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SUMMARY

Tue erFrecT of small imperfections on the buckling of continuous structures loaded into the plastic
range is studied. A simple model study is presented and several additional examples are discussed.
The réle of the load at which elastic-unloading first occurs is emphasized, and a general asymptotic
analysis is given for the behavior prior to the onset of elastic unloading for a class of elastic—plastic
solids subject to loads characterized by a single load parameter. Asymptotic imperfection-sensitivity
formulae are obtained whose features are similar to analogous formulae for elastic structures.

1. INTRODUCTION

AN ELASTIC structure which experiences a loss in load-carrying capacity as buckling
deflections grow is imperfection-sensitive in the sense that small imperfections may
significantly diminish the maximum load it can support. KoITER (1945, 1963) related
the behavior of a slightly-imperfect structure to the post-buckling behavior of the
perfect structure. If P, denotes the bifurcation load of a perfect structure with an
initially unstable post-buckling behavior, then the maximum support load P™** is
related to the imperfection amplitude & by an asymptotic expression of the form

P = P _CE+..., ‘ 1.1

where C depends on the type of imperfection and other characteristics of the structure.
The power r is either 1/2 or 2/3 depending on the nature of the bifurcation; it is this
singular behavior which magnifies the effect of a small imperfection. A perfect structure
which attains its maximum load at a limit point, rather than at a bifurcation point,
does not generally display the strong sensitivity to small imperfections implied by
(1.1) and its maximum support varies only linearly with small imperfections.

The lowest possible bifurcation to occur in a structure compressed into the plastic
range almost always takes place under increasing load. Consequently, the maximum
support load of the perfect structure is not attained at the bifurcation point but at a
limit point following the occurrence of finite (perhaps small) bifurcation deflections.
It is this feature of plastic buckling which makes an analytical treatment of imper-
fection-sensitivity difficult. We will argue that the load at which elastic unloading
(strain-rate reversal) first occurs plays a pivotal réle in the buckling imperfection-
sensitivity of many structures. Furthermore, this quantity can be calculated asympto-
tically as a function of the imperfection amplitude since, in most problems of
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interest, elastic unloading first begins in the perfect structure at the bifurcation point.
With P denoting the load associated with the onset of elastic unloading, it will be
shown that for small imperfections

P=pP-C&+..., (1.2)

where P, is the lowest bifurcation load of the perfect structure and in the most simple
cases r = 1/2. Similar relations will be suggested as approximations to the buckling
loads of structures with sufficiently large destabilizing material and geometrical
nonlinearities.

The initial post-bifurcation behavior of continuous elastic—plastic solids was
studied in a previous paper by the present writer (HUTCHINSON, 1973; henceforth
referred to as (I)). The present paper uses the notation of (I) and at several points
builds on developments given there. In the first part of the present paper the simple
model which was introduced in (I) will be used to bring out some of the essential
features of imperfection-sensitivity of continuous elastic—plastic structures. Several
additional examples are discussed which illustrate the significance of the load at which
elastic unloading starts; and a general analysis of the effect of imperfections on this
load is given in Section 3.

2. IMPERFECTION-SENSITIVITY OF A SIMPLE MODEL

The effect of an imperfection on the behavior of the simple rigid-rod model
pictured in Fig. 1 is considered where the imperfection is taken to be an initial rotation
from the vertical, 8. The model has two overall degrees of freedom: the downward
vertical displacement u and the total rotation from the vertical, 6 +8. Spring elements
are continuously distributed from x = — L to x = L. At any point the contraction
of a spring is

e =u+x0 .10
and the compressive force per unit length is denoted by 5. At any point,
§ =E¢ for plastic loading, } 22)
§ = E¢ for elastic unloading or within the elastic range, )

lP
E I — K=k, L2824k, 128%+.--
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Fic. 1. A simple model for bifurcation and imperfection-sensitivity of continuous elastic—plastic
solids in the plastic range.
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where the tangent modulus E, is considered to be a smooth function of s or &. Non-
linear geometrical effects are incorporated into the model only through a nonlinear
horizontal spring which develops a force K = k, L*0%+k,L*0*+ ... under rotation
with the sign convention shown in Fig. 1. The equilibrium equations are

b= sdx 2.3)
-1
and
[PLO+D)] +KL = i: § xdx, 2.4
-1

where P is the compressive load and () signifies a rate of change in the usual sense.
In the elastic range the relationship between P, 6 and 8 for small 9 is readily found
to be

(P—P)0+k I20*+k,120°+ ... = — PO, (2.5)

where P, = 2EL*/(3L) is the bifurcation load of the perfect model. If k, # O the
asymptotic relation between the maximum support load P™** and 8 is

Pmax
P,

= 1—(6k,0)" % +... (2.6)

forx, 8 > O where x; = Lk,/(EL). Ifk, = 0and k, > 0 the asymptotic expression is
Pmnx
P,

=1-30k, 09" +..., Q@7

where x, = Lk,/(EL).

In the plastic range the lowest bifurcation load of the perfect model is given by
P. = 2EL®/(3L) where E¢ denotes the value of E, at the bifurcation point. Post-
bifurcation expansions about the lowest bifurcation load of the perfect model were
given in (I). For the most interesting case in which k; > 0 and for § > 0, the position
d of the instantaneous elastic—plastic boundary starts from x = — L and moves
inward during the initial stages following bifurcation. The initial post-bifurcation
expansions for § = 0 and § > 0 were found to be

1%: 14a,04+a,03%+a,0*°+a,05%+.. ., (2.8)
d
7 == 1=3b20"2~2b;0— $b,6%*+..., 2.9)
where
al=3l, a,=3lb,=—4l {%&}m, (2.10)
by = HehemKy gy _ap 3 Sl .11)

3(1-¢) ° 2t, .
13
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Here, it has been convenient to introduce the following non-dimensional quantities
which appear above and in subsequent equations:

t_Ef i
c_E’ e"L’

(% ,,,_d:t) okl kL
€ \de/. € \de?/. 17 EL’ 2~ EL-

The slope of the load-rotation relation is initially positive but may be appreciably
reduced after very small rotations. This would be expected, for example, if material
and geometrical nonlinearities (as measured by —¢_ and x,) are sufficiently large such
that a, (which is negative) is large in magnitude compared to a,. In this case the
maximum support load Pg§** is only slightly larger than P.. If just the first three
terms on the right-hand side of (2.8) are used to estimate the maximum support load,
one finds

(2.12)

(2.13)

The analysis of the slightly-imperfect model separates into two problems. First,
the behavior of the model is examined up to the first occurrence of elastic unloading
where the values of applied load and rotation are denoted by P and #. Secondly,
perturbation expansions are developed about this state in a way which takes into
account the expanding region of elastic unloading.

To analyze the behavior of the model prior to the occurrence of elastic unloading
one can obviously suppress the unloading property of the stress-strain behavior and
take the one-dimensional relation to be a nonlinear elastic one. Extending the
meaning of HiLL’s (1961) terminology, we will refer to the model with the nonlinear
elastic stress—strain relation as the comparison model. To obtain the behavior prior to
elastic unloading at load levels approaching P,, we analyze the comparison model
using an initial post-buckling analysis of the Koiter-type. The result of this analysis
gives the exact asymptotic equation:

P
<1 - }T) 0+a56*+... = pb, (2.14)
where
t\"?! 3px,
={1-— ¢ =— .
P < 31:) 4 2, 2.13)

and P, = 2E°L3/(3L). Only the lowest order contribution of the imperfection, 8, has
been retained. From (2.14) it is seen that 4f is the initial slope of the load-rotation
relation of the perfect comparison model.

For 8 > 0 with monotonically increasing P, elastic unloading will first occur at
x = —L when é = 4—L0 = 0. Thus, from (2.3) the slope of the load-rotation
curve at the onset of elastic unloading is

Z—g = _fL E(0)[L+x] dx, (2.16)
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where E,(x) is the current value of the tangent modulus. For the perfect model,

P =P,8 =0and £, = E°. The initial post-buckling analysis provides the following
expression for E, in terms of P and 8:

_ pc dEr (P_Pc) 2 2
E, = E| +E(ds)c[ TR xQ] + 082, (P—P )%, 0). (2.17)
It then follows from (2.16) that
FAY
1 dpP A
P g5 = @t 00, (P=P), D) (2.18)

where the terms linear in 8 and (P-- P,) can easily be evaluated but will not be needed.
Note that a, is the initial slope of the perfect model given by (2.10). In words, elastic
unloading begins in the imperfect medel when the slope of the load-rotation curve
diminishes to the value g, correspending to the initial slope of the perfect medel (to
lowest order).

To evaluate P and & use (2.14) with the condition (2.18). The results are

1/2
0=( il ) +0(D) (2.19)
a,—a;
and
p . o8 \112
p, = 1-(@—2aD) (al_ae) +0(). (2.20)

Now we go on to consider continuing deformation under increasing 8. For small
but nenzero values of 8 it is possible to develop an expansion of P and the position
of the instantancous elastic—plastic boundary about the state (P, 8) in terms of integrai
powers of (8—0). However, coefficients of this expansion are unbounded as § — 0
and consequently do not reduce to (2.8) and (2.9) in the limit for the perfect model. A
uniformly valid expansion, which includes both perfect and imperfect cases, can be
obtained in terms of an expansion parameter { which is defined for 8 > # by

0—0 = y(O) 2L+ (2, (2.21)

where the constant y is determined in the expansion process. We omit the algebraic
details required to carry out this expansion since they are quite lengthy and, to a
certain extent, similar to those detailed for the perfect model in (I). The result is
(for { > 0and { > 0)

P P

— = —4p l+p PP+, (2.22)
Pc P,

d 5 s

Z=—1+d1g+d2C+..., (2.23)

where the coefficients are given by

3cb, (31, —12) ( o )”2
= - C
TS T N6l — 204 3k, )

a,—a
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Py = a;y(0)"*+0(9), P2 = a;+p5P(6)'* +0(9),
ps = a+pP@'?+0@), d; = —3b,+d{(B)"*+0(B),
piY = 91b, y/4+2ct(ai - D)t.,
PV = — 21dV +21b;y+4ltLy[t, +ct. by (2a% — 3D/t — (1 —t )b% y/(161,),
31—t )b, d{V = — $t.(pV+ayy+as¢)—12ic;, c+3(L—1)p(b, by +b3) +

245
+2t(4bsc+7b, y) + 2% ct,bi(31—a%) +3ct! (— 14+ —371)

For 8 » 0, P = P_and { = (0)'/%, and (2.22) reduces to (2.8) as already mentioned.

Two numerical examples are presented in Figs. 2 and 3 to illustrate the effect of
small imperfections and to indicate the accuracy of the asymptotic expansions presented
above. To bring in the material nonlinearity in a realistic way, quantities such as
t,, t., t" were calculated using a Ramberg-Osgood type stress—strain relation, viz.

ol (i) , (2.25)
&1 5 Sy

(2.24)
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(o] 0.00550.01

F1G. 2. Post-bifurcation behavior and imperfection-sensitivity of the model with material and
geometrical nonlinearities (x; = 1, k3 = 0). (Solid line curves are based on the asymptotic formulae;
dashed line curves are obtained by numerical analysis.)
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Fic. 3. Post-bifurcation behavior and imperfection-sensitivity of the model with only material
nonlinearity (x; = k3 = 0). (Solid line curves are based on the asymptotic formulae; dashed line
curves are obtained by numerical analysis.)
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where ¢, and s, = Ee; are reference values. The solid line curves in these figures
were obtained using the explicitly listed terms in (2.12), (2.14), (2.15) and (2.19) to
(2.25). For both examples, « = 2/10, n = 3, I = 1 and (s,/EL) = 0-1094 (corres-
ponding to the values Ef/E = 0-46 and s./s, = 1-4, where s, is the value of s at
bifurcation). For comparison purposes a full numerical analysis was carried out for
these two examples and these results are shown as dashed line curves in Figs. 2 and 3.}

In the first example, shown in Fig. 2, the model has a strong geometrical non-
linearity (x, = 1, x, = 0) in addition to the material nonlinearity associated with
(2.25). In the elastic range the model has an asymmetrical bifurcation point with the
imperfection-sensitivity implied by (2.6). On the left in Fig. 2 is shown the behavior
following the onset of elastic unloading. Qualitatively, this family of curves can be
viewed as being obtained by a downward translation of the curve for the perfect
model such that the ordinate is intercepted at P. Curves of P as a function of @ are
shown in the center of Fig. 2. The point where elastic unloading starts is marked by a
wedge and the point where the maximum load is attained is marked by a dot. On
the right, plots of P/P, and P™*/P$** are given. The asymptotic results for P and §
are reasonably accurate for imperfection amplitudes as large as those shown. Further-
more, the truncated series expansion (2.22) also gives a reasonably accurate estimate
of the maximum support load for the perfect and slightly imperfect models.

For the example of Fig. 2 it is seen that

max P
e
In fact, a calculation of P™** using the truncated series (2.22) shows that the approxi-
mation in (2.26) becomes increasingly accurate the larger is the parameter x; measuring
the geometrical nonlinearity. Certainly there is no general validity to (2.26) as will be
seen; nevertheless, the curves of P/P, vs. (6—8) emphasize the pivotal role of the
state (P,0) marking the onset of elastic unloading. We have already remarked that
elastic unloading starts in the imperfect model when the slope of the load-rotation
curve diminishes to the value corresponding to the initial slope of the perfect model.
In the presence of sufficiently large destabilizing geometric or material nonlinearities
the slope diminishes rapidly with small further increase in load once elastic unloading
starts.

No geometrical nonlinearity is present in the model for the example shown in
Fig. 3 (i.e. ¥, = k, = 0). As a consequence the maximum load occurs at larger values
6—0 than in the first example. The truncated expansion (2.22) now loses accuracy
prior to the occurrence of the actual maximum load point. Even in this example,
however, the significance of P is evident, and the asymptotic formula for P/P, gives a
qualitative estimate of the effect of § on P™**/Pg=*,

The features illustrated by Figs. 2 and 3 are evident in the numerical results
presented by DUBERG (1962) for a two-flanged column whose material properties are
given by the Ramberg—Osgood relation (2.25). This column is analogous to the

pﬂ 1/2
al—a‘i) F.. (2.26)

+ The numerical analysis of the model was carried out using a straightforward method. The range
— L < x < L was divided up into a large number of intervals in which the stress and strain was taken
to be constant. Integrations in (2.3) and (2.4) were thereby replaced by summations over the intervals.
Starting from zero applied load, the entire load-rotation curves shown were calculated incrementaily
using small changes in P (or 8). The curves for the perfect model were actually calculated using the
numerical setup for the imperfect model with an extremely small imperfection (§F = 10-°).
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present model in the absence of any geometrical nonlinearity. His results indicate
a sensitivity to small imperfections comparable to that in Fig. 3. A quantitative
comparison of Duberg’s numerical results for P™*/P** with the predictions of a
formula such as (2.26)1 indicates somewhat better agreement than was found for the
example of Fig. 3.

Further evidence of the approximate validity of (2.26) is provided by a discrete-
element model analyzed by HUTCHINSON (1972). The analysis of that model directly
yields the analog of (2.26) for cases in which the geometrical nonlinearity gives rise to
strong imperfection-sensitivity in the elastic range. Somewhat similar behavior can be
seen in the results of BATTERMAN (1971) for the effect of initial imperfections on a
discrete arch model.

A final example which reveals the close proximity of P and P™*in both the perfect
and imperfect structure is shown in Fig. 4. Shown there are load—deflection curves for
the axisymmetrical deformation of a complete spherical shell subject to an external
pressure p. These curves were obtained numerically and were taken from HUTCHINSON
(1972), where a complete specification of the shell parameters is given. The material

"Perfect Shell®
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FiG. 4. (a) Curves of pressure as a function of buckling deflection for a complete spherical shell
compressed into the plastic range. (b) Curves of maximum support pressure and pressure at the
onset of elastic unloading as a function of imperfection amplitude.

comprising the shell is characterized by the J, flow theory of plasticity for a tensile
stress—strain relation of the Ramberg—Osgood type (2.25) with & = 1/10 and n = 6.
The shell parameters are such that the stress at bifurcation is approximately 1-5 times
the reference value s;. The abscissa is the inward buckling deflection at the pole &
normalized by the shell thickness #. The imperfection is in the form of the eigenmode
of the perfect shell and its amplitude is denoted by &. Numerical results for P/P, and
P™x/plax a5 a function of &/t are shown as a single curve in Fig. 4 since they are
essentially indistinguishable in this plot.

3. IMPERFECTION-SENSITIVITY OF THE ONSET OF ELASTIC
UNLOADING IN AN ELASTIC-PLASTIC SOLID

Consider an elastic—plastic body subject to dead load surface traction per original
area, ATS, on Syand prescribed displacements, Auf, on S, where the load parameter 1
is taken to increase monotonically prior to the occurrence of any limit point. The

+ The general formula (3.19) for /P, given later applies to the Duberg column.
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reader is referred to (I, Sects. 3 and 4) for a specification of the notation and formu-
lation which is used below. The undeformed configuration of the perfect body is
used as the reference configuration. The imperfection is taken to be an initial stress-free
distortion of the perfect configuration, &G;, where £ is referred to as the amplitude of
the imperfection. The total displacement from the reference configuration is u;,+ &i,.
Deformation from the initially imperfect state is measured by the difference between
the Lagrangian strain tensor of the current state and that of the initial state, i.e.

ﬂij = %\ui’j'l'uj_ g)+17uk _iuk,j+%f(ii" Juk.j'l'ﬁk ,ju,,, ‘). (3.1)

Rates of change of the convected contravariant components of the Kirchhoff stress
tensor are related to the strain-rate by

= [y, for  m¥, =0, 3.2)
it = $iMp. for  m, <0 (3.3)
when the yield condition is satisfied; when it is not, (3.3) holds.

The fundamental solution of the perfect body is denoted by uf, nf}, and °¥. Itis
unique prior to the occurrence of the first possible bifurcation at A = 4,. We restrict
consideration to problems in which there is no elastic unloading associated with the
fundamental solution; furthermore, we will assume that the body becomes fully
plastic prior to bifurcation. Many structures designed to be effective under com-
pressive loadings fall within these restrictions—the axially compressed column is the
most obvious example. Of primary interest are bifurcations occurring at loads below

any limit point of the fundamental solution.
1y (1)
Assume that the eigenmode associated with 4, is unique and denote it by u;, 7,

(1)
and 7. Normalize this mode in some definite way and denote its amplitude by &.
Continuing with the convention adopted in (I) we will always take £ to be positive and
we will assume that & increases monotonically over the range of interest. To analyze

)
the opposite-signed deflection in the eigenmode we will change the sign of ;. HILL’s
(1958, 1961) bifurcation analysis requires that the bifurcation mode be a linear
combination of an increment of the fundamental solution and the eigenmode

0 (1) ‘0 (1)
)+ = Aui+u, » (3.4)
where
N d() - "N o— ‘i(_)
)= a and ()= il 3.5

Here, A, is the initial slope of the 1 — ¢ relation for the perfect body (i.e. dl/d£| 1. = A4
Furthermore, A; must be sufficiently large such that plastic loading occurs throughout
the body, that is

. ’ (3%}
md(A n%+ ny) 2 0. (3.6)
In the absence of elastic unloading the branch (3.2) of the stress-rate-strain-rate
relation can be regarded as the constitutive relation for a hypo-elastic solid as discussed
in (I). However, before considering the behavior of the hypo-elastic comparison solid,
we first discuss the analysis of the onset of strain-rate reversal in a nonlinear elastic
solid (i.e. where L is derivable from a strain energy functional). The results for the
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elastic solid are somewhat simpler than those for a general hypo-elastic solid and they
provide a convenient lead-up to the more general analysis.

The initial post-buckling analysis of the elastic solid involves only a minor exten-
sion of the general KorTer (1945, 1963) analysis to include the effect of the variable
moduli of the nonlinear stress—strain relation. We will not repeat this analysis here
since it follows fairly closely a similar analysis given by FircH (1968) and CoHEN (1968)
for the case of linear elastic solids. The asymptotic relationship between 4 and ¢ in the
neighborhood of 4, is found to be

(A —=AE+AEE2+. .. = ApE, 3.7
where only the lowest order effect of the imperfection, iy, is retained and 1% and p
are given by
) w L’J"’ , w

(l)
A =—1c- 1j<3r'f uhy T | ukz> dv (3-8)

and

p =GOy [ (a Wk o+ T uls @ ) dv, (3.9)
where

o1 Wy @ ) (1) ) 5
C= j( U yk w42t u uk 0™
v

ar mn

1) (1)
ﬂij nkl) av. (310)

The symbol 4 is used to distinguish the initial slope of the elastic body from that of
the hypo-elastic body, 4%, to be introduced later. Note that when due to symmetry
the A—¢ relation of the perfect elastic body is independent of the sign of £, then
A5 = 0. For future reference we record the expansions of the displacements and
stresses which are needed in the derivation of (3.7):

1) 2)
'ui = u?(ll)'l'é ui+£2 u,+... (3.11)
and

Lukl . LR |

= %)+ LM (ny, —n(A)) + 252 5 o 'Ikt'l'f('l —A)tom 7 | N+

+0(&3,E(A—24),...). (3.12)
As discussed in (I), we will investigate the behavior of the most interesting post-

1
bifurcation branch and therefore we will take the sign of (u,) such that 14 is either zero
or negative. Then, A, is the smallest value which satisfies (3.6) and for the perfect body
elastic unloading starts at the bifurcation point. For the imperfect body “unloading”
(i.e. strain-rate reversal) will start when for the first time at any point in the body

muﬁu = 0. (3.13)

(1)
To calculate # use the fact that n = n°(A)+¢&n+O(¢?, EE) and expand terms which
are dependent on 4 in a Taylor series about A_; also write

om'

lj = mu_l_(.r 2""') pa . +

(3.14)
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One then finds

i, if di ‘0 (1) .
My = me { g Mt ) + O(A—2s¢,6). (3.15)

Since 4, assumes the smallest value possible consistent with (3.6) we conclude that the
value of dA/d¢ at which m" #,; first vanishes is given by
PNy
di
d¢
exactly analogous to the behavior of the simple model. Condition (3.16) together with

(3.7) provides the asymptotic expression for the values of A and £ associated with the
onset of “unloading”, namely,

= 2, +0(A—2,¢,8) (3.16)

Ac 1/2
r.’3=</1 _pf) , (3.17)
1 1
2 A, —225\[ A pE \1?
A,,'l'( . )(Al—zi) ‘ @.1%)

The formal similarity to the simple model expressions is evident. When 1¢ = 0
(as it is, for example, for the compressed column discussed earlier) (3.18) reduces to

the even simpler formula
Z 2 1/2
=t ("17”§) : (3.19)

Now we return to the analysis of the hypo-elastic comparison solid whose behavior
does coincide with that of the elastic—plastic solid prior to the onset of elastic unload-
ing. The comparison solid was introduced in (I, Sect. 5). The stress in a hypo-elastic
solid depends on the deformation history. Here we will restrict attention to solids
whose moduli exhibit no path dependence or can be taken to be approximately path
independent in the region of strain space spanned by the solutions for the perfect and
slightly-imperfect body. We assume that the moduli can be regarded as a function of
the stress alone (as, for example, in the case of simple J, flow theory for small strain
plasticity). As before, denote the fundamental solution of the perfect body by 7°(4),
1°(2), Lo(4); and define AL = L—L, and Ay = n—n° for every value of 4. Then,

1 —1% = Ejklﬁkl"l‘%k'ﬁl?l = Ef;”Aﬁkr{‘AEijlkb (3.20)
where () = d/d¢ and A is regarded as a function of £. Thus,
=% = [ {LFAR,+ ALV, ) dE. 3.21)
0
Next, assume an expansion in the form of (3.11). Expand all quantities dependent on

A in a Taylor series about A, (e.g. Ly = L.+(A—A4.)t° dL/dz|.+ ...) and then sub-
stitute in (3.21) with the result

. .. . M|«  ,  pINMY ) § )
= )+ LM — )+ 55 o™ M+ 7™ e | M | (A—2) dé+
oTt™ |c ot c 0
IEVRN7) e N 4 )
+ ™ R "o 6‘. AEdE+O(E3, E2 (A=), .. .). (3.22)
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Since
4 4
g(i—ic) dé = (A-A) — gié‘ dé,

we note that (3.22) reduces to the expression (3.12) for the elastic solid except for an
additional term

w__gre | Lo oD Y &
{tmn = 70, — 70 = qk,}£i§ dé. (3.23)

It is readily shown that the term in the brackets vanishes identically if L is derivable
from a strain energy potential.
From this point on the analysis follows that of the elastic solid very closely. The

principle of virtual work in conjunction with the assumed expansions is used to
(1) (2)
generate the sequence of boundary-value problems for u;, u;, etc. in much the same

way as has been discussed by BunIANSKY and HUTCHINSON (1964), BuDIANSKY (1966),
FircH (1968) and CoHeN (1968). The analysis provides the asymptotic equation
relating A and £ in the neighbourhood of A_ in the presence of small imperfections.
This equation is found to be

(A—)E+ 28 §2+5_§2§ dé+... = Apg, (3.24)

where 47 and p are given by the previously listed expressions (3.8) and (3.9) and
o PINE | oo o gpM o
5 =C! I{,’:Omn o — | (ﬂkl} av. (3.25)
1 4 c

A MjMa— T o™

As already discussed, the integrand in the above integral vanishes identically for a
non-linear elastic solid and thus & = O in this case. We have not fully explored the
possible range of values of 6. However, for the special case of J, flow theory and
compressive-type fundamental solutions which satisfy proportional loading, § < 0.

Denote the initial slope in the perfect (¢ = 0) hypo-elastic comparison problem by
e (ie. A = A, +A%E+...). From (3.24) one obtains

M= [1-16]"1a¢ (3.26)

and it is a simple matter to show that this agrees with the expression for 4% derived
in (I). The solution to (3.24) satisfying A = 0 for £ = 0 is (for § < 1)

A=A A+[(1-8)¢+pE]~ 1D x
x {—Ac(pf)l’(l"’)+21e1 ferc1— o)+ pEp=® dC}. (3.27)
0

For values of 4 near 4., (3.27) can be expanded in small values of &/¢ leading to the
asymptotic equation

I ) ) ("—Ey/(l—”. (3.28)

1-9

The condition for the onset of elastic unloading is still given by (3.16). [Using (3.16)
and (3.28) one finds the lowest order asymptotic expression for & and I_to be '

1 A, \o-oe-s
t= i (mm)  epve (3.29)
1
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2 P 2 2—6) lhe] lc )(1—6)/(2—6)( E)l/(z-—d) (3 30)
= A~ - — . p . .
[~ (=) %) (52

When § = 0, as it is for any nonlinear elastic solid or, for example, for any problem
such as the column model where the stress is everywhere unidirectional, then (3.30)
reduces to the expression (3.18) given previously. In general, however, the lowest
order effect of an imperfection on the behavior of an elastic-plastic body prior to
unloading involves a different power than Korter (1945, 1963) found for elastic
solids, equation (1.1).

and

4. DISCUSSION

Attention has been restricted to problems in which the fundamental solution of the
perfect body has the property that continuing plastic deformation takes place through-
out the body as the load is increased. The load marking the onset of elastic unloading
is highly sensitive to small imperfections. Several examples have been cited which
suggest that for sufficiently large material and/or geometrical nonlinearities the
maximum support load occurs after relatively small deflections following the onset of
unloading. Furthermore, the approximation suggested for the simple model, i.e.

Pmax p

Pg* " P
may give at least a qualitative prediction of the effect of small geometrical imper-
fections on the buckling load.

One obvious limitation of the suggested approximation (4.1) is that in “elastic
limit” in which bifurcation takes place within the elastic range the expressions for
P[P, do not reduce to the appropriate elastic results for P¥**/P,. In a typical problem
involving a structure subject to a compressive load, the bifurcation load may be, say,
only ten to thirty per cent higher than the load at which plastic yielding starts. Then,
certainly, the asymptotic formulas will not be accurate for load reductions larger than
ten to thirty percent. A simple model study given earlier (HUTCHINSON, 1972) provides
some further discussion of these limitations.

Finally, we note that the asymptotic formulas for the behavior prior to the onset
of elastic unloading can easily be specialized to elastic—plastic systems with a finite
number of degrees of freedom.
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