thickness of the shell-stringer combination.
Consequently, over a substantial range of Z in the vicinity of
100, it appears that the effects of initial imperfections in
reducing the strength of e¢ylinders with outside stringers
below the theoretically predicted classical buckling loads
would be by no means negligible,  On the other hand, it is
interesting to note that in the vange of high Z above 1000
toth inside and outside siiffeners induce quite comparable
imperfection-sensitivity, and so the benefits of outside stifien-
ing would appear to be quite dependable in this range. In
any event, the most important conclusion to be drawn is
that, without supporting evidence, either experimental or
theoretical, it would be quite incorrect to assume that classical
buckling theory iz adequate for the prediction of the buckling
strength  of stiffened cyvlinders under axial compression,
especially if the stiffening is on the outside.

Structures with Random Imperfections

The kinds of investigations just discussed serve to demon-
strate whether or not a given configuration is imperfection-
sensitive but indicate only qualitatively the degree of such
sensitivity; theyv can not be used to predict the actual buck-
Jing load of a given structure that is imperfection-sensitive.
One reason for this deficiency is that the initial imperfection
certainly does not have precisely the shape of the classical
buckling mode, as assumed in the analvses. On the other
hand, it does not seem very sensible to attempt to develop
methods of analyses based upon a very detailed knowledge of
the imperfection in the structure under consideration. A
more useful goal might be to attempt to correlate the buckling
strengths of imperfect strucfures with appropriate statistical
descriptions of their initial imperfections, To that end the

oY

MANY NUOES?(\V

Fig. 8 Buckling loads of column with random imper-
fectinns.
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pilot problem illustrated in Fig. 7 has recently been studied.’?
In this problem an infinitely long column rests on & non-
linear “softening” foundation and is supposed to have an
initial displacement ¥ which is assumed to be s stationary
randem function of position along the length of the heam.
The perfect structure has a continuous spectrum of buckling
loads corresponding to the spectrum of buckle modes sing /!
where ¢ can have any value. The critical buckling load
Pe, however, occurs for a particular value 7o of this wave-
length parameter. [t is evident that not only will initial
imperfections in the shape of the eritical buckling mode
influence the actual static buckling load of the imperfect
structure, but so will, io some extenl, imperfeciions having
any other shape. It is supposed that the mean-square im-
perfection A? is known, a5 is the correlation funetion B of the
imperfection {consideved a function of the nondimensional
parameter £ = z/1¢).  The associated power specival density
S{e) is defined conventionally as the Fourier transform of
the corrclation function. The kinds of resuits that were
found for this problem (by means of approximate techniques
that lean heavily on the so-called “method of equivalent
linearization™) are illustrated in Iig. 8. Shown in this figure
is one choice thal was made (arbisrarily) for the correlation
function of the imperfection, and the associated power spec-
tral density, both characterized by the single parameter & in
addition to the mean-square imperfection A% The mean-
square imperfection combines with the paramcters of the
foundation modulus to give the pertinenl nondimensional
parameter kA2 kL, as a measure of the magnitude of the im-
perfection, and & serves as a measure of the spectra) content
of the imperfection. The curves show the caleulated values
of the ratio of the buckling load of the imperfect structure
to that of the perfect structure as a function of these two
parameters, 1t iz interesting to note that the buckling leads
are relatively insensitive to & over a substantial range.  This
tends to encourage the hope that quantitative predictions
ol the buckling strengihs of uperfection-sensitive structures
eventually may be possible on the basis of the knowledge

of a few slatimiica) parameters descriptive of the imperfee-

tions.

Noted in Fig. 8 is an interesting mathematical difference
between these results for & structure having a continuous
spectrum of buckling modes and the carlier oncs for strue-
tures having unique buckling modes,  In the ene-mode case,
the difference between the buckling loads of the porfect and
imperfect structures is, asymplotically, proportional to (§)¥3;
in the continuous-spectrum case this difference is propartional
Lo (A)4'5.

Dynamic Buckling of Imperlection-Sensitive
Structures

The general approach of Koiter recently has been extended
by the writers'®15 to handle the buckling of imperfection-
sensitive structures under o variety of time-dependent load-
ing conditions. Gencral vesults intended to serve as approxi-
mate guidelines for the analysis and design of such sirue-
tures have thereby heen obtained and just one example of
this kind of result is Mustrated in ¥ig, 9. Consider step-
loading of an imperfeclion-sensitive structure of the type
that, when perfect, bifurcates symmetrically as iflustrated
and, consequently, has a static buekling load Ps less than
P if it is imperfeet. The results of the dyvnamic analysis
show that the same structure, having the same mmperfoction,
would have a dynamic buckling load P given by the graph in
Fig. 9. Here the ratio of the dynamic to the actual static
buckling load of the imperiect structure is plotted against the
ratio Pg/Pc, which, of course, equals L for the perfect struc-
ture and is smaller the more impevlect is the structure.
It is seen that for step-loading the dynamie buckling load is
always less than the static buckling load, but even for very
imperfect structures it is never less than 70%, of the static

A SURVEY OF SOME BUCKLING PROBLEMS 1508
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Fig. 9 Dynamic buckling, step loading.

buckling load.  The most important and useful implication
of this curve is that it provides an estimate of the dypamic
buckling load just on the basis of Ps/P¢, and does noi, re-
quire a knowledge of the initial imperfaction.

Spherical Cap under Concentrated Load

The last buckling problem (o be discussed in this survey
ditfers in <everal respects from all of those previously men-
tioned. The prebuckling stress state is not trivial, but re-
quires the solution of a nonlinear problem; the buckling
loads, themselves, have not been deteymined previously;
and in all likelihood the structwre is imperfection-insensitive,
although this remains to be cstablished theorctically. The
clamped shallow spherical shell shown in Fig. 10 is subjected
(o & lead P at the center; the solid curve shows how the value
of the load parameter P,R/2rD associated with buekling
varies with the conventional geometrical parameter A, 'This
curve gives the lowest of the loads given by the scparate
curves associated with buckling in various numbers n of
cireumferential waves. The case n = 0 for arisymmetrie
buekling has been obtained previously by Meseall,’s and corve-
sponds to a local maximum in the variation of load with
axisymmetric displacement. The other cuwrves were found?
by discovering bifurcations of axisymumetric equilibrium paths
into nonaxisymmetric branches. The mode shapes assoei-
ated with the cases n = 3, 4, and 5, when combined with an
axisymmetrie dimple, would correspond to deformed areas
that are roughly in the shapes of triangles, squares, aud
pentagons, respectively.  Such deformation shapes have, in
fact. been observed in the past during tests on spherical
shells under concentrated loads. 1" There does not appear
to he precise experimental information, however, concerning
a critical value of load at which nonaxisymmetric deforma-
tions first egin to appear, nor has any snapping behavior
been discovered in conjunction with their appearance. In-
deed, observation has been made of a steady progression of
three, four, and five lobed deflection patierns under inereas-
ing lead, and ihis correlates with the competition shown in

| "
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IFig. 10 Buckling loads for ¢lamped sphevical cap under
concentrated load.
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Fig. 10 among the modes for n = 3, 4, and 5. All of these
facts suggest that the bifurcation into nonaxisymmetric de-
formation is associated with increasing values of load; and,
verification of this Imperfection-ingensitive behavior on
thenretical grounds now isin progress. It may be noted that
the vesults for A large are applicable to a full spherical shell
of very small thickness. Thus, the full sphere under egual
and opposite concentrated loads may be expected to begin
to exhibit a transition from axisvmmetrie 10 nonaxisymmet-
vic deformation at a value of PR/ 27D near 11.
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