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INITIAL POST-BUCKLING BEHAVIOR OF
TOROIDAL SHELL SEGMENTS*

Jonn W, HuTcHINSON

Harvard University, Cambridge, Massachusetis

Abstract—The initial post-buckhng behavior of double curvature shell segments subject to several loading
conditions is determined on the basis of Koner's general theory of initial post-buckling behavior. Previously.
the classical buckling loads associated with these shells were shown to be strongly dependent on the two radii
of curvarure and their relative magnitudes. Here. the initial post-buckling behavior and associated imperlection-
sensitivity are also seen 1o be strongly dependent on the two curvatures.

INTRODUCTION

AMONG those structures whose buckling strengths are known to be highly sensitive to
structural imperfections are spherical and cylindrical shells subject to external pressure,
axially loaded narrow cylindrical panels, some simple trusses and, of course, the axially
compressed cylindrical shell. The classical (lincar) buckling analysis of such a structure,
by itsell, 15 incapable of predicting the buckling strength. Accurate predictions for a given
structure require exact knowledge of the initial imperfections of the unloaded structure;
but, in general, such information is not at the disposal of either the analyst or designer. To
date, mainly because of the difficulty of measuring imperfections of actual as well as test
specimens, analytic work has served to provide information as to the relative imperfection-
sensitivity of structures and. thus, to qualitatively establish the validity or non-validity of
the classical buckling analysis.

In this paper some double curvature shell structures. whose classical buckling behavior
has only recently been studied. are investigated with the view toward determining their
mnal post-buckling behavior and, what is closely related. the dependence of their
buckling strengths on imperfections in the form of initial deviations of the shell middle
surface from the perfect configuration. This study is made within the framework of
Koiter’s general theory of initial post-buckling behavior |1].

The shell segments shown in Fig. 1 can be thought of as sections of complete toroidal
shells. The classical buckling analysis of these shells has been given by Stein and
McElman [2] for three different pressure loadings. Results of their analysis for the case
of buckling under lateral pressure are reproduced n Fig. 2. Here, the buckling parameter,
K = pr?/n*D (where p is the lateral pressure, D = ER’/12(1 —v?) is the bending stifl-
ness, h 1s the shell thickness and v is Poisson’s ratio) is a function of the length parameter

2= J—=v)rh
and the ratio of the twe radit of curvatures r,/r, . An elucidation of further details relevant
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FiG. 1. Configuration of toroidal segments.
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F1G. 2. Classical buckling of toroidal segments under lateral pressure.

to this plot, such as boundary conditions, will be given in the next section. At this point,
however, attention is drawn to the significant difference between the predicted buckling
strengths of the bowed-out and the bowed-in shells which are otherwise of essentially
the same dimensions. On the basis of the classical buckling analysis the buckling strength
of the bowed-out shell can be several orders of magnitude larger than that of the bowed-in
configuration. One might conjecture, and, indeed, this will prove to be the case, thadt the
initial post-buckling analysis indicates a significantly increased imperfection-sensitivity
hand-in-hand with the higher classical buckling strength.

Two other loading conditions are studied in addition to the lateral pressure case.
Quite similar, yet more imperfection-sensitive, is the external pressure case. In the third
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case the classical and initial post-buckling behavior of the bowed-out segments subject to
axial tension is determined.

CLASSICAL BUCKLING ANALYSIS

Here a brief exposition of Stein and McElman’s classical analysis is given. Buckling
under axial tension, although not considered by these authors, is also included in the
results given below., Donnell-type nenlinear shell theory is employed in the classical, as
well as the initial post-buckling, analysis of the toroidal segments. Consideration is
restricted to segments which are shallow with respect to the axial coordinate, that is
lir, < 1. The linear Donnell buckling equations, given by Stein and McElman, are written
here in terms of the normal displacement w and a stress function J

1 1
DV“w+;jjn+rj”,—2wa_n—ZwaJ.y =0 (1)
¥ x
and
l 1 1
S v ——w_ . =0 2
Eh f r, W rx“‘” @)

where E is Young’s Medulus and the assumption of shallowness in the axial direction
permits us to write V* = ( _, + . J*. The additional buckling membrane stresses are given
by N, =f, . N.o=f  and N = —f .

In equation (1) ANY and AN) represent the x and y components of the resultant mem-
brane stresses associaled with the prebuckling deformation of the perfect sheil. Except for
a narrow region near each end of the shell the prebuckling state of stress is homogeneous
and, for each loading system investigated here, is linearly dependent on the externally
applied load. In this paper the edge distortions are neglected and, thus, the membrane
stresses ANY and /ZNE are constant over the entire shell. The load parameter A is linearly
related to the applied load and N7 and N¥ are assumed to be fixed in some definite manner
depending on the particular ioading system. Refined analyses for cylindrical shells [3]
accounting for the end distortions have shown that, except for very short shells, the
local end efiects can be neglected when the buckle pattern has only one half wavelength
over the axial length. It is expected that approximate calcutations neglecting the edge
zone distortions should not introduce significant errors as long as z > 10 say. Since the
underlying aim of this study is to discover the role of the two radii of curvature. r, and r_,
in determining the initial post-buckhng behavior, we follow Stein and McElman and
choose the boundary conditions which are most tractable from the point of view of the
analysis. At each end of the shell the normal and circumferential tangential displacements
are required to vanish as is the additional buckling stress N, = /. and the additional
bending stress M. In terms of w and fthese are equivalent to

w=w, =f =f=0 at x=01 (3)

Other boundary conditions, completely clamped for example, can be expected to give
quite different predictions for the classical buckling load. Nevertheless, it is fel{ that a
complete study based on these boundary conditions should lend at least qualitative in-
sight to the imperfection-sensitivity of similar shells with other edge conditons.
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Equations {1} and (2) with the boundary conditions {3) comprise the linear eigenvalue
problem for determining the classical buckling load. The eigenfunction
. mux . ny
W, = SL—— 8in —
r.
Ehl? [n?lJrﬁzry/rt} _ommx | ony
— S E T sin—=

3
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is associated with the eigenvalue
Dr? ]

o I (N9m?+ N9

]:(mz S 12i3 (m? tﬂzi}; r;)z:|
i im-+h")

where i = al/nr . The classical buckling load 4, corresponds to the minimum value of
/e among all possible integer values of w and ». For cach of the three loading conditions
considered in this paper the mimimum value of /4, always occurs for m = . The minimum
with respect to n is found by treating # as a continuous vanable under the assumption.
to be verified a posteriori. that » is sufficiently large. The restriction to n > 3, say, Is
necessary in any case since Donnell-type equations are being used.

The indicated calculations were carried out with the aid of a digital computer and will
be presented in sections to follow. For the two pressure loadings the results are in agree-
ment with Stein and McElman’s calculations.

DESCRIPTION OF INITIAL POST-BUCKLING ANALYSIS

The linear buckling analysis predicts the critical load and associated buckling mode.
or modes, of the structure. A unigue buckling mode 1s predicted in every case considered
in this paper. The imitial post-buckling analysis of such a structure provides a single
nonlinear, algebraic equation of equilibrium relating the applied load to the deflection
in the buckling mode. The magnitude of the initial imperfection also appears in this
equation.

The normal displacement of the buckling mode deflection 1s

w = &sin(nx/l) sin(ny;r) (4)

where n is determined by the classical analysis and £ is the mode deflection relative to the
shell thickness k. Imitial imperfections in the form of the buckling modes are most critical
if, indeed, imperfections play any degrading role at all. In the present analysis the initial
deviation of the shells from the perfect toroidal form is denoted by w and is taken to be

® = & sin(mxl) sin(ny /7)) (3)

where here also, the imperfection £ is measured relative to the shell thickness.
The equilibrium equation obtained from the Koiter analysis, valid in the initial post-
buckling regime. is of the form

(l—?)-i+a53+b§3+...:,/’5+0rder EE+. .. (6)

e g

where 7/4, 13 the ratio of the applied load 4 to the classical buckling load A,. The derivation
of this equation and the calculation of the coefficients @ and b are given in the Appendix.



Initial post-buckling behavior of toroidal shell segments 101

Each of the structure—load combinations considered in this paper is of the “cubic type”;
that is, a is identically zero and the initial post-buckling behavior is determined by the
. term b&? in the equilibrium equation. Thus the governing equation is

A 3 A
(1—Z)f+bf —Zf ()
This equation is asymptotically valid for small £ and é.

The load—deflection behavior of the cubic structure is depicted in the two plots of
Fig. 3. The perfect structure, ¢ = 0, suffers no deflection in the ¢ mode prior to buckling.

=0 (PERFECT)
A A \EMPERFECT)

N
LOAD )
£>0 (IMPERFECT) LOAD A &> 0 (IMPERFECT)
DEFLECTION ¢ DEFLECTION ¢
b>0 b<0
NON IMPERFECTION- SENSITIVE IMPERFECTION- SENSITIVE

FiG. 3. Load—deflection behavior of cubic structure.

At 1 = 4, bifurcation from the prebuckling state occurs. If b > 0 the applied A increases
with increasing deflection ¢; while if b < 0 the equilibrium curve of 4 vs. £ falls in the
initial post-buckling region. The effect of an initial imperfection on the load—deflection
behavior is also shown in these two plots. Only in the latter case, namely b < 0, is the cubic

structure imperfection-sensitive in the sense that imperfections result in reduced values of

the maximum load the structure can support. An expression relating the buckling load
(maximum load) A* of the imperfect structure to the imperfection magnitude for the case
b < 0 is easily found from equation (7) in conjunction with the condition d1/d¢ = 0.

This equation is
PO
A* 3/3 o A¥
1—— | = 2—(/-b)f—.
( ; ) S —bid

(3

The plot of A*/4, vs. (/ —b)|& is given in Fig. 4. If \/—b is of order unity, imperfections
which are small relative to the shell thickness (i.e., £ a small fraction of unity) will result
in large reductions of the buckling load.

The results of the b calculation for the three loading cases are presented and dis-
cussed in the next three sections; and as we have mentioned, the details of the calculations
are left for the Appendix.
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Fi1G. 4. Buckling load vs. imperfection relation.

TOROIDAL SEGMENT SUBJECT TO LATERAL PRESSURE

The prebuckling state of stress of a perfect, shallow toroidal segment subject to lateral
pressure p is uniform, except in a narrow region near the ends of the shell, and is given by

AN =0 and AN = —pr,. (8)

Results from the classical buckling analysis have been referred to in the introduction and
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Fic. 5. Initial post-buckling coefficient for lateral pressure case.
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are shown in Fig. 2. This is a plot of the buckling parameter K = pr),fzjnzD as a function
of z = (1 —v)*I*/r h for several values of r fr..

Figure 5 contains plols of b/(1 — v?), again, as a function of z for several values of
r,'r.. The bowed-out segments. r, r, > 0. are imperfection-sensitive (1e. & < ) over a
major part of the range of z. The more the toroidal shell is bowed-out the more negative
1s b and, thus, the more sensitive the structure to imperfections. There 1s a significant
range. even for the cylindrical shell (v /v, = 0), for which  —bis of order unity, and small
imperfections relative io the shell thickness will, therefore, result in significant reductions
in the buckling pressure. For configurations which are sufficiently bowed-in b is actually
positive, although quite small for sufficiently large z. over the entire range of z. Inter-
pretation of the curves for z < 10 must be viewed as qualitative since then the details of the
prebuckling deformation will quite likely become important. The bowed-out shell has a
higher imperfection-sensitivity associated with its considerably higher classical buckling
load.

The 1nitial slope of the generalized load—deflection curve of the perfect sheli can also
be determined from the initial post-buckling analysis. This calculation is given in the
Appendix. The resulting relation of pressure to average lateral deflection is

L 14
LA =4 (/ _ ]) (9)
Woe Lo KA/,

wherce w,,. 1s the average normal displacement of the shell and »  is the prebuckling
normal displacement at the critical pressure. The coefficient i, alse calculated in the
Appendix, is plotted in Fig. 6 as a function of z for several values of 7 /r .
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FiG. 6. [nitial post-buckling pressure Jateral deflection relation.

The results for the lateral pressure buckling ol a cylindrical shell (v, 7, = 0} are in
agreement with results obtained previously by Budiansky and Amazigo (4] The method
employed here is the same as that used by these authors. Koiter | 5] has determined the
initial post-buckling behavior of narrow cylindrical panels under axial compression.
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Like the toroidal shells considered here the narrow panel has a unique buckling mode
and its initial post-buckling behavior is determined by the coefficient b of the cubic term
in equation (7). Koiter finds that depending on the narrowness of the panel the post-
buckling behavior can correspond to either an initially rising or falling load—deflection
curve.

TOROIDAL SEGMENTS SUBJECT TO EXTERNAL PRESSURE

In this case there is a prebuckling axial compressive stress in addition to the circum-
ferential stress according to

AN = —4pr, and ANQ = —pr(l—r,/2r,). (10)

The results of the classical buckling analysis are shown in Fig. 7. The trends are similar
to the lateral pressure case although it is noted that the discrepancy between the buckling
pressures of the bowed-in and bowed-out shells is emphasized even more.
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FiG. 7. Classical buckling of toroidal segments under external hydrostatic pressure.

Plots of b/(1—v?) vs. z for different values of r,/r, are shown in Fig. 8. As would be
expected the shells are more imperfection-sensitive than in the previous case.

When r/r, = 1 the shell is locally spherical at each point on its surface and the
prebuckling stresses are exactly those correspondmg to a complete spherical shell of
similar radius and thickness, namely N, = N, = —3pr. The classical buckling pressure
of the r /r, = 1 case for large z is also that for a complete spherical shell

-l
—JBa-\
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FiG. 8. Initial post-buckling coefficient for external pressure case.

Furthermore, when r /r, = 1, there is not a unique buckling mode, but a large number of
buckling modes associated with the classical buckling pressure and the analysis employed
in this paper is no longer valid. The multimode post-buckling behavior of a shallow section
of a complete spherical shell has been studied in [6]. The spherical shell is a “quadratic
type” structure and the buckling load-imperfection relation for small imperfections & is
of the form

1-2/2, = (ad?

while the analogous relation for a “cubic” structure for small £ is

1-4/4, = [( - )T

The transition from the cubic type structure, r,/r, < 1, to the inherently more imperfec-
tion-sensitive quadratic character is reflected in the plots of b vs. z for values of r /r, near
unity.

The initial post-buckling behavior of externally pressurized cylindrical shells has also
been studied by Budiansky and Amazigo and their results coincide with the r,/r, = 0
calculations presented here.

TOROIDAL SEGMENTS SUBJECT TO AXIAL TENSION

The prebuckling state of stress in the perfect toroidal shell resulting from an applied
axial stress resultant N° is

AN? = N°  AN® = —N°r/r, (11)
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and a compressive circumferenuial stress will be induced only if » /r, > 0. In other words.
buckling in tension occurs only for the bowed-out shells. The results of the hnear buckling
analysis are given in Fig. 9 where. now, the buckling parameter is K = N°?/z?D.
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FiG. 9. Classical buckling of bowed-out toroidal segments under axial tension.

The b plots, analogous to those of Figs. 5 and 8, are presented in Fig. 10. If rjr, < 4
the toreidal segments appear to be relatively insensitive to imperfections. For values of the
length parameter tess than a certain value, depending on r./r,. b is positive and the load
increases in the initial post-buckling region.

Figure [ 1 gives plots of ~ which appears in the load-¢longation relation of the perfect

shell
i_i+1 ) ] 17
e i el (12)

c (Y

where ¢ is the axial elengation and ¢,, is the prebuckling axial elongation at the critical
load. Depending on the value of r,/r, and z, the slope of the initial post-buckling load
elongation curve can be either almost that of the prebuckling curve or sharply falling.
These calculations are given in the Appendix.
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Fi1G. 10. Initial post-buckling coefficient for buckling under axial tension.
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Yao [7] compared experimentally obtained buckling loads of axially loaded, truncated
hemispheres with predictions based on a linear buckling analysis. The results presented
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Fig. 11. Load-elongation relation in initial post-buckling of toroidal segments subject to axial

tension [v = §].
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in this section for segments of spheres, r,/r, = 1, are not directly applicable since both
Yao’s calculations and the tests correspond to clamped end conditions. On the other
hand, qualitative agreement should be expected with respect to the degree of imperfection-
sensitivity of clamped and simply supported shells. The test specimens were sufficiently
short (i.e. I/r, sufficiently small) to justify, if only approximately, the shallowness assump-
tion made in the present analysis. The test buckling loads ranged from one third to
slightly over one half the classical buckling loads with the length parameters falling in the
range 50 < z < 300. It is interesting to note that the range of the z’s of the test specimens
falls within the imperfection-sensitive range predicted by the present analysis.
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APPENDIX: INITIAL POST-BUCKLING CALCULATIONS
Donnell-type nonlinear shell equations

The membrane strains ¢,, ¢, and ¢,, of Donnell-type theory are related to the normal
and tangential displacements to the shell middle surface w, u, v by
& = U, + w/rx +%w,2x + W,xw,x

g =V, +wWr,+3wi+w w, (13)

and

26, =V tUFW W AW W W W,

where w is the initial normal deflection of the shell middle surface from the perfect toroidal
segment with radii r, and r,. The bending strain-displacement relations are linear:
ky=—w,., k,=—w,, and k., = —w_,. The stress-strain relations are also linear:
Ee, = N,~vN,, M, = Dk, +vk,), etc.

Equations of equilibrium can be formulated in terms of a variational principle of virtual
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work. For Donnell theory the statement of this principle is

I N G+ N de, + 2N o, + M Sk + M ok, +2M ok ) dS
) sk,

+ _‘/poéwdsﬁ | iN%8u ds = 0 (14)
s c

where ~p° is the applied pressure, N" is the stress resultant applied at the ends of the
shell and de, = ou , +ow/r +w ow +Ww dw_, ok, = ~dw,,, etc. The scalar load
parameter 1 has been introduced to emphasize that for each loading combination cen-
sidered in this paper the axial load and lateral pressure are fixed in a definite ratio.
Thus, N® and p® are assumed fixed in a manner appropriate to the particular loading
combination. The differential equations associated with this variational principle are
the three equilibrium equations, which when expressed in terms of the three displace-
ments i, v, w, provide the set of Donnell-type equations governing the deformation of the
shell. Boundary conditions in this analysis are taken to be v (the circumferential displace-
ment) = w = M, = 0 and N, = AN at the ends of the shell. x = 0,1,

The prebuckling stresses in the perfect shell for a given lateral pressure loading /p”
and applied axial stress ~N? are uniform, except for deviations in a narsow region near
the ends of the shell which will be neglected in this analysis. The nonzero prebuckling
stresses and deformations are

AND = iNY, ANG = = p°r .+ N jr,) (15)
Aw? = Eh[NO(ryﬂ +vi+pUr,] (16)
and
= LN o D 1), )

Initial post-buckling analysis for unique mode buckling

The notation and development of Koiter’s general theory displayed here are taken
from [8]. Only the outline and essential results of the theory will be given. The reader is
referred to [B] or Koiter’s own work [1] for omitted details and points of rigor which will
not be re-established here. For brevity, the stress. strain and displacement fields are denoted
by o. ¢ and u, respectively.® The magnitude of the applied joad system is taken to be
directly proportional to the load parameier 4.

The strain-displacement relations of the perfect shell are written symbolically as

= L ()+1L,(u) (17)

where L, and L, are. then. homogeneous functionals which are linear and quadratic.
respectively, in . In the presence of an initial deflection of the unloaded structure u
the strain resulting from an additional displacement u is

g= L, (w)+3L()+ L fu. 1) (18}

* In the general developiment v is a generalized expression for the displacements. It should not be confused
with the axial displacement in the Donnell theory which bears the same symbol.
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where L (w, &)= L, (. u) is the tilinear. homogeneous functional of u and & which
appears in the identity.

Lyfu+u) = Lo(u)+ 2L, (. u)+ Ly{u).
The stress—strain relations are linear and are denoted by
o= H (g (19

where A, 1s a homogeneous. linear functional.
Equarions of equilibrium are formulated via the principle of virtual work. In compact
form this principle (equation (14) for Donnell theory) is writien as

lag.de}—AiB,(6u) =0 (20)

where {o. &} is the internal virtual work of the stress field ¢ through the strain variation
de and 2B, (0u) 1s the exrernal virtual work of the load system of intensity 4 through the
admissible displacement variation Ju.

The prebuckling deformations of the perfect shells, equation (16), are linearly depen-
dent on the applied load and are abbreviated as sug. Since the prebuckling strains are
linearly dependent on the displacements. 1.e. Ly{u,) = 0. the prebuckling stresses. equation
{135). are denoted by /¢” and are related to ju, by ¢° = H,[L,(u,)]. To discover the eigen-
value 4, and eigenmode u, for Jassical buckling we set

U= g+,

1n the field equations and retain only the linear terms in the buckling mode u,. The resuliing
variational equation is. in the compact notation.

GGy Ly, Sy + s, Ly(du)) = 0 (21)

where 5, = H[L,(u,)]. When this statement is translated into Donnel) notation the dif-
ferential equations associated with this varialional equation are the linear buckling
equations which. when written in terms of a stress function and the normal displacement in
the usual manner. become equations (1) and (2).

As previously mentioned. each structure—loading combination jnvestigated n this
paper has a unique buckhng mode associated with the classical buckling load. To study
the jnitial post-buckling behavior one writes the tolal displacement. quite gencrally. as

W= Atg+Cu,+d (22)

where u, is now considered normalized in magnitude in a definite way, The displacement
i is taken to be orthogonal to «, in the sense

{o0, Lis(ue, i} =0 (23)

When a structure is imperfection-sensitive, imperfections in the form of the buckling
mode are most critical. In this study the imperfection is taken as

i =

u, (24)

L

The initial post-buckling analysis provides an algebraic equilibrium equation relating
&, ¢ and the load parameter +. This equation is a representation which is uniformly valid
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for small € and . To obtain this equation one writes
fl = 52u2+é3u3+ coe
+EEuy +Euy +. ]+ " (25)
and then u as given by (22), with the aid of equations (17)19), is substituted into the
variational equilibrium equation. The requirement that equation (20) be satisfied for the
variation du = u,6¢ gives the scalar equation relating 4 to £ and &
- f(’lc - 'l) {00’ LZ(uc)} +%€2{sc’ LZ(uc)}
+ 53[2{86, Ll l(uc’ uZ)} + {sz’ Lz(“c)} +%{H1(L2(uc))’ Lz(uc)}]
+O0(EN+... = —Ei{6g, Lo(u)} +O(EE. EH)+. .. (26)
where s, = H,[L,(u;)]. For all variations du orthogonal to u., equation (20) provides
the variational equation necessary for determining u,
Ac{00s Ly 1(uz, 6u)} + {52, L1(6w)} =
~ {Ses Ly (0, 60} —${H, [Ly(u)), Ly (60)}. @7
Equation (26) can be written in the form of equation (6) given in the body of the report,
ie.
A A
(l—l—)é+aéz+bé3+...=T¢+... (6)

where the coefficients a and b are
3
f{sci Lz(“c)}
=" 28
—A'c{o-o, Lz(uc)} ( )

and

b= Z{Sc, Ll l(uc’ uZ)} + {s2’ Lz(“c)} +%{H1[L2(uc)]’ Lz(uc)}
- )»c{o'm Lz(“c)}

29

Calculation of the b coefficient for toroidal shell segments

The buckling mode (4) is such that the 4 vs. £ relation of the perfect toroidal shell can
depend only on the magnitude of £ and not on its sign and, thus, a must be zero. This can
be verified directly by noting that

{Sc ’ L2(uc)} = i (fc,yywcz,x +f;:,xxw3,y— 2Jc‘t,xywx,xwc:.y) das

=0
where, consistent with equation (4),
w, = hsin(zx/l) sin(ny/r,)
Eh?I’A

2
nry

fi=— sin(nx/]) sin(ny/r,) 30)



112 JoHN W. HUTCHINSON

| 1+@%rr,
4 ‘[ (1+ﬁ2’)2]'

The initial post-buckling behavior, then, is determined by b as long as this coefficient
does not also vanish. Evaluation of b necessitates solving for u,. A straightforward trans-
lation of the variational equation (27) into Donnell notation followed by the usual calculus
of variations procedure leads to three simultaneous partial differential equations for u,,
v, and w,. These equations are

and

1 1
DViw,+ ;—N;” +r—N(’2) —2N2w, .. —ANIW, .

x y

= f;,yywc,xx +j;:,xch,yy - 2f;:,xywc,xy

1 Eh |1 1
~37=2 [r—x(wf,x +w2) +;—(wf,, + vwf,x)]]
N(Z) N(Z) Eh 1—
+ xy,y = 2 1 2 [(W‘. x+ VWC y) +( V)( Wc,y),y]

1 Eh
21—

with the boundary conditions w, = w,,, =v, =0 and NP +4[Eh/(1—v?)]
[w2,+vww2,] = 0at x = 0,1, where N® = (Eh/1 —v*)[u, ,+w,/r, + Vv, + w,/r)], etc.

These equations are reduced to a much more manageable form if the stress function
f> is introduced according to

N(z +N§52y)x = 2[(wc y+vwc x) +(1 —V)(Wc xWe y) x]

1 Eh
(2) —fz,yy 2 1 2(ch+ wcy)
1 Eh
N;Z) f2 xx (Wc Y + VWc x)
1 Eh

2)
Ngcy) = _fz,xy_i 1+vwc,ch,y'

Then the equations for w, and f, become
DViw, +;1;f2,xx +rle2,yy_)~cN2W2,xx - )'cN;)WZ,yy
= JeusWe,in HSoxxWe,pp = 2o xyWeyy - (31)
and secondly, the compatibility equation

1
4 w2
V fo— - w2 xx —Wayy = Wexy— WexxWe.yy (32)
y x

and the boundary conditions reduce to

Wz = Wz'xx =f2’xx =_fz = 0 at X = 0, I.
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A stress function has been introduced and, thus, a further condition is that the tangential
displacements be single valued over a complete circuit of the shell. For v, this condition
Is equivalent to

AN 1 W

(')[ l:ﬁ'(f'_’,xx—vfz‘yy)—iwcz,y_rffji dy = Q. (33)
The right hand sides of equations (31) and (32) are respectively,

Eh®A(Rmfl)?

Ty

[cos(2rx/D+ cosny/r,)] and $R*A*(n/)*[cos(2ax/l)+ cosl2ny/r )]

The sofution to equations (31) and (32) can be written in the separated form

wy = 3 agsinlimx/D+cosny/r,) Y 5 sin(inx/l) (34)
i=1,3,5... i=1,3,5...
and
fo =Y Bisinfinx/h 4+ cos2ny/r) ¥ 8, sinlinx/l) (35)

and the coefficients of these series can be determined with the Galerkin procedure. One
finds

o = n(l —v)a%hd, = n(l —v)ah(4i 4+ 50,
B, = nntERf, = it EWN=%i? 24z + A N2 — Az/n?)/Q,
= 4n(l— v ARy, = dn(l — v AP HLAG? 4+ 4n°Y + 22 + 20°r fr J/H,
§; = dnRPERS; = 4nn? ERP[r2(i* 4- 4Ry} 24z + A NOit 2
+ 24NV — 2% + 4R*r fr ) A /n? )/ H,
i=1,35...

with

©
i

(i = (m*i*/ 1224+ A, N22i2 4 2)/4
o = il 4R% )12z + AN I2207 + 47%)2 + 2 NO4n i (i? + 47%)?
+2{i? + 4rtr fr )]

and where AN = A1 —v?)r NY/ER® and A NY = A1 —v3)*r NY/Eh®.

That this solution satisfles the single valued conditions can be verified by direct substi-
tution into equation (33), for example. Alternatively one notes imunediately that the y
dependent terms in {(34) and (35) satisfy equation (33). Then one can recognize that
equation (32), for the y independent part of the solution, when integrated twice with respect
to x in conjunction with the boundary conditions is precisely condition (33). Similarly one
can show that u, is single valued.
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In a similar fashion the axial load—elongation relation for the initial post-buckling
regime of a perfect shell in axial tension can be calculated directly. The average elongation
is

1 1 w 1,
& = % i]:iﬁ(Nx_VNy)—r_x_—z-w’x:I dS.

The parameter in the load—deflection relation, equation (12), is again k = —1/y where
now

—_ -1 1 Wy 1 2
n= 27U'b8,,c l[Eh(fZ,yy—sz,xx)_r_x—zwc,x:l dS

and ¢, is the axial elongation at the onset of buckling. A series representation for # is
obtained in a straightforward way. The results of the calculations are shown in Fig. 11 as
plots of k vs. z.

‘ (Received 6 January 1966 ; revised 3 March 1966)

Résumé—Le comportement initial aprés flambement de segments d’enveloppe a double courbures, soumis a
plusieurs conditions de charge, est déterminé en se basant sur la théorie générale de Koiter sur le comportement
initial aprés flambement. Auparavant, I’on avait indiqué que les charges de flambage classiques associées a
ces enveloppes dépendaient beaucoup des deux rayons de courbure et de leur grandeur relative. Dans cette étude,
le comportement initial aprés flambement ainsi que I'imperfection-sensibilité y associée dépendent beaucoup
des deux courbures également.

Zusammenfassung—Das anfingliche Benchmen nach dem Beulen von doppelt gebogenen Schalen-Segmenten
die mehreren Belastungen unterworfen werden, wurden nach Koiters allgemeiner Theorie des Anfangsbenehmens
bestimmt. Ehemals wurden die klassischen Beulungslasten als abhidngig von zwei Kriimmungs halbmessern und
deren relativen Grossen dargestellt. In dieser Arbeit werden sowhl das Anfangsbenehmen wie auch die Fehler-
Empfind-lichkeit als abhiingig von den zwei Kriimmungen gezeigt.

AGcTpakT—IIepBoHaYaNbHOE ITOBENCHHE CETMEHTOB OOOMOYKM ABOHHON KPHBH3HBI ITOCIE ORITyrHOaHMA,
JIONyCKAs HEeCKONBKO YCIIOBUM HACPY3KH, ONpPeAenseTcs Ha ocHose oOwmei reopunm Koitrepa (Koiter’s) o
NEPBOHAYAILHOM IIOBENCHHH mOCie ObNMyrubaumsa. Paxee, KiaccHYeckwe Harpy3Kd, BBI3BIBAIOLIHE
TIPOOJILHEIN M3rHO, CBA3aHHbIE ¢ 3THMH O0O0JIOYKAMM, OKa3aIMCh OYEHb 3aBHCAIIAMH OT ABYX PaduycOB
KDHBH3HBI M UX OTHOCHTENILHOM BEJIMYMHEL. 30€Ch, IIEPBOHAYAIEHOE MOBeIEHHE ObIMyrubanus , CBA3aHHOE C
HapymenneM (neheKToM) CTPYKTYPHI YyBCTBUTEIBHOCTH TAKXKE MOKA3BIBAET, YTO OHH OYEHBL 3ABHCAT OT
TON M ApYTO¥ KPHBU3HEBIL.





