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Imperfection-Sensitivity of Eccentrically Stiffened

Cylindrical Shells

Jorx W. HurcHinson® anp Jorw. C. Amazicot

Harvard University, Cambridge, Mass.

A quantitative study of the lmperfectmn-sensxtlwty of eccentnca]]y stiffened cylindrical
shells is presented. Results are given for both axial and ring stiffened cylinders under axial

compreasion ard hydrostatic pressure.

In some instances, in particular in the case of axially

stiffened cylinders under axial load, the sensitivity to imperfections, as well as the classical
buckling load, appears to be strongly dependent on whether the stringers are attached to the
outside or inside of the cylinder. Under certain conditions stiffening can significantly re-
duce or perhaps completely eliminate imperfection-sensitivity, whereas in other ecases it may
play a much smaller role in lowering the sensitivity.

Nomenclature g oy Hzy et
a = postbuckling coefficient; see Bq. (25) I,-( I’.)
Ay Ay, Ay = see Table 1 A
rn A = cross-gectional ares of ring and stiffener Lp, L, Lg
Bz, Bq., etc. = gee Table 1
b = postbuckling coeflicient; see Eq. (1)
C = [3(1 - »2)]¥3 M, M,
D = Eef12(1 — »?) M., M, M.,
D.., Do., ete. = effective bending stifinesses; see Table 1
D¢, = see Kq. (30) m
dr, de = ring and stringer spacing; see Fig. 2 N,
E = Young's modulus N,
€ry er = ring and stringer eccentricity; see Fig. 2 Nz Ny, Nuy
F = gtress function
Fo, Fu, Ft = gzee Hq. (22) 0 Ao
P ' = see Eq. (20) N, NS, ete
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effective stretching stiffnesses; see Table 1

see Eq. (30)

ring and stringer moment of inertia

cylinder length

differential operators defined in Eq. (17)

axial wavelength of buckle pattern; see
Eq. (9)

ring and stringer bending moment

bending moment in shell; not in composite

. shell

number of axial ha.lf-wavelengths

arAcfd,

el fd,

resultant membrane stresses in shell; see
Eq. (13)

prebuckling reference stresses; see Eq.
(20)

CR/ER X (N N5 NS NS

number of circumferential wavelengths in
buckle pattern

nL/xR

compressive axial load

classical buckling load

buckling (maximum)} load of imperfeet
eylinder

Copyright, 1967, by the American Instituie of Aeronautics and Astronsutics, and reprinted by permission of the copyright owner




e g A i oy

e

" MARCH 1967

-z

.o ra

2x[3(1 — »2)]~V2E1t (classical buckling

{Po hunatitt =

load of long unstiffened cylinder) -
- Pyt = prebuckling reference values; see Eq. (20)

Pe = clagsical buckling pressure

Ps = buckling pressure of imperfect cylinder

Q.., Q.., ete. - = gee Table 1

@y = see Eq. (30)

Rk = gylinder radius.

H = ghell thickness; not effective thickness -

U = axial displacement of shell middle surface

14 = circumferential displacement .

W = normal displacement

w = initial digplacement of unloaded shell
{(imperfection) -

Wo, e = see Eq, (22)

= axial coordinate

¥ = circumferential coordinate

Z = (LA/RL)(1 — »2)tf2

Z = 23V 2w

ag By vi G = defined in Equation (31)

er, € - = strain at the. neutral axis of ring and
stringer

€24 €y, €xy = membrane strains in shell

§ = buckling displacement amplitude

5 = initial d]splacement amplitude (imperfec-
tion})

K., K, K = bending strains in sheil

A = scalar load parameter

Ag = classical value of scalar Joad parameter

As = maximum value of scalar load parameter
for imperfect structure

¥ = Poisson’s ratio

Oy, T2 = Ee, Eg !
Introduction

& early as 1947, van der Neut? observed that the buckling
load of an axially compressed cylindrical shell with
stiffeners attached to the.outside can be two or even three

times the buckling load of a cylinder that is identical in all’

respects, except that the stiffeners are attached to the inside.
Apparently, the potential of this remarkable effect remained
more or less unappreciated until interest was revived by
Hedgepeth and Hall,? who made a fairly extensive study of
eccentricity effects on axisl buckling, and by Baruch .and
Singer,? who investigated buckling of -eccentrically stiffened
cylindrical shells undér hydrostatic pressure. These and
subsequent studies were based on linear buckling equations
and, therefore, will be described herein as classical buckling
analyses. Tests have provided experimental verification of
the advantage of outside over inside stiffening for the case of
axial buckling. Moreover, some test results are in fair
agreement with the predictions of the classical buckling
theory. This, of course, is in marked contrast to the buckling
behavior of unstiffened cylinders under axial compression
which often buckle at a small fraction of the classical buckling
load. It has been suggested that the classieal buckling
analysis should be adequate to predict the buckling loads of
stiffened eylinders by virtue ‘of the fact that stiffening in-
creases the effective thickness of the shell and thus, so the
argument goes, reduces the susceptlblhty of the shell to small
imperfections.

This paper presents & qua,ntltatlve study of the imperfec-

tion-sensitivity of eccentrically stiffened cylindrical shells-_

under both axial and hydrostatic loadings. For the most
part, the investigation is made within the framework of
Koiter's general theory of. postbuckling behavior.#—¢ The
calculations provide a measure of the extent to which the
shells are sensitive or inseusitive to imperfections in their
shape and thus indieate to what extent the classical buckling
results can be considered reliable.

Buckling of Imperfection-Sensitive Shells

Koiter has shown that the imperfection-sensitivity of a -

structure is closely related to its initial postbuckling behavior,
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Fig. 1 Buckling of immperfection-sensitive shells,

In pearly all the eircumstances encountered in this paper, the
shell structures are characterized by a unique buckling mode
associated with the classical buckling load, and their buckling
and initial postbuckling behavior can be represented fairly
simply in the manner pictured in Fig. 1. The perfect shell
suffers no buckling deformation until the classieal buckling
load X¢ is reached. If, as pictured on the left in Fig. 1, the
bifurcation point is symmetric with respect to the bucklmg
deflections, then the 1mt1a1 postbuckling behavior is governed
by the equation

Mie = 1 + b(3/)? (1)

where M is the applied load, which will be identified with either
the axial load P or the bydrostatic pressure p. The ampli-
tude of the buckling displacement normal to the shell § has
been normalized with respect to the shell thickness f. When
b is negative, the eqmllbnum load falls following buckling,
and this is the case shown in Fig. 1. Under dead loading,
such behavior is often associated with catastrophic buckling.
On the other hand, if b turns out to be positive, initially at
least, the perfect structure can support loads in excess of the
classical load.

A structure can be expected to be imperfection-sensitive
if its postbuckling coefficient b is negative. In this study .
imperfections are assumed to be initial deviations of the shell
middle surface from the perfect cylindrical configuration and
these initial deflections are taken in the shape of the normal
buckling displacement. - Koiter has shown that the buckling
load of the imperfect shell A s (the maximum load the structure
can support prior to buckling) is related to the imperfection
amplitude 8 and the postbuckling coefficient b by

(1 _ _}‘_S)” 3 (3)1!2( gy _i l\f

o v b<0 (2

This equation is asymptotically valid for small imperfections.
Curves displaying the ratio of the buckling load to the classical
load As/Ac as a function of the imperfection amplitude § are
given on the right in Fig. . These curves are intended to
serve as reference for the calculated postbuckling eoefficients

- presented in later parts of the paper. It should .be em-

phasized that the imperfection amplitude § bas been normal-
ized with respect to the shell thickness £ and not some effective
thickness of the stringer-shell combination., Inecluded in
this series of curves is a plot, taken from Koiter,® showing the
effect of axisymmetric imperfections on the buckling load of
an unstiffened eylindrical shell under axial compression.
Although the monocoque eylinder under axial compression is
not characterized by Eqs. (1) and (2}, the curve does provide
a calibration for the role of the postbuckling coefficient b in
the case of structures that have just one buekling mode
associated with a symmetric bifureation point. Circum-
stances arise in which the characterization provided by Eqs.
(1} and (2) does not permit an adequate assessment of im-

" perfection-sensitivity. These cases will be discussed and

analyzed by alternative methods as they are encountered.
The shell configurations are shown in Fig, 2. Only general

instability of the cylinders is considered here and all caleula-

tions are based on “smeared-out” stringer and ring proper-
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Fig. 2 Stiffened shell conﬁguratlons.

ties. The governing equations, whose derivation is given in
the Appendix, are based on nonlinear Donnell-type strain-
displacement relations. In their final form, the equations
have been reduced to two equations, an equilibrium equation
and a compatibility equation, involving the normal displace-
ment and & stress funetion. . Details of the classieal and post-
buckling analyses are given in the Appendix, whereas the re-
sults of these caleulations are presented and discussed in the
following sections. The results presented are in every case
for simply supported cylinders. To simplify the ealeulations
involved, the prebuckling displacements are neglected as is
customary, especially in preliminary or exploratory studies
such as this. It should be mentioned that no attempt has
been made to uncover optimum stiffening conditions; rather,
the effect of imperfections on .the buckling loads of quite a
wide range of stiffening possibilities has been studied.

Axially Stiffened Cylinders under Axial
Compression

Classical buckling studies of eccentrically stiffened eylindri-
cal shells under axial compression have been reported in Refs.
1, 2, and 7-9. A comprehensive parameter study is con-
tained in Ref. 8. Plots of the classical buckling loads of
lightly, moderately, and heavily stiffened eylinders are given
in Fig. 3. The relative strengthening capabilities of outside
and inside stiffening are evident. In the present formulation
the axial stiffening is characterized by three dimensionless
parameters A./di, EI,/Dd,, and e./t, where A, is the area
of the stringer cross-section, I, is the stringer momepnt of
inertia about its neutral axis, and e, the stringer eccentricity,
is positive for outside stiffening and negative for inside-stiff-
ening. The torsional stiffness and lateral (tangent to shell)
bending stiffness are not taken into aceount,.

The postbuckling coefficient b is plotted just beneath the
classical buckling curves in Fig. 3. Since imperfection-

sensitivity is associated with negative values of & (refer back

to Tig. 1), it would appear that even heavily stiffened
cylinders-may be susceptible to initial deflections, which are
of the order of the shell thickness. As previously indicated,
the imperfection is assumed to be in the shape of the buckl-

- ing mode, i.e.,

W = § sin(maz/L) cos(ny/R) )

The major conclusion to be drawn from the results of Fig. 3
is that an outside-stiffened ¢ylinder is generally more imper-

“fection-sensitive than one with inside stiffening, and its

buekling load may be appreciably below the classical buckling
load. Thus, without further evidence, either theoretical or
experimental, it would be a mistake not to take a suspicious
view of the quantitative predictions of the classical analysis,
particularly with regard to the advantage of outside over
inside stiffening,.
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simply supported, axially stiffened cylinders under axial
compression.
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For all values of Z Jess than a certain value, an externally
stiffened cylinder buckles axisymmetrically. Usually, ex-
cept for a heavily stiffened cylinder such as that discussed
below, axisymmetric buckling occurs at too low a value of
Z to be of practical interest. However, when this does occur,
the postbuckling coefficient is identically zero. The transi-

tion to axisymmetrie buckling is marked by the discontinuity -

in slope of the curve of b vs Z at the point where b becomes

.zero. A schematic sketch of the load-buckling deflection

behavior for the case of an axisymmetric classical buckling
mode is shown on the left in Fig. 4. Once the classical buck-
ling load P¢ is attained the perfect cylinder deflects in its

. axisymmetric buckling mode under constant load until bi-

furcation from the axisymmetric state of deformation occurs.
Following bifurcation, the load falls below P¢ with increasing
axisymmetric and nonaxisymmetric deflections. Caleula-
tions have been carried out to determine the effect of an im-
perfection in the shape of the axisymmetrie buckling mode

W = —5 sin(wz/L) 4)

on the bifurcation load Ps marking the first ocourrence of
nonaxisymmetric deflections. The curve of load vs buckling
deflection is depicted as falling following bifureation. This is
only a conjecture. In any case, Ps is probably the most
meeningful measure of the buckhng strength of the imperfect
cylinder. Curves of Ps/Pe¢ vs 8/t are shown on the right in
Fig. 4 for the heavily stiffened cylinder. With diminishing
Z, the buckling behavior of the c¢ylinder becomes more and
more like that of a wide column; and as reflected in the
trends of Yig. 4, the cylinder becomes less and less imper-
fection-sensitive. It should be mentioned that the caleula-
fion of the bifurcation load Pg is a.pproxima.te but, as dis-
cussed in the Appendix the prediction for a given imperfec-
tion amplitude is an upper bound to the actual bifurcation
load.

To date, the limited number of tests which have been per-
formed have more or less verified the benefieial strengthen-
ing effect of outside stiffening. The fest loads of Card’s*
eylinders were from 70 to 95% of the classical values.!! This
is not surprising since each ecylinder tested was associated
with large values of Z out of the range in which b is most
negative and out of the range in which an outside-stiffened
cylinder should be anymore imperfection-sensitive than one
with inside-stiffening, Card’s"® cylinders, for example,
roughly corresponded to the medium stiffened cylinders of
Fig. 8 (they were clamped at the ends, not simply supported)
and none of the specimens had s Z less than 1000. The
present results, then, indicate a critical imperfection-sensi-
tive range for outside stiffened cylinders under axial com-
pression; and as far as the writers are aware, no tests have
been performed which would reveal just how critical imper-
fections are in this range of Z. These considerations may

- be important, for example, in arriving at the design load of

an externally stiffened cylinder which was recently investi-
gated? as a possible structure for & post-Saturn vehicle. This

5 * PERFECT, 5:0
- Y

IMPERFECT, § >0

AXISTMMETRIC BUGKLING DEFLECTION § -2 HEAVY J or

BUCKLING BERAVIOR OF CYLINDER B L5
WITH AN AXISYMMETRIG GLASSICAL b
BUCKLING MODE )

Fig. 4 Effect of axisymmetric imperfections on axially
compressed cylinders with outside axial stiffeners.
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Fig. 5 Classical buckling and imperfection-sensitivity of
simply supported, axially stiffened cylinders under hydro-
static pressure.

structure does fall in the eritical range (A./dt = 0.94, e,/t =
34, El./Dd. = 765, Z = 66.5 and b = —0.05).

Finally, & remark concerning the interpretation of post-
buckling calculations of the large deflection type seems called
for. Imperfection-sensitivity predictions, based -on finite
deflection caleulations, and in particular on the mimimum
support load of a perfect cylinder in the posthuckling region,
would imply that imperfection sensitivity grows with inereas-
ing Z. In fact, the minimum support load of a long axially
stiffened cylinder is only slightly different from that of a
monccogue cylinder {see Almroth’s calculations for ortho-
fropic cylinders (e, = 0) under axial compression'®]. This
nins counter to the predictions of the initial postbuckling
analysis which indicate that an orthotropic eylinder is most
susceptible to small imperfections in an intermediate range of
Z. How susceptible they are in the critical range remains to
be seen. However, the fact that test loads are in fair agree-
ment with the classical predictions for large values of Z points
to the initial post-buckling coefficient b as being 8 better
measure of imperfection-sensitivity than the minimum sup-
port load.

Axially Stiffened Cylinders under Hydrostatic
Pressure

Figure 5 displays the classical buckling pressure and post-
buckling coefficient of stiffened and unstifiened cylindrical
shells under hydrostatic loading. The eclassical buckling
pressure of the unstiffened cylinder is that calculated by Bat-
dorf!3 (a different buckling parameter has been used here) and
the associated post-buckling coefficient was given in Ref. 14,
Tests'® bear out the predicted sensitivity of the unstiffened
cylinders in the range roughly corresponding to Z < 100, with
oceurrence of test buckling pressures that are as low as one

“half the classical values.

The major effect of axial stiffening is to eliminate imper-
fection-sensitivity in the lower range of Z. Even very light
stiffening significantly diminishes the postbuckling coeffi-
cient in the range of Z in which unstifiened cylinders are
most sensitive. When the postbuckling coefficient is posi-
tive, in all likelihood, buckling will not be accompanied by
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Fig. 6 Classical buckling of “long” ring stiffened eylinders
under axial compression. -

catastrophic collapse and the cylinder may be sble to sustain
pressures above the classical buckling pressure. The inside-
outside effect of stiffening is less prominent in buckling under
hydrostatic pressure than under axia) compression, Over
some of the range of Z, however, there is a definite advantage
in outside stiffening. At the same time, the postbuckling
coefficient & provides a hint, but little more, that an outside-
stiffened eylinder may be more sensitive to imperfections
than its inside-stiffened counterpart. Qut of all this, the most
important result is that the classical buckling load should be
a reliable index of buckling strength in the lower range of Z.
It will be seen later that this may indicate a clear preference
in certain circumstances for increasing the buckling strength
by employing axial stiffening rather than ring stiffening.

Ring Stiffened Cylindefs under Axial
Compression

In some respects, this is the least interesting of the stiffen-
ing-loading cases studied in this paper. Only if the value of
Z is very large can the classical buckling load of a ring stiff-
ened cylinder under axial compression exceed that of &
cylinder with an equivalent amount of axial stiffening, The
major point {0 be established is that small imperfections can
be expected to reduce the buckling load of both outside and
inside stiffened eylinders well below the classical buckling
load. The parameters charaeterizing ring stiffening proper-
ties are analogous to those for axial stiffening, namely, 4./d.t,
El,/Dd,, and e, /t.

The dependence of the classical buckling load on eceen-
tricity and stiffening is shown in Fig. 6 for “long” eylinders.
A long cylinder is taken to be any cylinder longer than several
axial wavelengths of the buckle pattern so that the buckling
load and wavelength are essentially independent of the cylinder
length and Z. An outside-stiffened cylinder with sufficient
eccentricity has an axisymmetric buckling mode with .a
(short) axial wavelength

U= 2x(RV2[12(1 — »9)(1 + A./dd)}-14 (5) -
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and elassical buekling load given hy

{Po)asitr [ é{lll?
(Pelanstitr t+ d.t (6

independent of I, and ¢,.} If there is no eccentricity or in-
ternal rings, the buckling mode is not axisymmetric but it
does have an axial wavelength which is almost as short as
given by Eq. (5). When nonaxisymumetric buckling takes
place, the classical buckling load depends on both the eccen-
tricity and bending stifiness of the rings as shown in Fig. 6.
The advantage of outside to inside rings is also apparent,.
Consider first the effect of imperfections on an externally
stiffened cylinder. When the classical buckling mode is axi-
symmetric, as it is when the rings are on the outside of the
cylinder, the perfect cylinder ¢an continue to. deform in its
buckling mode under constant load once the classical buck-
ling load P¢ has been attained and, therefore, b is identically
zero. Purely axisymmetric deformations persist until bi-
furcation from the axisymmetric deformation state results
in a branch of the equilibrium curve on which the applied
load falls with increasing deflections, as depicted in Fig. 7.
Imperfections in the shape of the classioal buckling mode

W = § sin(2rz/D) 7

reduce the axial load Pg at which nonaxisymmetric deforma-
tions first oceur. This behavior and the calculated values
of Ps/Pec vs 8/t are shown in Fig, 7. For purposes of com-
parison, the bifurcation eurve for an unstiffened cylinder with
an axisymmetric imperfection, taken from Koiter,* is also
given in this figure. Although the estimate of Py is APPIOXi-
mate, it is an upper bound, as discussed in the Appendix.
Finite-deflection load-end-shortening curves for initially
perfect ring stiffened orthotropic cylinders with no eccentricity
have been caleulated by Thielemann.!? Following buckling
the support load increases a small amount above the classical
buckling load with defleetion oceurring mainly in the (non-
sxisymmetric) classical buckling mode. When the load is
large enough (but still only slightly greater than Pg) deflec-
tions in modes other than the classical buckling mode become
important and then the support load falls. In the present
study, the initial postbuekling coefficient b was caleulated
and found to be positive for the cases of both internal rings
and no eceentricity. Thus, Thielemann’s result that follow-
ing buckling the perfect cylinder can support loads which are
slightly in excess of P¢ is confirmed by the present exact
initial post-buckling ecaleulations. We are dealing, then,
with a structure, which appears to be relatively insensitive

A Bl e
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Fig. 7 Effect of axisymmetric imperfections on axial
buckling of ring stiffened cylinders.

1 The shortness of the axial wavelength places rather severe
limitations on the applicability of the present results which wero
derived using “smeared-out” stiffening properties—a technique
that enly applies when the buckle wavelength is large compared
to the spacing between rings.
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to imperfections in the shape of the classical buckling mode.
On the other hand, it will be shown that it is sensitive to im-
perfections of other shapes. A complete study has not
been made and, in fast, we will content ourselves with
demonstra.tmg that g partmula.r axisymmetric imperfection,

- .given by Eq. (7), results in qmt.e Iarge buckling Ioad reduc-

tions,

Curves of Ps/Pc vs &/t for two cases of inside stiffening are
shown in Fig. 7, together with the curves for the corresponding
outside-stiffened cylinders. Here, P -is, again, the load at
which bifurcation from the axisymmetric state of deforma-
tion oceurs and Py is the classienl buckling load of the in-
ternally stiffened cylinder. Note that no reduction in the
buckling load takes place for very small § because there is
essentially no interaction between the imperfection-induced

deflections and the nonaxisymmetric classical buckling

mode. For larger values of §, Psis below Pe and is associated
with bifurcation into a nona.xmymmetnc mode, which is not
the classical buckling mode. On the basis of just this limited

number of results, it does seem reasonable to expect that

ring stiffened cylindrical shells may buckle at axial loads,
which are well below the classical buckling load.

Ring Stlﬁ'ened Cylinders under Hydrostatic
Pressure .

The general classical buckling behavior and imperfection-
sensitivity of ring stiffened cylinders under hydrostatic

pressure is more complex than the load-stiffening combina-~

tions studied in the previous sections. Baruch, Singer and
Harari® have carried out the most extensive classical buck-
ling study to date. The classical buckling pressure and posi-
buckling coefficient of a lightly stiffened cylinder can be eom-
pared with the corresponding quantities for an unstiffened
cylinder in Fig. 8. .In the lower range of Z the classical
buekling load is higher if the rings are attached to the outside
whereas the opposite oceurs for larger values of Z. Judging
from the postbuckling coefficient it would appear that the
inside-stiffened cylinder is slightly less imperfection-sensitive
in the lower range of Z than an outside-stiffened cylinder,
although this effect is not sufficiently pronounced to warrant
any genersl conclusions,

The lightly stiffened cylmder just diseussed buckles into a
mode that has only one half-wavelength over the length of
the cylinder. If the amount of s‘mﬁenmg is inereased the
number of axisl half-wavelengths in the classical buckle
pattern will not necessarily be one and, in fact, may be very

large depending on the stiffening and t.he value of Z. Classi-
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Fig. 8 Classical buckl.i.ng and imperfection-sensitivity of

‘simply supported, ring stiffened cylinders under hydro-

statie pressure,
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Fig. 9 Classical buckling of simply éﬁpported, ring
stiffened cylinders under hydrostatic pressure.

cal buckling loads for three other degrees of stiffening are
shown in Fig. . In the range in which the buekling param-
eter is independent of Z, the buckling load is determined
mainly by the axial component of the hydrostatic pressure in
much the same way as discussed in the previous section, and
the axial wavelength is very short. The classical buckling
mode of an outside-stiffened cylinder is axisymmetric in the
Z independent range and the classical buckling pressure is

s (BY 21+ 2)" @

independent of the ring bendmg stiffness; and the axial
wavelength of the buckle pattern is the same as in the axial
compression case

=20 (ROM1I2(1 — »®)(1 + A./d2)]-ve (9;

With rings on the inside, the buckle pattern is not axisym-
metric but it does have an axial wavelength that is not much
longer than that given by (9). In the Z-dependent range,
the cylinder buckles into a nonaxisymmetric mode with, again,
only one half-wavelength over the axial length of the shell.
The postbuckling coefficient b in the Z-dependent range
follows the trends noted in I'ig. 8, namely, the magnitude

‘of b decreases with increasing stiffness but its sign remains

hegative. In the Z-independent range, the postbuckling
behavior is similar to that of a ring stiffened cylmder under
axial compression. The cases of outside and inside rings are
discussed in turn. ]

When the classical buckling mode is axisymmetric the per-
fect cylinder deforms axisymmetrically under constant
pressure pe until bifurcation from the axisymmetric state
oceurs and subsequently the load falls. Imperfections in
the shape of the buckling mode

‘W = 3 sin(2rs/0)

- reduce the pressure ps at which bifurcation from the axisym-

metric state takes place. Curves of ps/pe vs 6/t for several
degrees of stiffening are shown in Fig. 10,

Next, the effect of this same imperfection on internally
stiffened cylinders can also be seen in Fig. 10, The comments
made in the last section are relevant here as well. On the
basis of the initial postbuckling analysis, it would appear
that the cylinders are less susceptible to an imperfection in
the shape of the nonaxisymmetric classical buckling mode
than to tmperfections in other shapes.

The results presenied here fall short of providing anywhere
near a complete picture of the initial postbuckling behavier
of ring stiffened cylinders in the Z independent range. On
the other hand, it does seem reasonable to conclude that
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Fig. 10 Effect of axisymmetric imperfections on hydro-
static buckling of ring stiffened eylinders in the Z-

independent range.

imperfections may result in fairly drastic buckling load
reductions. )
Under certain circumstances, axial stiffening may be s more
efficient means of strengthening against buckling under
hydrosiatic pressure than ring stiffening. Comparing the
results of Figs. 5 and 9, one notes that an axially stiffened
cylinder can have a higher classical buckling pressure than
cylinder with an equivalent amount of ring stiffening, If,
in addition, one takes into account the predicted insensitivity
of the axially stiffened cylinder in the lower range of Z and

_ the sensitivity of the ring stiffened specimens, then the ad-

vantage of axial stiffening is even more pronounced. Prob-
ably, an optimum choice would lead to & combination of axia)
and ring stiffening.

Appendix: Formulation of Equations and
Postbuckling Calculations

Nonlinear Equations for Eccentrically VSt'Lffened
Cylindrical Shells

Let the two tangential and normal displacements of the
shell middle surface be denoted by U, ¥, and W. Then ac-
cording to Donnell-type theory the middle surface strains
in the shell are

& =U.+ W, & =V,+ W/RB+ LW 2
{10)

. €zy = %(U,y + V,z) + %W.:W.Jj

and the bending strains are given by K, = —W oz Ky =

~Wayand K., = —W ,,. The axial strain at the neutral
axis of an axial stringer attached to the shell surface is

€ = € — esW,za: (11)

where ¢, is the distance from the neutral axis of the stringer
to the middle surface of the shell—positive if the stringer is
loeated on the outside and negative if on the inside. The
bending strain in the stringer is taken to be the same as in the
ghell, —W ... The torsional stiffness and lateral bending
stifiness of the stringer are meglected in this formulation,
Similarly, the strain at the neutral axis of a ring stiffener is

€ = € — erW.:m (12)

and the bending strain is — W ,,. The bending and stretch-
ing stresses are related to the strain quantities in the usual
manner, ie., & = (1/E)(N. — »N,), &, = 0./E, ¢ = a./
E,M:=D{E.+ vK,), My = —FELW .., M, = —EILW .,
ete, :
Equilibrium equations are now obtained via the principle
of virtual work. In formulating this principle the stringers
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and rings are “smeared-out” to arrive at equation governing
the general instability of a shell, Thus, the force in & dis-
crete stringer is replaced by an effective contribution N, to the
resultant membrane stress so that N, = o.4,/d. and also
N. = ¢.A./d.. With the aid of the caleulus of variations, the
principle of virtual work leads to three equilibrium equa-
tions and associated boundary conditions. Next, a stress
function is introduced such that the two inplane equilibrium
equations are satisfied identically, The total stress resultants
are related to the stress function by

N1+NI=F,V|,- Ny+Nr=F,zz
(13)
N:v = "‘“F.:y'

In this way the three equilibrium equations are reduced to a
single equilibrium equation and a compatibility: equation

WoaW,ow + Woof/R
(14)

‘When written in terms of W and F, these two equafions are
just a generalized form of the von Karman-Donnell equations
appropriate for eccentrically stiffened cylindrical shells,
These equations are

LW} 4+ LolF) = F .. W o +
FosWee = 0F o Woy +p (15
LelF] — LolW1 = W .2 — W... W, (16)
where the differential operators are defined by |
Lol 1= Dul Losas + 2Dusl Jaows + Dl Losia
Lol 1= Quel Jwees + 2Qnl - Loves + @l Lo +
, /R la Q7)
Lul V= Heol Vosas + 2Haal lisww + Hul  Lyw

and where the effective bending and stretching stiffnesses
and eccentrieity coupling terms are given in Table 1.§: The
resuttant membrane stresses in the shell can also be written
interms of Wand F:

N; = F‘yy - N; = AzzF,zz + A:yF.yv +
BzzW,z: + B:yw,yv

€, 4y T €y, zz — 2E:y, y = W.zy2 -

(18)
Nv = F.a:z - Nr = AWF..W + A‘MF.#: +

BIWW.V:U + B:MW,::

where the coefficients appearing in these equations are also

. defined in Table 1. The tangential displacements must be

single-valued over any complete circuit of the shell. For
the circumferential displacement this condition is enforced if

L EEP L, W _lyo =
N R O Bl

Classical Buckling and Initial Postbuckling Caleulations
If the perfect eylinder is subject to an external hydro-

- static pressure Ap® plus an axial load per unit length APY/2xR

applied through the effective centroid of the stiffened shell,
then the .prebuckling stresses are linearly related to the
sealar load parameter A by :

ANL 4 N9 = AF 0 = —NPY2rR + p°R/2)
' (20)
)\(N,,“ + Nfu) = xF,:zo = _RpﬂR .

§ ¥ the initial displacement from the perfect eylindrical
configuration is Wiz, ¥), the equations are amended by adding
the term F,zzw.ﬂ-y + F.!yW,:z i 2F_Lzyw,zy to the right.-ha.nd
side of Eq (15) B.Dd "'W,zzW.yv - W-yyW.zz + 2W.zyW,:w to
the right-hand side of Eq. (16). A parallel derivation of Eqgs.
(15-17) has been given by Geier.®?
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Table 1 Stiffened cylinder parameters®

Az = vaufap Avy = varfan

Bzz = amma(l + ﬂr)/ao Ew = ery(l + @)/ e

Dee = 14 8o + [12(1 — 3%, Dy = 14 8 + [12(1 — v?)a,
(L + ar)ret] /oo I + adr? /o

Hx; = [1 - as(l - "2)}/050 ’ - Eyv-“ [1 + ar(l - 3'3)]/050

Q:x = Fa.“f./ma . vy =_va.-'y,-/ao

sz = (1 + ar)/ato sz &= (1 + a.)/an
ey = veoryr/oo Bys = vonavafen

ﬁﬂ. =1 + [12{1 - pg)l‘alar')’l‘rrl /aﬂ ﬁyz = ﬁzv

Ay = 0+ 0) = s/e a,

I lI

(']

sz —[al‘?r{l + (1 - Vz)ar} + Qyz Q:ﬂ
aryeil + (I — vBen}]/2en

§ (Dazy Doy, Dyyd = [B88/12(1 — o)) (Dey Doy, Dygds (Qozr Qeys Quo) = 8Gezs Qayr Ouardi (Haze Hay, Hyg) = (7B {Haze Hoy Hyw)r Bazr Bzys Byz, Byy) =
E"(B:zu Bzyy Buze Buy); e = Ao/t By = EX./Dd,, Ve = eft; ar = Ap/dil, g = BI/Ddr, v = enft; @0 = (1 + a){l + @) — vy

In the ealculations, one or the other of the reference values
of the loadings p° and P will actually be zero. These pre-
buckling stresses are not exact since they are obtained on the
basis of the usual “classical” assumption that the prebuckling
displacements can be neglected. In fact, a simply supported
cylinder undergoes a slight barreling or bowing-in depending
on whether the loading is axial compression or hydrostatic,

~and the prebuckling stresses will not be uniform prior to

buckling, This effect, which is probably more important
for the case of stringer stiffening than ring siiffening, is neg-
lected in this paper. Simple-support boundary conditions,
written in terms of the displacement W and the stress function
for the additional stresses, are equivalent to
F=F,=W=W.,=20 atz=0,L (21)
The postbuckling analysis of the perfect structure pro-
ceeds along the lines laid out by Koiter in his general theory
of postbuckling analysis.*—® This theory will not be re-
developed here. Results, essential to the caleulations, have
been taken from Refs. 20 and 21, which contain a reworked
version of Koiter's theory. We anticipate that the eigen-
value problem for the classieal buekling load A¢ will yield a
unique buckling mode W with the associated stress fune-
tion FU. A solution, to be valid in the initial postbuckling
regime, is sought in the form of an asymptotic expansion

= (8/1) W(n + (/)W +
F = AF° 4+ (§/HF D + (5/)WF® 4 |
where W™ will be normalized such that &/t is the ratio of the

(22)

buckling normal displacement amplitude to the shell thick-

ness and W is orthogonal to W in some appropriate sense.
A formal substitution of this expansion into the nonlinear

governing equations {15) and (18) generates 8 sequence of

linear equations for the functions appearing in the expansion.

The set of equations for W® and F® comprises the classmal

eigenvalue problem, i.e.,

Lo[W®) + Lo[F®] — Ne(W.® + NOW,o.® —

Ae(V,0 + NOW,,,» = 0
(23)
LglF®] — Lo[W®] = 0

with W0 = W .0 = F® = F W =0atxr =0,L The
boundary value problem for W® and F® comes from the
next higher terms in the expansion

Lo[WO] 4+ Lo[F2] — Ae(N.S + NOW .2 —
' Ac(N® + NOYW @ = F .OW,,,M +
FouOW 0 — 2F O ;. ®
Le[F®) — Lo[W®@] = W, 0t — W ,,OW ,,®

with W® = W .2 = F@ = F ;% = 0atz = 0, L.
The buckling deflection § is related to the load parameter
A in the initial post-buckling regime by the scalar equation

AMie =1+ a(3/t) + b8/ + . (25)

General expressions for these postbuckling coefficients ap-

(24)

plieable to a fairly wide class of theories, in which the present
theory is included, are given in Refs. 20 and 21. For the
eccenfrically stiffened eylinders these expressions reduce to

3f F.OW 02 4 F O 0 —

[¢h] () (1)
. 2 OWOW DU o0

—Ae fS [F'z:ﬂw’”(ln + F.w"W.z‘””]dS

= 12 fS [F . OW OW O 4+ F O OW @ —
F O OW @ + W OW ®))dS +
f [F DWW 02 4 F  OW M2 —
s 4 . . .

2F,,y(”)W,;(1)W,ﬂ-(1)]dSE -
{=he [l Pt 00 + F 0w 0mjas]t @n)

The classical buckling load is the ‘owest of all the eigen-
values admitted by Eqs. (23). These ean be wriiten com-
pactly as

—1
SZIN D + Noms + (W 5 Foyar] ©

@CQen 5 — Zm?): ("}I:,l ";ng)z] 28)

Amr’f =

I:Dtm. o+

and are associated with the eigenmodes

WO = {sin(mmrz/L) cos(ny/R)
) (29)
mrx ny F 20w, 5y — CZm?

= = ny -
F 202 P sin ™7 cos ) Hom

" where the barred quantities appearing in these expressions are

defined in the Nomenclaiure. In addition, it has been con-
venient to introduce the abbreviations

Dip = ﬁ;,a“ + 2D.,a?8% + Dy, B* )
Qa:a:a'! -+ 2@:2;05252 + Qvuﬁ4 _ (30)
ﬁzzaﬂ + 2}?;,0’.2.82 + gﬂ#ﬁ‘

All classical buckling loads presented in this paper were ob-
tained by minimizing A,z with respect to integer values of
m and continuously with respect to & = nl/xR. Of course,
quantitative application of Donnell-type theory is restricted
to values of » greater than five, say, except when the shells
buckle axisymmetrically in.which case the theory is also
valid. One can show that Eq. (28) is the same as the corre-
sponding expression for the case of zero forsional and lateral
stiffnesses in Ref. 7.

At this point, it is readily verified that the first postbuckling
coefficient a is identically zero and, therefore, it is necessary
to solve for W® and F® in order to caleulate b [see Eq.
(27)]. The right-hand side of Eqs. (24) involve the known
functions W and F@ in such & way that one can seek sepa-

Qe

Hia,
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rated solutions of the form

s . imz 2ny = . T
Wi = t( Z : ¢ Sin—— =g ‘ ...,_)
o + Cc0Ss R E {1113

fml L =1 L
(31)
Er = . 2ny & L
@ = — - sin—— Y hhuhad
F 202(;:1 B‘smL +‘ cos iélhsmL)

Each individual term of these series satisfies all the boundary
conditions and the coefficients are easily determined by the
Galerkin procedure. They are : :

@i = —[8m*a/ (it — 4 mp;] X :
(FH..i* + €..4% — }CZ)
Bi = [BmMY/wi(® — dm)p.] (P07 — ZC) —
(C%/2)[D.i® 4+ 2Z0c(W .0 + N9}
Vi = —8mn/mig) [FH¢, w0 + C1Qu w0 — 30732
— @m2n2/wig) (F(2C*Qy, 10 — CZi%) —
(C*/2)/(Da. ) + 2Z0e(F.0 + K98 +
8Zxc(N,0 + N2
fori=1,3,5.. ., and zero if i is even and where
pi = Dol + 20Quat® — 2)% + 2Z0o(N .0 + N H i
¢ = Hu oDy oy + 220N .5 + N9i2 &
8Zithe(W,* + N.9] + [20Q¢. w5y — Zi?J2

(32)

o
B

It also can be shown that the conditions for single-valued
tangential displacements are satisfied up to and inecluding
terms of order (3/1)%,

Now, it only remains to calculate the postbuckling coeffi-
cient b. This is accomplished in a straightforward WAY using
Eq. (27) and the series expressions listed previously. One
finds '

N —dma? y
- w2V + Nome + (V.0 4 N.9ad]

; 2F : ﬁ;) - 1 .
_[2 2. g@s—a_tLTz) + 2 @y + 5 ;] (33)

This series representation was evaluated numerically by
terminating the series after a sufficient number of terms had
been included to insure & truncation error of less than one
tenth of one percent. All caleulations, for the classical
‘buckling loads and the postbuckling coefficient, were made
with Poisson’s ratio equal to 3.

From the Koiter analysis, it follows that an imperfection -

in the form of the buckling mode
W = § sin(mrsz/L) cos(ny/R)

Tesults in the following modification of the relation of load to
buckling deflection in the mitial postbuckling regime:

(1 B ?\lc)(?) th (:)3 = %(f) 34)

The buckling load of the imperfect structure g is found by
maximizing A with respeet to §, which leads direetly to Eq.
(2) from which the curves of As/Ac vs 8/t of Fig. 1 were
obtained.

Buckling in the Presence of Axisymmetric Imperfections

Under certain conditions it is found that the classical
buckling mode is axisymmetric and, when it is, b is identically
zero. A different method of analysis is clearly called for if
one is to assess to what extent, if any, imperfections reduce
the buckling load. The method that has been employed in
this paper is similar in most respects to that used by Koiter1s
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to study the effect of axisymmetric imperfections on buckling
of unstiffened cylinders under axial compression. Ounly. a
brief deseription of the analysis will be given here,

 First, consider a cylinder with outside axial stiffening under
axial load. As discussed in the body of the paper, this shejl
buckles axisymmetrically for all Z below a certain valye.
If an imperfection in the shape of the buckling mode is as-
sumed, o

W = —3§ sin(rz/L) ' - (35)

the governing nonlinear equations (15) and (16) admit a
relatively simple axisymmetric prebuckling solution (as
in the classical and postbuckling caleulations, the prebuckling
displacement associated with the perfect, cylinder is neglected).
The total displacement and stress function can be written as

. W=W,+w F=P, 4y (36)

where W, and F., which are functions of P, §, and 7, comprise
the prebuckling solution; and w and f are nongero only after
bifurcation from' the axisymmetric state has taken place.
A linear eigenvalue problem for the bifurcation load Pj is
obtained if W and F are substituted into the governing equa-~
tions ard if, then, these equations are linearized with Tespect

" towandf. Two variable coefficient equations result:

Lplw] + LQ[f] = F., z_z;w,v'u + fuvWa, 2z 87)
LHU] - LQ{W] = _Wa, 220, iy (38)

withw =w..=f=f..=0atz =0, L. - Any eigenmode
could be written in the form '
ny . T
w = eosy, ; a; sin—=
'The curves presented in Fig. 4 were based on an approximate
caleulation in which only the first term in the preceding sine
series was retained. Equation (38) was solved exactly for
Fin terms of the assumed w and then the Galerkin procedurs
was applied to Eq. (37) to obtain an eigenvalue equation for
Pgin terms of 8 and & = nl/rR. For a given imperfection
magnitide 8, Py is minimized with respect to #. This step

-was performed numerically. As discussed in Ref. 16, this

procedure leads to an upper bound estimate of Pg.
The same approach was used to determine the effect of the
axisymmetric imperfection

W = & sin(@rz/D)

on the buckling load of axially compressed and hydrostatically
loaded cylinders. In this instance the analysis is appropriate
for eylinders whose length L is long compared to the imper-
fection wave length 7 [see BEq. (9)]. Again, an axisymmetric
prebuckling solution is easily produced and the eigenvalue
problem for the bifurcation load is in the form of Eqgs. (37) and
(38). An approximate nonaxisymmetrie mode is assumed

w = sinr(z/l + 2) cos(ny/R)

“and the eigenvalue equation for the bifureation load or pres-

sure is obtained. This displacement w will not satisfy the
simple-support end condition at z = 0 and I but this makes
little difference as long as the eylinder length is several times
the wavelength I. Results of these caleulations have been
presented in Figs, 7 and 10. The upper bound curve for the
unstiffened cylinder, shown in Fig. 7 and orginally obtained
by Koiter,® also is retrieved from the present caleulations.
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