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SuMMARY

In THE first part of the paper a simple model is used fo introduce some of the analytical and physical
features of post-bifurcation phenomena in continuous elastic—plastic systems. An analysis is presented
for the initial post-bifurcation behavior of a class of elastic—plastic solids subject to loads character-
ized by 2 single load parameter. Bifurcations which occur at the lowest possible load are singled out
for attention. The theory makes connection with Hill’s general theory of bifurcation and uniqueness
in elastic~plastic solids and Koiter's general approach to the initial post-buckling behavior of con-
servative elastic systems. Buckling of an axially compréssed column in the plastic range is used to
iflustrate the theory.

1. INTRODUCTION

THE FIRST possible bifurcation to occur in a solid or structure compressed into the
plastic range almost always takes place under increasing load according to the notions
of SHANLEY (1947) and the general theory of bifurcation and uniqueness of HiLL (1958,
1961). This is even true for imperfection-sensitive structures, such as many shells,
which have an unstable initial post-bifurcation behavior in the elastic range and
bifurcate under decreasing load. In the plastic range, nonlinearity in the stress—strain
relation in the form of decreasing stiffness with increasing deformation contributes
an additional destabilizing effect to the geometrical effects already present in the
elastic range. Thus, it seems almost paradoxical that a structure with an unstable
bifurcation behavior in the elastic range will undergo a stable bifurcation in the
plastic range. An analysis of the compressive buckling of a simple imperfection-
sensitive model by HUTCHINSON (1972) shows that while the load does increase above
the lowest bifurcation load it does so by only a very small amount. For all practical
purposes, the lowest bifurcation load is the maximum support load of the model in
the absence of any impeifections. 1n fact, even the column under axial compression,
which has a fully stable post-buckiing behavior in the elastic range, becomes unstable
under dead loading after just a slight rise in the load above the lowest bifurcation load
if account is taken of the decreasing slope of the stress—strain curve (DUBERG and -
WILDER, 1952). )

All this suggests that in many instances the stable portion of the post-bifurcation
response is contained within a small neighborhood of the bifurcation point. Con-
sequently, a perturbation expansion developed about the bifurcation point may often
provide not only the behavior in the initial stable fégime but also the transition to
unstable behavior. -An approach of this kind is undertaken here. Qur analysis is
similar in spirit to that employed by Korrer (1945, 1963) in_ his general theory of
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164 J. W. HUTCHINSON

elastic post-buckling behavior. Some of the salient features of initial post-bifurcation
behavior in the plastic range are first introduced with the aid of a simple model. Qur
starting point in the general continyum analysis is Hill’s bifurcation theory for
elastic-plastic solids. We specialize Hill’s bifurcation criterion to a class of loadings
characterized by a single load parameter, and we direct attention to post-bifurcation
- behavior associated with the lowest possible bifurcation load. A column under
uniaxial compression is used to illustrate the general theory. For the convenience of
the reader, an outline of the general analysis together with the introduction of notation
and terminology is given in Section 3 following the discussion of the simple model.

2. POST-BIFURCATION BEHAVIOR OF A SIMPLE MODEL

The simple model shown in Fig. 1is a “continuum™ version of a model studied in a
previous paper (HUTCHINSON, 1972). It combines the essential features of SHANLEY'
(1947) model of a plastic column and voN KARMAN, DUNN and TSIEN’S (1940) model
of an elastic imperfection-sensitive structure. The rigid-rod model -can displace
vertically as measured by u and can rotate as measured by 0 so that the contraction of a
spring attached at a distance x along the horizontal rod is

) &= u-+x0. 2.1)

The springs are taken to be continuously distributed so that the rate of change of the

compressive force per unit length is given in terms of the local strain-rate by

§=E,¢ {2.2)

for plastic loading and by '
§=Eé (2.3)

within the elastic range or for elastic unloading. The tangent modulus E, is taken to
be a smooth function of s or e.

Nonlinear geometrical effects are incorporated into the model only through the
nonlinear horizontal spring which develops a force K = k,L*6*+k,L*0°+ ...
under rotation as indicated in Fig. 1. Vertical equilibrium requires that

L N
P= | sdx 2.4)
—L

o L

> 4; N
3 2z
£ -
i RTITT

. Fig, 1, A simple model for bifurcation of continuous elastic-plastic solids in the plastic range.
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while moment equilibrium requires

L
(PLO+K L= | $xdx (2.5)
—L

where P is the applied compressive load.

When bifurcation occurs in the elastic range the critical load is P, = 2FEI3/(3 L)
and the bifurcation point is an asymmetrical one (if ky # 0) in which the load and
rotation following bifurcation are related by '

P 3k, L o 3k, L

- 2

BP,m TR P apn Ve 26)

For k.8 >0 or for k; = 0 and k, > 0, the initial post-bifurcation behavior is
unstable under dead load.

In the plastic range the first possible bifurcation occurs at the load P, = 2EL3)
(3 L) where E7 denotes the value of E, at the bifurcation point. At any point where
plastic loading continues,

B 2

E, = Ej + (c;—s')c(s—sc) +1 (isf')c(s—sc)z F.... 2.7

Before analyzing the model by properly taking into account the loading-unloading
behavior characterized by (2.2) and (2.3), we digress to consider the bifurcation
behavior of a model with nonlinear elastic stress-strain behavior characterized by
(2.2) (i.e., the unloading branch (2.3) is suppressed). Extending the meaning of Hirr’s
(1961) terminology we will refer to the model-with the nonlinear elastic stress-strain
relation as the comparison model. The lowest bifurcation load of the comparison

model is still given by the tangent modulus formula, P, = 2E?L3/(3 L), and the first
term in the post-bifurcation expansion is found to be

P
= 1+ai0+a50*+..., (2.8)
where
. 3k, L * fdEN 17!
Y73 [1 T3E (?i?)c] (29)

and the superscript e is used to distinguish the initial slope of the comparison model
from that of the elastic-plastic model which will be introduced later.

- If there is no reversal in sign of the strain-rate within some range of positive (or
negative) 8 then the behavior of the comparison model will be identical to that of the
elastic-plastic model in that same range of 8. The condition for this to be frue is easily
obtained. Strain-rate reversal will first occur at either x — + L depending on whether
6 Z 0, respectively. Using the cxpansion for the comparison model one finds that

2 o
&= 3% [d‘i + ‘%] 6+ 0(80), (2.10)
for x = 4L respectively. Thus, for example, if bifurcation takes place with § > 0
and if ¢§ > 3 L/Z, then no strain-rate reversal will occur within some finite (perhaps
smatl) range of positive 6. This can only oceur if the bifurcation point of the compari-
~son model is an asymmetrical ‘one. Then due to the geometrical nonlinearity (as
determined by k,—see (2.9)), the load increases propottional to increasing 8 at a
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sufficiently large rate to ensure that § > 0 everywhere on [x| < L. 1If this is the case
then strain-rafe reversal will occur in the companson model at bifurcation for § < 0.
This latter case is by far the more important since on this branch the geometrical
nonlinearity has a destabilizing effect ; when the comparison model has an asymmetrical
bifurcation point we will restrict consideration to this branch. Without loss in
generality, we will take k; > 0 so that a§ < 0 and consider bifurcation under mono-
tonically increasing 0.

The position of the instantaneous boundary between the plastically loading and
elastically unloading regions is denoted by d. The boundary separating the loading
region from the unloading region starts out at d = — L and sweeps to the right in
Fig. 1 as 6 increases. Details of a direct method for obtaining the initial post-bifurca-

tion expansions about P, are given in the Appendix. The perturbation expansions for
P and d are found to be

P 1+a,0+a,03*+a30%+a,0%%4-..., (2.11)
d 3 172 5 3/2
zz—l"“ibzg —2b38—'“2*b46 +‘--., (2.12)
where the first few coefficients are given by
3L
a1 =7, 2.13)
- 3L 4L (2E{[3L—~(dE,}ds), I*]+ 3k, L) 12

o myg b= = I g
_ EJ[3L—(dE|ds), F]—k, L )
b3 - 3(E__Ec)L s (2'15)

3b3L 32 dE, 3k, I7?
as=—p —p i (d) 2B 2.16)

The initial post-bifurcation expansion (2.11) is distinguished from counterpart
expaunsions for elastic systems (KOITER, 1945, 1963) and even from those for discrete
element elastic—plastic systems (see, for example, SEWELL (1965), AuGusTi (1968) and
HurcHNsON (1972)) by the presence of terms involving fractional powers of the
bifurcation amplitude . The presence of these terms is associated with the continuous
growth of the region of elastic unloading, and it will be shown that they are an essential
part of expansions for elastic—plastic continua, 7 S )

Bifurcation clearly takes place under increasing load since a; > 0 in 2.11).
However, since the third term in the expansion, a, 62, is only of relative ordet §1/2
smaller than e, 6 (as opposed to a relative order 6 between terms for an elastic system),
it may already become numerlcally important at small values of 8. Since 4, is negative
the maximum increase in load above P, will be slight if |a,] is large compared to a,.
First, note from (2.6) that in the elastic range the model will have a steeply falling
load-deflection behavior if (k,[/EL) » 1. If this condition holds then in the plastic
‘range Iazl > a, even if (dE,/ds), = 0. Note also that a decreasmg slope of the stress—

strain curve (i.e. (dE,/ds), < 0) also contributes to the magnitude of a, and further
tends to d1m1msh the maximum support load, as expected.
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At bifurcation, plastic loading occurs everywhere according to (2.12) except at
X = - L where neutral loading occurs (i.e. § = 0). A Shanley-type bifurcation analysis
only requires that no unloading take place at the lowest bifurcation load and this
limits the possible branching solutions by the condition a, > 3L/L. However when
higher order terms in the post-bifurcation expansion are considered, only the one
solution (2.11) emanating from P, is possible. In fact, if a§ < 3L/L we can immedi-
iately argue that @, cannot exceed 3L/L. Since if it did one can readily show that no
elastic unloading would occur in some range of positive 0 and thus the comparison
model would pertain. But this is a contradiction since we have already shown that the
behavior of the comparison model cannot coincide with that of the elastic—plastic
model if af < 3L/L. Uniqueness of the lowest branching solution has also been
shown for discrete Shanley-type models as discussed by SEwELL (1972).

Initial post-bifurcation responses are depicted in Fig. 2. The skeich on the left
illustrates the case where the comparison model has an asymmetrical bifurcation

P P
RN P e
_ 8 8

Fia. 2. Load—rotation behavior of simple model in the initial post-bifurcation régime. Dashed line
indicates initial slope of comparison model.

point with @ < — 3L/L so that for negative @ the initial slope of the elastic-plastic
model is the same as that of the comparison model. In the center sketch, —3E/r
< ai < 0, so the initial response of the clastic—plastic model does not coincide with
that of the comparison model on either branch. A case where the comparison model
has a symmetrical bifurcation point (a = 0) is shown on the right. In each sketch the
initial slope of the comparison model is displayed as a dashed line.

Expansions (2.11) and (2.12) break down in the “elastic limit” as Ef — E, as is
seen from the fact that a, and b, approach infinity. This is not unexpected since a,
in (2.11) is determined by the condition that no unloading occurs at bifurcation and g,
is positive, independent of Ef. The coefficient of 4 in the elastic expansion (2.6) is
determined from equilibrium considerations alone. In general, reversal of stress does
occur at bifurcation in the elastic case and thus the expansion (2.11) for the plastic
range does not yield (2.6) in the limit Ef — E.

3. FieLp EQUATIONS FOR AN ELASTIC-PLASTIC SOLID AND AN
OVERVIEW OF THE POST-BIFURCATION ANALYSIS

3.1 Field equations

~ Let material points in the body be identified by a set of convected coordinates x".
Let g,; and g¥ be the covariant.and contravariant components, respectively, of the
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metric tensor of the undeformed body. We will use the standard convention that

superscript indices correspond to the contravariant components of a tensor or vector

and subscript indices denote covariant cornponents. Let u; be the components of the
displacement vector referred to the reciprocal base vectors of the undeformed body.
The Lagrangian strain tensor is given by

iy = Houy, jH oy, d+305 g (3.1)

where the comma denotes covariant differentiation with respect to the metric of the
undeformed body and the indices of the components of the displacement vector are
raised and lowered using this same metric tensor.

Contravariant components of the symmetric Kirchhoff stress tensor defined with
respect to base vectors deforming with the body are written as v/, Components of the
nominal surface traction vector (force per original area), T%, are defined with respect to
the undeformed base vectors and are related to the Kirchhoff stress tensor by

T = @+t ony, 3.2)

where n; are the components of the unit normal to the surface of the undeformed body
referred to the undeformed base vectors. With the choice of variables the principle of
virtual work is (see, for example, BUDIANSKY (1969))

{7 6n; dV = | T' 6u, dS, (3.3)
¥ 5
where
5}1,—_’- = ';‘(6”,; I+5uL i)+‘21‘(uk’i 6uklj+uk,j 51!," ") (3.4}
and where dV and dS are volume and surface elements of the undeformed body.
Convected rates of the contravariant components of the Kirchhoff stress are
denoted by ¢; and the strain-rates #;; can be expressed in terms of the velocities #;
using (3.1). The incremental form of the principle of virtual work is (assuming no
body forces)

{{# onyt7 it Suy 3} AV = | 17 Su, dS. (3-3)
J 5

Surface traction rates are obtained from (3.2) and the incremental equilibrium
equations are

Y e ), A ) =0 (3.6)
A class of flow theories discussed by HiLr (1967) for solids characterized by a
smooth yield surface is considered. Let 7"/ denote the components of the unit tensor

normal to the elastic domain in strain-rate space. Where the yield condition is
- satisfied, the relation between the stress-rate and the strain-rate is

= kg for m", >0, 3.7
-tij = 3’”"’7},‘1 for mklﬁm = O, ) (3‘8)

where
[R gl _ ;11 M. (3.9

Here, & is the current tensor of elastic moduli (for this choice of objective stress-rate)
and g is a positive constant which depends on the deformation history and which
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characterizes the current level of strain-hardening. When the stress lies within the
yield surface (3.8) holds, .

3.2 Overview of the general analysis

With the simple model results serving as a guide, we now give a preliminary
discussion of a method for analyzing the initial post-bifurcation behavior in a three-
dimensional elastic-plastic solid. Attention is restricted to a body subject to combi-
nations of dead loads and prescribed displacements over its surface which are every-
where proportional to a single load (or deformation) parameter A. Initially, as A
increases monotonically from zero, there is a unique solution 7°/, termed the Sfunda-
mental solution, from which bifurcation is first possible at 1 =~ A For simplicity it

i
will be assumed that there is a unique eigenmode T associated with 4. The eigenmode
is normalized in some way and the amplitude of its contribution to the post-bifurcation
deflection is denoted by £. This amplitude is the expansion variable in the perturbation
expansion which is developed about the lowest bifurcation point. There are, in general,
at least two distinct branches to the post-bifurcation response which are not analytic
continuations of each other (as illustrated for the simple model in Fig. 2). Therefore,
it is convenient to adopt to convention that £ take on only positive values. To analyze the

opposite-signed deflection we will change the sign of the eigenmode T and not of its
amplitude £.

The bifurcation analysis is carried out in Section 4. There it is shown that the
initial slope A; (where 4 = A_+1, &+ ...) must be sufficiently large to ensure that no
elastic unloading occurs at bifurcation. The bifurcation solution is of the form

# = 9. Ty (3.10)
Qar .
. .s PP €5 N
™= R P e, 3.11)
where now
- 40)
=) 3.
Q) ac (3.12)
and
d()]
PR 3.1
¢ @i s (3.13)

The fundamental solution is a function of A, and 1 is in turn dependent on € on the
bifurcated path; thus, t°/ can be regarded as a function of ¢ and +°¥ is shorthand for

d% 4,
dl d&
A superscript or subscript ¢ always significs quantities evaluated at Age
In Section 5 we digress briefly, just as in the analysis of the simple model, to discuss
the initial post-bifurcation behavior of the comparison solid. We introduce the non-
linear hypo-elastic solid specified by the moduli (3.7) corresponding to the loading

branch of the elastic—plastic constitutive relation. Under conditions to be detailed,
the critical value of A and the eigenmode for the comparison solid are identical to the
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corresponding quantities for the elastic—plastic solid. The initial slope for the hypo-
elastic comparison solid is denoted by A% so that 1 = A, +AM&+ . ... If 1%+ O the

* bifurcation point of the comparison solid is asymmetric. We then show that if A%
is sufficiently large there will be no reversal in the sign of m"s;; in some finite range of
positive £&. Within this range the behavior of the elastic—plastic solid coincides with
that of the comparison solid and, in particular, 1, = 2. However, the more interest-
ing case, and the one on which we will concentrate, is where there is a reversal in sign
of m'j;; at bifurcation for the comparison solid.

For this latter case we show that the initial slope for the elastic—plastic solid 4,
must be the smallest possible value which ensures that no elastic unloading occurs at
bifurcation. That is, there must be at least one point in the body where neutral
loading (i.e. m*7,; = 0) occurs at bifurcation. This point(s) will be denoted by x'.
As ¢ increases from zero, the surface, termed the instantaneous neutral loading surface,
which separates the regions of plastic loading and elastic unloading, spreads from x!
as depicted in Fig. 3. Note that in the case of the simple model the unloading region
grows as the square root of the amplitude of the eigenmode (see (2. 12)), and thus the
rate of its prowth at bifurcation is infinite.

The post-bifurcation expansion is started in Section 6. The lowest order correction
to (3.10) involves terms which arise as a result of the elastic unloading and which in
most cases make a contribution only within the elastically unloaded region. Local

- stretched coordinates z; are introduced such that the description of the instantaneous
neutral loading surface is independent of £ in this coordinate system. The lowest
order corrections to (3.10) are denoted by 77 and are expressed as functions of the
stretched coordinates. A boundary-layer analysis is used to determine these terms.
The initial post-bifurcation expansion is shown to be of the form

A=A+ EFAE R . (3.14)
and

L R ay.. .
§ = U ey (3.15)
where 0 < f§ < 1. ‘

) P ] Instontaneous
’ aeutral logding
susface

/

3
®

s
{A) Column under axial | {B] 2-dimensicnai end axisymmetrical bifurcations
compression
FiG. 3. Hlustrations of the occurrence of the initial unloading points and the spread of the elastically
unloaded region.
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- The coefficient 1, and the exponent g are left undetermined by the boundary-layer
analysis. These are determined in Section 7 with the aid of the principle of virtual
work. By examining the lowest order terms in the expansion of the principle of virtual
work one can identify f§ and also obtain a general formula for 2, in terms of the eigen-
mode. The analysis is applied to the plastic buckling of a solid cylindrical column
under uniaxial compression in Section 8. An approximate calculation of the maximum.
support load of the column is made using the initial post-bifurcation expansion.

" 4. HiLL’s BIFURCATION CRITERION SPECIALIZED TO A CLASS OF PROBLEMS
INVOLVING MONOTONICALLY APPLIED LOADS

To lay the groundwork for the post-bifurcation analysis, some of the details of a
specialized application of HiLL’s (1958, 1961) general bifurcation analysis are briefly
discussed in this section: Over a portion of the surface of the body, Sy, dead load
surface tractions 7% = AT% are prescribed and over the remainder of the surface, S,
displacements u, = Auf are prescribed, where TE and v may have spatial variation but
arc independent of the Ioad parameter . Our investigation is restricted to bifurcations
which occur prior to the occurrence of any limit point in the fundamental solution.
‘A superscript 0 is used to label all quantities of the fundamental solution and it is to
be understood that these quantities are associated with monotonically increasing A

Denote the increment in the fundamental solution for A — A+ 4 by &, T%, %
and 7. Suppose that at 4 there is also 2 second increment solution, the bifurcation
solution #, T¢, +¥ and 11” Introduce the differences between the two solutions

“according to #; = 0—0% T' = T'—T% i = t#/—1% and #; = iy — #%.- Then,
following the usual construction in unigueness proofs,

0= I T;ui ds = j {f'Jnij+TQiJu i ﬁk!j}‘dy = H, (4.1)
5 v .
where #;; and #; are connected by

iy = J, ;i )+ 3™ s+ u® u ). 4.2)

At the instant of bifurcation define L, at every point in the body to be equal to LL
where the yield condition is currently satisfied, independent of the sign of m#;; i and
to be - where the. strcss lies within the yield surface.t If both the increment in the
fundamental solution #? and the increment in the bifurcation solution &; have the

property that plastic Ioadmg (or possxbly neutral loading) takes place at every point,

where the yield condition is satisfied, then L, are the actual operative moduli for both
solutions. Then H, which is defined by the last equality in (4.1), is equal to F where

FQ, il = .f {Ejklﬁzj'?u‘_i‘-fou “ ol yav. (4.3)

For the class of solids characterized by (3.7) and (3.8), HiLL (1958) has shown that
when the two solution increments do not share the common plastic loading region
~ described above then F < H. Thus, if the quadratic functional F satisfies

F(A,6) >0
+ By definition, L. does not depend on the loading-unloading condition. HrLe (1961) refers to L,

as the moduli of au elastic comparison solid. Hrr and SEwsLL (1960), Como (1971}, and SEWELL
(1972) have given brief discussions somewhat along the lin;s of this section.
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for all nonvanishing admissible # with #; = 0 on S,, then the unigueness of af is
obviously ensured.

In some applications it is convenient to employ the deformed configuration at
bifurcation as the reference configuration rather than that of the undeformed body.

- The form of Fremains unchanged. But then, dV is the volume element of the deformed

body at bifurcation; the comma denotes covariant differentiation with respect fo the
deformed configuration; and «? must be set to zero in (4.2). Hi (1961, Eq. (3.3))
gives this functional with the deformed configuration as reference.

. 1
Let A, be the lowest value of A for which there exists an admissible field u; with

1) )
with associated fields #;; and 1 such that

1}
FQA,, u) = 0. 4.4)
This eigenmode satisfies the variational equation 6F = 0 and the associated field

[§3]
equations together with the homogeneous boundary conditions, u; = 0 on S, and
(1}

T' = 0 on S;. The eigenmodal quantities are connected by
(13 (1) (1) (1) 1) y,, .y (1)
mip = 3wy )3 wf 4w w¥)  and V= IMy,, 4.5)

where the ¢ labels quantities evaluated at 1. For simplicity, only the case where
(1)

u; is unique, apart from an arbitrary amplitude, will be discussed. The eigenmode
is taken to be normalized in some definite way and the deflection in the mode is

. (1) . . .
written as £u,.7 As discussed in Section 3, the amplitude of the cigenmode, &, is taken
to be non-negative and is selected as the independent variable in the initial post-

1y
. bifurcation expansion; the sign of u; will be changed to analyze the opposite-signed
bifurcation.
A bifurcation solution is considered in the form

R gt A, = aft = A 60w @.6)
‘where (°) is specified by (3.12) and (") by (3.13). With this choice, F = 0; however, H
will not vanish (and thus z; is not a solution) unless both solutions 1% and #; have the
property that no elastic unloading occurs at every point in the body where the yield
condition s currently satisfied. In our analysis we restrict consideration to problems
where there is no unloading associated with the Sfundamental solution. Moreover, it will

be assumed that a number A greater than zero can always be found such that at every
point where the yield condition is currently satisfied

mi = A 4.7
When the fundamental solution meets these restrictions if is always possible to choose

Ay such that the proposed bifurcation solution (4.6} also loads everywhere. Because,
then,

.. o, )
mf; = mIQA i+ n) 2 0, 4.8)
where the last inequality can obviously be met if 4, is large enough.

t An operational definition of £ is given later in conjunction with (6.12).

108 “SAHd ‘HYAN 1




Postbifurcation behavior in the plastic range 173

1}

Unless m¥ (m ; is everywhere positive, (4.8) implies that 1, > 0.f The fact that the
bifurcation solution is a linear combination of the fundamental solution increment and
the eigenmode in the form (4.6) with 1; > 0 implies that the lowest bifurcation takes
place under increasing applied load as first discussed by SHANLEY (1947) and as general-
ized by Hill. To summarize, the problem for the lowest bifurcation load has been
reduced to an eigenvalue problem (4.4) precisely of the form for an elastic body with
instantaneous moduli L,. The initial slope 4, must be sufficiently large to cnsure that
no elastic unloading occurs at any point in the body where the yield condition is
currently satisfied.

5. BEHAVIOR OF THE COMPARISON SOLID AND DETERMINATION OF A,

The fundamental solution of the elastic—plastic solid has been assumed to display
no elastic unloading in the range of A of interest. Consider a comparison solid
characterized by the loading branch (3.7) of the elastic-plastic constitutive relation.
Clearly, the behavior of the comparison solid and the elastic-plastic solid coincide at
least until bifurcation. Furthermore, the lowest bifurcation load 1, and the eigenmode
are also obviously the same for both solids. The moduli L must be expanded about
4. to obtain the initial post-bifurcation expansion of the comparison solid. We
assume that L and m* can be regarded as functions of the stress alone, at least in the
neighborhood of 1, if not globally, so that :

4143
[ o UM (g g Omiy P 5.0
and
' . m*
Y = i (g0 5'3‘— 52

These variable moduli are not derivable from a potential (assuming the plasticity
theory is not a deformation theory) and thus the constitutive relation for the compari-
son solid is nonlinear hypo-elastic.

Denote the initial slope for the comparison solid by 1% so that

A=A +APE+O(E. 5.3
The initial post-bifurcation expansion is obtained by an approach similar to that
initiated by Korrer (1945, 1963). This approach is discussed in some detail in Section 7
where an explicit formula (7.11) is given for 1%° in terms of the eigenmode.

If the calculated value of A° is sufficiently large such that msy;; > 0 in some range
of positive £, then on this bifurcation branch the behavior of the elastic-plastic solid
will coincide with that of the comparison solid in the same range. To see the condition
for this, consider the expansion of m*j;; about the bifurcation point. First, using (5.2),

.. . . ), omii
m¥ = il 4 EAOH ¥ % +... (5.4)
and then #; = ()Jiqu+ '?a J)-[-O(é) one finds
' mi; = my /Vief??,+ ﬂu)-i-o(‘f) _ (5.5)

T One can conceive of problems in which m¥ riu is posatwe throughout the current ylelded region.
Howevcr, uszally in problems of interest this quantity is positive in part of the yielded region and
negative in the rest so that 13 must be positive,

2
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Thus, if 4}° is greater than the smallest value needed to ensure that the lowest order
term in (5.5) is everywhere positive in the current yielded region, then the behaviors
of the two solids coincide in some range of positive £, and 1, = Ak,

As mentioned in conjunction with the simple model and again in Section 3, the
above possibility is generally of much less interest than when the value of A% is such
that

M+ ) < O 5:6)
over part of the current yielded region (i.e. A% < 1,). Henceforth, attention is restricted
to the analysis of situations in which (5.6) holds.

If (5.6) holds we can now immediately argue that the initial slope of the elastic—
plastic solid, A,, must be the smallest value consistent with (4.8). Forif A, were larger,
then by continuity there would be some range of positive ¢ where m,; would be
greater than zero; and consequently, the behavior of the clastic—plastic solid would
initially coincide with that of the comparison solid so that 4, = A%. But this possibility
is contradicted by (5.6). Thus, %, must satisfy

TP ¢
minimum over current yielded region {mJ(A, 7%+ n,)} = 0. (5.7

Neutral loading must occur in at least one point in the body at bifurcation where the
minimum in (5.7) is attained. The region of elastic unloading grows from this point(s)
with increasing & as described in Section 6.

6. Lowest OrpDER BOUNDARY-LAYER TERMS

In this section we determine the lowest order perturbation on the bifurcation

solution

Y S 0c 1o, O 7

=t = u; or w—u; ¢ = A ui 4+ ). (6.1)
In many respects our approach will be similar to that adopted by Korrer (1945, 1963)
in his general theory of elastic stability. Like Koiter, we employ the amplitude of the
eigenmode, &, as the iudependent variable on the post-bifurcation path. We investigate
the sequence of statical equilibrium states by taking ¢ to increase monotonically from
zero. Koiter made use of the potential energy functional in his study of conservative
elastic systems. Our analysis will employ the principle of virtual work in much the
same way that BUuDIaNSKY and HUTCHINSON (1964), Bubiansky {1966), Frrca (1968)
and ComEN (1968) employed this principle in their specialized versions of Koiter’s
theory. '

As discussed in Section 3, a situation is envisioned in which an elastic unloading
region spreads out from a point(s) where the minimum in (5.7) is attained. We will
work out all the details for the case where the neutral loading point of the bifurcation
solution occurs at a single point on a traction-free portion of a smooth surface. This
situation is depicted in Fig. 4 where the initial neutral loading point is denoted by
xt. Many problems of interest fall in this category, including the solid cylindrical
column to which the general analysis will be applied in Section 8.

For reasons which will become increasingly clear as the analysis proceeds, intro-
duce a local rectangular Cartesian coordinate system z; centered at x! as shown in
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2, (NORMAL TO SURFACE)

Xe

INTERSECTION OF INSTANTANEOUS
NEUTRAL LOADING SURFACE
WITH SURFACE OF BODY

Fic. 4. Local Cartesian triad at initial neutral loading point and instantaneous region of elastic
unloading.

Fig. 4. Choose the z, axis such that it lies along the outward normal to the surface at
bifurcation. The z, and z; axes are mutually perpendicular and tangential to the
surface at bifurcation. Later in this section a set of stretched coordinates Z; will be
chosen such that the description of the growing neutral loading surface in terms of
these coordinates will be independent of &, to the lowest order. We have seen that
for the simple model such a coordinate would be of the form z = £~12z, These same
stretched coordinates together with a boundary-layer analysis will enable us to obtain
a perturbation representation for the stress and strain fields in the vicinity of the
expanding region of elastic unloading. ‘

Guided by the results for the simple model we entertain the possibility that the
lowest order perturbation on the bifurcation solution will involve the expansion
parameter £ to a fractional power. Assuming that the lowest order contributions are
of order £, we can write without any approximation

A=At A E+ A 8L 6.2)
or N
. , . dl

A=A4+A+P2 ¥+ T (6.3)

where lim (£7*7#]) = 0. Here, it is anticipated that 0 < § < 1; this will be verified

£~0
a posteriori in Section 7.
We can also express the difference between the bifurcated solution-rate and the
fundamental solution-rate at the same value of A quite generally as

{1 a

w] (W W W(E, x)
{1 a

qr—1%r =401+ {nE %, (6.4)7
(98] a

t £? T (¢, %)

where w stands for the displacement gradients, i.e.
ij = ui. i . (6.5)

Outside the boundary layer the displacement-rate quantities are of the same order as
the displacement gradient-rates. However, inside the boundary layer they are of

t From here on, indices will sometimes be deleted to give a less encumbered notation when this
creates no ambiguity.
12+
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different order, as will be shown. In the boundary layer it is convenient to work with
w, rather than u, since the perturbations on w are of the same order as those on s and 7.

We now consider two different limiting processes. First, let & » 0 with x* fixed
(but x* 5 x) and introduce the definitions

lim  [w, 7] = [PE), (), 7] (6.6)
=0, x fixed

Next, let &€ — 0 with z, fixed and introduce boundary-layer terms according to

lim  [w,n,7] = [W(2), 0(2), w2)]. (6.7)

£-0, T fixed

In the limit {6.6) the point in question is fixed and the boundary-layer region shrinks
down to zero size at x.. In the second limit (6.7) the point in question moves towards
x% in fixed position relative to the shrinking boundary-layer region in the limiting
process.

The remainder of this section is divided into two subsections. In the first it will be
shown that the lowest order additions to the bifurcation solution are restricted to the
boundary tayer so that (w, 7, 7) = 0. In the second the boundary-layer analysis will
be carried out.

6.1 Demonstration that (W, 1,7) = 0

To show that only the boundary-layer terms appear to order & where B is antici-
pated to be less than unity, we substitute the representation (6.4) into the principle of
virtual work and examine the lowest order, nonvanishing terms. The bifurcation
solution satisfies (3.5); at the same value of A the fundamental solution satisfies

J {7 @u, j+ul ; 8 )+1%al ouk JdV = iTi Su, ds. (6.8)
Eliminate the right-hand side of (3.5) using (6.8) and rearrange the resulting expression
to the form most suited to our purposes:
§{E =) Sy + 2y, —af ) Sub [+ 1% (uy —uf ) Su* ;+
Y ' (=)0 suk Y dV =0,  (6.9)
where d#;; is given by (3.4). Using (6.1) and (6.4) and relations such as

0 (1) o - I ()
T=1T+Et+... and T =t A4+ T).. .,

expand out (6.9) and collect terms of order zero and order &f with the result
(I)_- '.(l) a | L. a
§ {0y +127 uy  8u* ) AV + &8 § {29 6%+ 72wy SuF } AV +... =0, (6.10)
14 .
where it is convenient to make the definition

Oy = $(uy, ;+0u; Y+ Hufs ou® +ul’; sut ) (6.11)

and as before the ¢ denotes evaluation at A..
The lowest order expression in (6.10) is just the variational statement of the eigen-
value problem associated with (4.4) and thus this term vanishes for all admissible du.
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Now divide (6.10) by £” and take the limit as & — 0. Note that, although the boundary-
layer terms (6.7) enter into the integrand to order £, they will not make a contribution
to the integral in the limit since the boundary-layer region shrinks to zero. Thus,

:“r‘ {# 50’?&‘*‘72” iy, ‘5“", jav =ao.

By substituting (6.4) into the relation between the strain-rates and displacement-rates
and then taking the limit as £ — 0 for fixed x%, one obtains the same relation between

1
if and @ (or W) as is satisfied by the eigenmodal quantities (:;) and (u] in (4.5). In much
the same way, (6.4) is substituted into the constitutive relation (3.7} appropriate for
plastic loading. Then, taking the limit as & — 0 for fixed x', using (5.1), one again
finds that the eigenmodal relation (4.5) is satisfied by T and 7. The variational equation
for the barred quantities, together with the auxiliary equations, are identical to the
equations for the eigenmode. It has been assumed that the eigenvalue problem has a
-unigue mode and this implies that the barred solution must be some multiple of the

{1)
eigenmode; that is, # = £ u.

In Section 4, € was introduced as the amplitude of the eigenmodel contribution to

m
the b1furcated solution. Since we have writien u—u® = éu 4+ ... or, equivalently,

{1)
-0 = u + ..., the higher order contributions must be orthogonal to u in some

sense. The most convenient orthogonality requirement for our purposes is
1 )

Ir"”[(uk, a2 )=, Ju* AV = 0. (6.12)

This presupposes that | 72 u u d V"is not zero so that u cannot be orthogonal toitself.
However, it can be shown that, to the extent the post-bifurcation analysis is carried
outin this paper, the A —~ ¢ relation is the same for any bona fide orthogonality condition,

By substituting (6.4) into (6.12), dividing by &* and taking the limit as £ — 0 one finds
that { must be zero.

6.2 Boundary-layer analysis

The equation for the instantaneous neutral loadmg surface emanating from xi is

m77; = 0. Using (5.2), (6.3) and (64) and #° = A 7°+(1 + /A, &0+ . ., this
equation can be written as

S . =
0 = my; = mPQy i+ 1)+ ELA + By mnd +miy, ]+ . (6.13)
where higher order terms than £f have been dropped. Recall that, by (5. 7) the zeroth

order term in the above equation vanishes at x} and furthermore is positive elsewhere
in the body. Expand this term in a Taylor series about x% using the z; coordinates to get

, . o 3
miA i+ ) = Ciz 4+ Y, Z CopnZra Za+ - (6.14)
m=1 n=
where
Vil .. , ()
G = g InfGuiemy]|
4 . , 8 & i

an Con = 25 oz [ G+ 11.,)] ey (6.15)
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Because this function attains its smallest value in the bodyatz; =0,C, = C; =0
and C; < 0. In what follows we will carry out the analysis for the case of C; < 0
and later comment on the case where C; = 0.

Divide (6.13) by (1+p)4, & and define stretched coordinates by

. £z,
! 1+ M)A,

where (14 B)4, has been introduced into the definition of the stretched coordinates for
later convenience and it has been anticipated that 1, is negative. Now take the limit
as £ — 0 with z, fixed. The result is the lowest order equation for the neutral loading
surface in terms of the stretched coordinates, i.e.

E“NZ

S+ pig) " (22.23),  (6.16)

and (£2s Z‘S) =

L+, f(2)+mi(x iy = O, (6.17)
where
(@) = minllu —Cy 2, ~Cyy 23— Cy, 22 =2C,3 2, Z5. (6.18)

Next, the relations between 7 and # are obtained. In the portion of the boundary
layer which has elastically unioaded (i.e. inside the neutral loading surface (6.17) and
denoted by V_) ¢ = #¥¥;,, Expand this equation, using (6.4) and

0 = %+ P E0+ .., etc,,
to find

YT L neni: @
AT+ T (4 B, PO M | =

. . (0 . “
LA+ B+ (LB P+ Eny+ ... 1. (6.19)
Since

s s ay__ ) .. . P
=By, tU=CMy, and SN o golgiigit (60)

(6.19) can be rewritten as

&, . . 1} U ) i R .
& = g m[mE A+ )]+ E LM g+ EA+ PR, g7 I mEaS ... (621)

Now divide (6.21) by &% and let & — 0 with z, fixed. Using (6.7), (6.14), (6.16) and
(6.18) we obtain

W = L+ (L4 Py g7 mf(2). (622

Using the same procedure, it is a straightforward matter to show that in the portion
of the boundary layer where loading occurs (outside the neutral Joading surface and
denoted by V),

W = B (6.23)

Now we derive the boundary conditions and equilibrium equations for the
boundary-layer quantities. To do this it is most convenient to work in the local
rectangular Cartesian coordinates z, whose z, axis is perpendicular to the surface
of the body at x, at bifurcation, as indicated in Fig. 4. For the remainder of this
section the fixed Cartesian system will be used as the reference system instead of the
undeformed system, and all indices will be subscripted.
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We analyze the case where the boundary conditions are prescribed zero surface
tractions in the vicinity of x,. On Sy (from 3.2))

0 = [+ 4 (0 s 4D + 1yt J05 (6.24)

where #5 is the unit normal at bifurcation. Substitute (6.4) into (6.24) and use the fact
that the fundamental solution itself satisfies (6.24), along with the conditions 7/n§ = 0

and 1: J,M = 0 on S}, to obtain éﬁ‘tb n5+... = 0. Dividing by ¢ and letting &£ - 0
with z; fixed gives
;%) = 0 (6:25)
or, since n§(x.) =1 and ni(x) = ni(x) =0,
%11 = %12 = %13 L 0 ‘ on ST' (6.26)
The equilibrium equations (3.6) become
't!'j,j + [‘Ekj(ui, k_ugi) "I“Tkj ﬁ,’. k],j' = 0. (6.27)

Here apain, (6.4) is substituted into (6.27), and use is made of the fact that the funda-
mental solution satisfies (6.27), of the equilibrium equation satisfied by the eigenmode,
and of ©ff ; = 0, to arrive at

65[7::-}’ j‘]‘f;?; wik, J'} +...= 0. . (6.28)

The comma denotes differentiation with respect to the z; coordinates. Now change
variables to the stretched coordinates (6.16) using

i_ &.B 5 (i_@_)__f_L(i i) {6.29)
0z, (4P, 82 \8zy 0z,)  {—(1+ Py, 2 \az, 92,) )
Note that each quantity in the resulting equation which is differentiated by z, is of
~ zeroth order while the terms differentiated by 2, and z, are of order £#/2, Therefore,
in the limit as ¢ - 0 with z; fixed, we find that the boundary-layer equilibrium
equations are
6111

F (6.30)

The second term in (6.28) makes no contribution since 1J¢ = 735 = 19§ = 0 at x,.

The character of the boundary-layer solution is extremely simple. To motivate
this solution we note that the region of unloading described by (6.17) is a thin sliver
whose thickness in the z, direction is of order £%? compared to its extent in the z,
and z; directions. In the remainder of this section we will show that the strain-rates
tangential to the plane of z, and Z3 ] in V_ are the same as they would bei in the absence
of unloadmg 0 that f22 = #33 = fz3 = 0. Furthermore, #,,, #,, and 7, , are chosen
such that 7,; = % ,, = 7,5 = 0 throughout V_, so that the traction conditions (6.26)
and equilibrium equations (6.30) are satisfied. The boundary-layer displacement-rates
will also be given. Qutside V_ the boundary-layer quantities vanish for the case
under examination.

If we anticipate that 7,, = 33 = #23 = 0 then (6. 22) for the vanishing of z,,,

7,5 and %4 in V_ provides three equations for#, ;,#,, and #,4. Introduce the quantities
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¢; which are the solution to the matrix equation

L1111 L1112 ZLis | [ mi,
L1112 L L3 || 2| = — | mis (6.31)
L1113 Z 1213 Z1313] L3 mis

and define o;; to be

b1 3P 19

%y =1%¢, 0 0 | (6.32)
1 0 0
Then, 4 is
i = 1+P g Yoy f(2). {6.33)
Substituting back into (6.22) gives
Ty = (142 g2 [ L+ M5 ] fZ). (6.34)

By using (6.33) in (6.17), one notes immediately that the equation for the neutral
loading surface associated with the assumed solution reduces to f(z) = 0. Con-
sequently, 7 and ¢ vanish on the neutral loading surface. Also, since m¥5% > 0
and C; < 0 by assumption, f = 0 together with (6.16) and: (6.18) imply that 2, must
be negative if the neutral loading surface is to spread into the body, as anticipated.

The final step necessary to establish the validity of the assumed solution is to
demonstrate that the strain-rate quantities #;; can be derived from a boundary-layer
displacement-rate field which vanishes on f{z) = 0. That field is

*

ty = — U+ D3RGS B8 (L 20 Fa) d (6.35)

which can be verified directly using the definition of #; as an appropriately defined

limit of u; as £ — 0 with fixed z,, together with the relation between the strain-rates
and the displacement-rates and (6.29). The lower limit in (6.35) is the value of z, on
the neutral loading surface for given values of z, and zs, i.e. f(Z,24,25) = 0. The
boundary-layer displacement gradients are found to be

Wy = (L B)a 07" 4181, f(2), (6.36)
where d;; is the Kronecker delta.

7. DETERMINATION OF 8 AND A,

As mentioned in the preliminary discussion in Section 3, § and 1, are determined
by an examination of the lowest order nonvanishing terms in the principle of virtual
work. We have shown that only the boundary layer terms enter to order £f, Now
write quite generally

1y * b
W wP w w w(&, %)
13 - by -
Af=\a'(=\n{+&\n [+ \n&x{, (7.1)
0 . b .
i 0 7 T 7(&, x)
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where it can be asserted that, for either fixed x* or fixed z;,
fim & [, 7, 4] = 0. (7.2)
§=+0

Substitute (7.1) in the principle of virtual work (6.9) to get the variational equation
b B

b
for u, y and 7:
b o B P I
Q= j {T‘J 5cmj+1:2”uk, i 6uk' ]} dV‘I‘EnI {TU 5‘qij+72"'wk; 6uk, J} dV""
v Vv !
. 1), (1) [£5 JN b .
+2¢ § {(A T+ T¥)uy  Su* A TVl Guk ) aV + O, EPwr, .. ). (1.3)
v

Using the boundary-layer solutions (6.34) and (6.36) and the definitions of the
stretched coordinates (6.16), the second term in (7.3) can be expressed as

' j {”E & +TB"::’ 5”} av = é”ili(l +ﬁ)39'c_1[~(fijm ot 6N +m§j 5cﬂij]x, J;fd£1 déz d£3
V-

= £33 0(5u), | (7.4)
where all nonboundary-layer terms are evaluated at x_ (this entails relative errors
which go to zero in the subsequent limiting process). The last equality defines Q,
which is a function of du;, ;(x.}. Al tensors on the right-hand side of (7.4) are referred
to the base bectors of the z; system. In the vicinity of x,, the surface of the body at
bifurcation can be represented by 2z,+23/R,,+23{R33+22,25[Ryz+... = 0,

*
where R,, and Rj, are instantaneous radii of curvature at x,. Thus, V_ represents
the volume in z-space enclosed by the two surfaces

T s . 1. 1. 2 ..
f@=0 and 2z, 4+ -2+ - zi+ — 2,2, = 0. (7.5)
1 R22 2 R33 3 R23 243

By (7.4), the second term in (7.3) is of the order &*#, The third term is of order &.

Since (7.3) is the variational equilibrium equation for u, # and <, the first term in

(7.3) must be of order £3 or &, whichever is the lower. Now by considering the three

possibilities (i.e. f> 4, f =% and 0 < § < 1), we show that § = % leading to a
balance of the first three terms in (7.3).

' First, suppose f > 1 so the first term in (7.3) is of order £. Define the following

limit:

fim ¢ 'u ] = (209,27 (6,22 ()]- 1.6

&—+0, xfixed
While the first term in (7.3) must be of order £ if § > 1, this does not imply there is

1o boundary layer component in ; of lower order. However, by (7.2), such 2 com-
ponent must be of higher order than & and thus will make a contribution to the
integral in the first term of (7.3) of order higher than £3f. For our purposes we need
only the limit for fixed x defined in (7.6). Divide (7.3) by £ and let £ — 0 to obtain

T The factor of 2 is introduced in this definition so that in the specialization to an elastic solid

these quantities are identical to terms introduced by Bupiansky and HurcEmson (1964) and
Bupiansky (1966). ) B :
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2) (2} (2)
the variational equation for u, »# and 7,

, e
20 {t” d;; 4120 u)m su* }dv+
v
SN C I ¢ ) ay,,,
+2£ {(A e+ o )y Suk 42, TP SuF jdv =o. (7.7)

2) {2)
To obtain the connection between # and u write the expression for 11 #° using

(3.1) and arrange this expression so that it involves the differences 1 —u% and w—u°
similar to what was done in (6.9). Then substitute in the representation (7.1) and
make use of (4.5,) to eliminate the lowest order term. Divide the resulting equation
by & and let £ — 0 with fixed x with the result
{2) {2}
_(uu"'” x)‘l'“{u +uk1 ki)+
(l (1

+1 uk iU ,j+%]‘l(uk. ,J+uk i J (7:8)
A similar calculation for ¢ —£° using the moduli for plastic loading (5.1), the repre-
sentation (7.1), (4.5}, and the limit with fixed x leads to

aLukl e i1 w 6Ejk1

@ B
T = [ ﬂki'i‘—(}q O"m"' Tm) ﬂm A T™ P

ﬂm (7.9

1) (1)
Now let ou; ; = (u,-’ ; in {(7.7) and note that &°%;; = #5;; by (6.11) and (4.5). The
identity

@, w a3 cnk o
I{T 11',]-[-'5 uk! J}dV I{_T u,“ +A_1T uk lu .j+
SIHKE 1y 1y I 6151"1

+1(4, zomm 4 'c""') m,nm%llr ar""'|’7” 'Im} av (710

can be obtained using the variational equation for the eigenmodal quéntitics,

)

(i) 1) .
f{ton+® udu}av =0, with o6u=u,

together with (7.8), (7.9) and the property LV¥ = L*J, Thus, under the supposition
that § > 1, one obtains the following expression involving 4, and the eigenmode:

A+2,B =0, {7.11)
where
(1) a4y AIEHE] wy '
A= J‘.{ST i uk t k’j+ Tmn mu! fluﬂk[} dV (7.12)
[
on @, @ o SR 1y (1 w aL‘J“ W
B =i[{21' T u® 4t uk 4 S| Mt T e quk,} dv. (7.13)

The assumption that § > £ is tantamount to disregarding elastic loading to this
order since the boundary—layer terms have dropped out completely. Thus, with A,
replaced by AY in (7.11), this equation gives the initial slope of the hypo-elastic
comparison solid discussed in Section 5. This expression for A% reduces to an expres-




Post-bifurcation behavior in the plastic range 183

sion given by Frrcu (1968) and ConeN (1968) for elastic systems with constant moduli
and by BupiAnsky and HUTCHINSON (1964) and BUDIANSKY (1966) when pre-bifurca-
tion deflections can be neglected. Equation (7.11) can only hold for A, if 2, = ike;
but we have restricted attention to problems for which A* < A,. Thus, § cannot
exceed .

A similar calculation can be carried out for § anticipated to satisfy 0 < f < 1 so
that the first and second terms in (7.3) are of the same order. The result of this

(1)
calculation is A3 Q(u) = O from which one must conclude that A, = 0 since, in

general, Q((u)) # 0 (as will be seen by example in the Section 8). In other words,
0 < § < } implies that the boundary-layer terms vanish and the representation (7.1}
is not possible for this range of g.

Now try f = 4. Define the limit (7.6) as before and carry out the sequence of
operations used to arrive at (7.11). The term A3 Q(8u) is now added to the left-hand
side of (7.7). Equations (7.8) and (7.9) still hold as does (7.10). Equation (7.11) is
replaced by

J30(u) = —A— 1, B = — (4, — B, - (7.14)

where A and B are again given by (7.12) and (7.13) and Q((z::)) is obtained by replacing

o°y by (rl,r) in (7.4). In summary, (7.14) is the expression for 1, for the case of an
initial neutral loading point x, occurring- at an isolated point on the traction-free
surface of a body when the coefficient C, in (6.15) is not zero.

Analogous expressions can be obtained for other cases. When the neutral loading
points at bifurcation occur on a line on the surface as in the two examples cited in
Fig. 3(b), only two coordinates are stretched and one finds § = 2. If the bifurcation
behavior involves only one spacial coordinate (as in the case of the simple model of
Section 2) then § = 4. If the initial neutral loading point is isolated as in Fig. 4 but
with C; = 0, all three coordinates must be stretched proportionally to £ %2, Then
one finds f = Z rather than f = 4. In this case the boundary-layer analysis is more
difficult to carry out since now the boundary-layer terms do not vanish outside the
region of elastic unloading.

8. POST-BIFURCATION BEHAVIOR OF A COMPRESSED SOLID CYLINDRICAL COLUMN

Buckling of a solid cylindrical column under axia! compression will be used to
illustrate the application of the general post-bifurcation analysis given in the preceding
sections.

The so-called tangent modulus load corresponding to the first possible bifurcation
of an axially compressed, simply supported, solid cylindrical column is

7% R
P,_. = —TERZO'C = ZEf-ii (81)
Here, R and L are the radius and length of the column, and ¢, and Ef are the axial
stress and tangent modulus at bifurcation. This formula is based on the well-known
Euler—Bernoulli approximations for columns. Hir and SEWELL (1960) have obtained
an improved extimate of P, which takes into account the shear stiffness of the column.
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For a solid characterized by isotropic elastic moduli, P, as given by (8.1) is accurate
as long as the parameter (u/ES)R/L)* is not too large, where u is the elastic shear
modulus. For example, if this parameter is not greater than %, then for a given
value of £/, (8.1) underestimates the lowest bifurcation load by no more than about
5 per cent.

In this section the approximate eigenmode associated with (8.1) will be used in

(5.7) to evaluate 4; and again in (7.14) to evaluate 1,. The approximate eigenmodal
displacement fields are

L 1
u, = Rcos (1%), (1?2 = e sin (Tﬂ), (u’3 =0, {8.2)

L L
The Cartesian coordinate system is shown in Fig. 3. For the present calculation it is
convenient to use the configuration of the body at bifurcation as the reference state so
that R and L are theradius and length at bifurcation. The formulae given in the previous
sections are based on the undeformed state as the reference. These formulae can be
converted to the bifurcation state reference simply by setting #® = 0 and by taking

the volume element to be that in the new reference state. In addition, we wili not-

bother to distinguish between different stress measures. This is permissible when the
instantaneous moduli are large compared to the stress level—a condition that will
clearly hold for all but stubby columns since, by (8.1), ¢/E, is of order (R/L)" The
symbol ¢ will be used as an abbreviation for 7,,.

{0
The eigenmodal contribution to the deflection is & u so that, with the normalization
of (8.2), £ = 1 corresponds to a one radius contribution to the lateral deflection at the
center of the column. Nonzero components of the eigenmodel strain are

I nRx, X3 w w _
cos | —= 1,

22 = ~p3 L 11 = N33 = — V:Map, (8.3)
where 5, is the instantaneous lateral contraction ratio associated with a uniaxial

(1)
increment in stress 6, to be specified later. The expression for #,, is obtained from (8.2).
($3] (1)
The other components ny1 and #35 are consistent with the eigenmodal stresses (f.e.
[¢3]

Tyg = E, 112 » with other components zero) which are assumed as an approximation
for the eigenmode. This approach is slightly different from, but equivalent to, deriving
all the strains from the Euler-Bernoulli displacement fields (8.2) and then approxi-
mating the stress—strain relation,

The load parameter A is taken to be the compressive load normalized by its value
at bifurcation (8.1), A = P/P,. Components of the unit tensor normal to the elastic
domain in strain-rate space at bifurcation are m §, = — 2/\/6 and m5, = m5; = 1/,/6;
one also finds 3, = ¢ fEfand %3, = #3; = — 6,42, where () is still defined by (3.13)
Using (5.7), one finds the initial neutral loadmg poinfis given by xf = R,x5 = x§ = 0,
as shown in Fig. 3, and that the initial slope is given by Ai; = 4. Furthermore,

R ) = 2(1\/?) (Y[~ (3) eos (2] 3.4)
and, from (6.15) and (6.18),

R | R AP
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We take the elastic moduli to be isotropic at bifurcation so that‘(3.9) becomes

E 1 :
B =y {30udut0u8,0 + 2 0ybu} - Swimt, @9

where E is Young’s modulus and » is Poisson’s ratio. The solution of (6.31) gives
¢1 = — (1+o)1=2)/[\/6(1 —r)E] and ¢, = ¢3 = 0. Using (6.32) and (7.4) with
B = } gives
B0(u) = — 41,3 (RILY'TE | [% TR (E)z '2] diy diy dis,  (8.7)
v_
where
= (1+8)2+0.~0—205,)/[3(1—v)g.E] (8.8)

and, by (7.5), V_ is the volume enclosed by the two surfaces f(z) = Oand 22, + 24/R = 0,
The integral in (8.7) can be evaluated in closed form so that (8.7) becomes

230() = —A3TE(RILY*R2L81. (8.9)

From (8.6) one finds that the contraction ratio, 5,, and g, can be expressed in terms of
the tangent modulus according to

U, = [1-(1-20)(E/B)])2 and  g.E = (1+0)[E—(1 —20)ES3)[E—E]. (8.10)

It is a straightforward matter to evaluate the remaining terms in (7.14). First of

all, 2* = 0 by symmetry. Note also that, since the approximate eigenmode involves
1)
only the one non zero component T,,, it is not necessary to evaluate the full tensor

(2L/d1),; only the single quantity (dE,{do), enters. The result of this calculation is
_ __ ahe — ¢ ﬁ 4 2 H — [ dE
(A AI)B—(1+q)E,(L):rrRL with q—(2L> (d ) (8.11)

where, here, terms of order (RfL)? relative to those retained have been dropped.
Finally, combining (8.9) and (8.11) according to (7.14) gives

InEN(1+ )|
A= —3 {—’%@} . (8.12)
Written out in full, the load—deflection relation is
' p 3RE(L+g)} 13
5= 1+46-3 {%ﬂ} Ry, (8.13)

where it is recalled that £ = 1 corresponds to an eigenmodal contribution to the
lateral deflection at the center of the column of one radius. The distance d the neutral
loading surface has penetrated into the column on its mid-plane (x, = 0) is found
from (8.5) and (6.16) to be

e {31:Ef(1+q)}”3
B TE

For most metals the rate of change of the tangent modulus, dE,/do, is on the
order of (1+strain) in the plastic range. Typical values of g, defined by (8.11), may

REWV L (8.14)
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be as large as from 10 to 100, depending on the slenderness of the column. Thus,
through the £*/3-order term in (8.13), the rate of change of the tangent modulus has a
significant effect on the initial post-bifurcation behavior.

The parameter I, defined by (8.8), can be expressed as a function of Poisson’s
‘ratio v and Ef/E}. Values of the factor which multiplies (1 +4)!/® in the coefficient
of the £*/*-order term in (8.13) are listed in Table 1 for » = } and a range of values of
Ef[E. Except for very low values of ES/E, the coefficient of the &%/3-order term is
sufficiently large that this term becomes numerically significant compared to the
second, 4£, at small values of £&. In other words, the initial slope is.a good approxi-
mation to the actual slope only for loads slightly above P,. In the “elastic limit”, as
E{[E — 1, the expansion breaks down for precisely the same reasons cited for the
simple model.

If just the first three terms of (8.13) are used to estimate the maxunum support
foad of the column one finds

dp TE
C o - 15
az=0=c 3nEX1+q) (8.15)
and
prx TE
iy P 8.16
P, ~ TizEGTo (8.16)

Values of I'E/(3nE7) are included in Table 1 and plots of PS**/P_ as a function of ES/E
for several values of g are shown in Fig. 5. Also shown in Fig. 5is a plot of the reduced
modulus load P™ normalized by P.. This is the load at which a straight column with
instantaneous moduli E; would deflect under no first order change in axial load.}

N
ES/e

Fic. 3. Approximate maximum support load for an axially compressed column and comparison with
the reduced meodulus load for a column with constant tangent modulus Ev,
T When v = 3, I assures its simplest form: T' = 1 — (Ej/E).

1 The reduced modulus load (von KArMAN, 1910) for the solid cylindrical column shown in
Fig. 5 is calculated using the usual engineering approximation for columns, Details are omitted here.
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TABLE 1. Variation of parameters with ES/E

E¢ 3 (3::!53)1!3 TE

E TE 3nE?
0-05 235 2-07
01 302 0-981
02 396 0-435
03 4-74 0-253
05 6-30 0-108
07 8-39 0-046
09 1317 0-012
0-95 16-90 0-006
10 o0 0

The efiect of the rate of change of the tangent modulus on the maximum support
load is brought outin (8.16) and in Fig. 5. For mostapplications with typical structural
materials, (8.16) implies that the maximum support load is only slightly larger than
the lowest bifurcation load. Experiments (SHANLEY, 1947) and numerical calculations
(DuBerG and WILDER (1952), MArvick and LEg (1965), and Horr (1967)) have
previously suggested that same conclusion.

Equation (8.13) is an asymptotic expression valid for small & Tt is approximate
only in that 1, and A, are evaluated using an approximate eigenmode rather than the
exact mode. On the other hand, (8.16) is an approximate formula which is not
asymptotic in any sense because the maximum support load occurs at a Jinite, although
perhaps very small, value of £. Obviously, (8.16) can be an accurate estimate of the
maximum support load only if the first three terms in (8.13) provide a good approxi-
mation of the load-deflection relation up until the maximum load point. Cited below
are two reasons why the numerical accuracy of (8.16) may be suspect even though it
seems to give a correct qualitative picture.

From Fig. 5, note that the prediction of (8.16) with ¢ = 0 falis below the reduced
modulus curve, except for very small E/E. Calculations based on two-flange column
models indicate that the reduced modulus load is approached asymptotically for large
lateral deflections if E, is constant (see, for example, DUBERG and WiLDER (1952)).
While apparently this has not been verified for a solid column, it is a plausible result
which suggests that the maximum load prediction (8.16) with g = 0 is incorrect.
That is, with constant F,, no maximum load point may exist at any (small) finite value
of & and the maximum load prediction of (8.16) with ¢ = 0 is a fictitious result
stemming from the termination of the series expansion.

Further, note that, according to (3.14) and (8.15), the neutral loading surface has
penetrated a distance 4 = R into the column at the point where the maximum load
is attained for any value of ¢. Tt may well be that the perturbation expansion is not
accurate for such a large encroachment of the elastic unloading region. Tn addition,
numerical results of MALVICK and Lee (1965) and discussion by SEWELL (1972
suggest that the maximum load should occur before the neutral loading surface has
penetrated as far as half way through the column. Here again, this suggests that
(8.13) may not have a sufficient range of validity to yield a numerically accurate
prediction for the maximum load.
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9. CONCLUDING REMARKS

The initial post-bifurcation expansions corroborate previous experience gleaned
from experiments and model problems: namely, that the initial slope of the load-
deflection curve (required for bifurcation to occur at the lowest possible load) governs
in only a very small neighborhood of the bifurcation point; and rates of change of the
instantaneous moduli at bifurcation have a major influence on the post-bifurcation
behavior. It is an open question as to how large is the range of validity of these
expansmns and whether they can be used to give reasonably accurate predictions of the
maximum support load. Certainly, the range of validity will vary from problem to
problem. Experience with similar expansions in the elastic range indicates that in
most applications only a few terms are necessary to give an accurate picture of a
significant portion of the initial post-bifurcation behavior (e.g. HUTCHINSON and
Korter (1970)).

While our discussion has emphasized bifurcation under compressive load, the
analysis applies equally well to bifurcation under tensile-type loadings where bifurca-
tion usually occurs under increasing elongation rather than increasing load.

Some of the restrictions made in the course of the analysis are easily removed. In
_particular, the case of multiple eigenmodes associated with the lowest bifurcation
load can be treated with litile additional complexity. To carry the expansions to
higher order terms beyond what is done in Sections 6 and 7 would, in general, entait
greatly increased effort. In this connection, it should be noted that, due to symmetry
of the structure and the eigenmode, the cubic terms, (7.12), and thus also A% will
vanish identically in many applications. As a consequence in such cases, the expansion,
to the order it has been carried out here, does not bring in the geometrical nonlinearities
which determine whether bifurcation in the elastic range is stable or unstable. These
nonlinearities can be expected to be significant to the plastic post-bifurcation behavior
as well.
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APPENDIX

ANALYSIS OF THE SIMPLE MODEL

Let @ be the independent variable on the post-bifurcation branch so that () = d( )/
d8. The position (x = d) of the instantaneous boundary between the loading and
unioading regions is where £ = 0, and from (2.1)

d=—u. (A.1)

For the moment, E, is regarded as a function of &. Equation (2. 4) can be rewritten as

P = j' "E(ii+x) dx+ j' X

dE d’E ‘
X [ c+ (E},—t) (Au+x0)+1 ( ds;) (Au+x0Y 4. ] {ti +x) dx, (A.2)
where Az = u—u,. The integrations in (A.2) are now carried}out to give

(E—-E)
2

(d )[Auu(L —d) +1Au(I? — 42+ Lab(I2 — d%) +- 16(1° — d%)] +

P = Ei(d+ L)+ Efi(L—d) + —— (A2~ 1%+

+1 (“"2 ){A 24L—-D+Ol+.... (A3
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In the same way (2.5) can be written as
(PLO) + KL = YE—EYi(d® — I2) +3E(d® + 1)+ LE(D — &%) +

+ (‘;—f‘) [3Aui(I? — d*) + 3Au(? —d®) + 1ab(L — d¥) + 20(L - d*)] +

de?

Consider bifurcation with monotonically increasing & with a5 < 0. For bifurcation
at any value of the load greater than the lowest possible bifurcation load (i.e.
P, > 2EfL3|(3L)) a perturbation expansion can be developed involving only integral
powers of 8. However, this expansion breaks down as P, — 2EFL3/(3[). It is found
that the system of differential equations (A.1), (A.3) and (A.4) has a singular point at
¢ = 0 when bifurcation takes place at the lowest bifurcation load, P, = 2ESL3/(3L).
By admitting the possibility of terms in the expansion with fractional powers of 8, it
is found that the expansions must include half-integer powers of 8.

The expansion for P is of the form of (2.11); Au is expressed as

A
T“ = by 0+b, 032 £ by 024 5,057 ... (A5)

2
+1 (d E‘) (A —d)+ (O] +.... (A4

and 4, from (A.1), is given by (2.12). The neutral loading point must occur atd = — L

at bifurcation and thus from (2.12) b, = 1. Expansions (2.11), (2.12) and (A.5) are
substituted into {A.3) and like-power terms in & are collected with the result that

_ 3L 2UE-EDLR; oL (@) ., (A6

_ - i,
ay =3LIL,  a, =3b, I/ a3 =~ REL Ef \de /e

ete. Similarly, (A.4) implies
_ 2KE - E5)b? L (a‘E,) 3k, L

G T TR B\ ) 2E°L
YE—ES) b,L {dE (&7
a, = Tft [bz b3 +'i}'6— bg] + “é?“(d_st)c, ete.
First, b, is obtained from (A.7,); from (2.12) it is seen that the negative root of
b% is chosen since the neutral loading point must move away from d = - L with

increasing values of 4. From here on the equations are solved sequentially with the
results given by (2.13) to (2.16).

e e it




