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ABSTRACT

Aspects of crack growth in an elastic-plastic material under quasi-static,
steady conditions are investigated for plane problems. A path-independent line
integral is identified for the steédy problem which generalizes the J-integral of
deformation theory plasficity to incremental theories of plasticity. Implications
of the integral for small scale yielding crack growth are discussed. A model
study is made of the effect on the growth process of the residual plastic wake
left behind the advancing crack. The influence of the wake on the stabilization

of crack growth is discussed.

1. INTRODUCTION

Irreversibility effects which tend to stabilizé céack growth arise from two
related sources: mnonproportional plastic deformation in the active plastic zone
apd elastic unloading which leaves a wake of residual plastic deformatioﬁ behind
the advancing crack tip. MecClintock {1, 2] studied quasi-static crack growth
under anti-plane shear in an elastic-perfectly plastic material. Of particular ,
éignificance is his discovery that the strains in the ;cpive plastic zone depend
iogarithmically on the distance, r , from the crack-tip as the tip is approached.
The corresponding behavior for a stationary crack in a perfectly plastic material
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1s far more singular with strain varying like 1/r . MéClintock was able to
estimate the strain field in the region ahead of the crack for small scale yielding.
Then employing a fracture criterion based on the attainment of a critical strain

at some characteristic ahead of the crack, he showed that stable crack growth
should be expected for an; reasonable choice of critical strain and characteristic
distance. Later, Chitaley and McClintock [3)] carried out a detailed numerical
analysis of the small scale yielding problem under steady growth conditions and
verified the major features of the more approximate analysis given previously in

{1, 2].

Rice [4, 5] hqs shown that a logarithmic dependence of the strains on r can
also be expected for a growing crack in an elastic-perfectly plastic material for
both plane stress and plane strain. More complete analyses of the plane problems,
analogous to those cited above for anti;plane shear, have not been achieved. None-
theless, because of the weak logarithmic singularity in the strains, it seems
probable that such an analysis would again predict stable grack growth for the
plane problems. If true, this would be cause for some concern since under conditions
approximating plane strain little or no stable erack growth is frequently observed
in smwall scale yieiding tests. Since the stress history of each material'point
swept by theradvancing plgstic zone is distinctly nonproportional {3, 5], it is
couceivable‘that the smooth yield surface of the plasticity theory used in the
singularity analysis overly restricts the plastic flow and leads to a weaker
singulérity in the strains than might otherwise be foﬁnd. For similar reasons,

a smooth yiéld surface is thought to be inadequate for describing plastic flow in
the bifurcation analysis of plastic buckling. |

In this paper the influence of the residuai plastic wake on the extending crack

will be modeled for steady conditions. The model is similar in spirit to the




Dugdale-Barenblatt model for a stationary crack in a thin sheet. The model is not
intended to be complete since irreversibility effects associated with nonproportional

loading, such as those discussed above, are not included. Instead, the purpose of

the model is to complement the above mentioned studies to illustrate that the wake
by itself can have a significant effect on stabilizing crack propagation. The model

is formulated for plane stress but some difference between plane stress and plane

strain can be inferred with respect to the effect of the wake on growth.

Before introducing the model, a general derivation of an energy balance relation

is made for steady propagation of ecracks in elastic-plastic materials., A path-

independent integral is identified which generaliées the J-integral of Rice [4] to

hold for arbitrary material behavior. Our development is closely related to the work

of Cherepanov [6, 7]. The integral is used to show the relation between the residual

internal energy in the wake and the elastic stress intensity factor for small scale

yielding. This information is then used in constructing the model.

2. A PATH-INDEPENDENT INTEGRAL FOR STEADY CRACK GROWTH IN THE PLANE
Let the coordinates % and X, translate with the crack tip and be centered
as in Fig. 1. Crack growth occurs in the X direction; let (Xl = a, X2 = 0) be

the position of the crack tip with respect to some fixed coordinate system (xl,xz) .

The crack-tip coordinate a is assumed to increase monotonically and can be taken

as the time-like variable in the quasi-static growtﬁ process. If steady conditions

hold, either globally or in some vicinity of the erack tip, then the stresses, strains
and displacements can be expressed as functions of the translating coordinates xl and

independent of a .. The following relations among the derivatives hold:

a] =-[_.a_._] -2 )
9a X BX1 a ox

Xy

1

_ S5mall strain plasticity is considered in which the equilibrium equations and




the strain-displacement relations are taken to be linear. Thermal effects and
inertia are neglected. Let W be the internal energy density at any material

point,-i.e., the stress work density

ij :
f = ’
we 7oy, @
0
Here the notation of Rice [4] is used; however, we assume only that the.behavior
of the.material is time-independent and we do not limit consideration te a
deformation theory of plasticity. The integral in (2) will depend in general on
the stress history at the material point in question,
Let T be any closed curve in the plane (not enclosing the tip) with enclosed

area AT which translates with the crack tip without deforming. Let Qr be the

internal energy per unit thickness enclosed within T so that

@r = J W dA . (3)

Ap

Under steady conditions @P is constant and thus

as ‘ : '
SRS A i K1) :
0=~—-= J [anx dA + Iw n, ds _ (4)
A = r

T

where n, is the outward unit normal to T and ds is the length element. Next

note that

- ' %€, .
[Bﬂ M=Jcﬁkgq M=-J%fﬁJdA
A, % A X A
r r r

= -I (oijui,l),j dA = -Icijnjui,l ds _ (5)
- . T
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S, = = = + have also been used, and where
where Uij,j 0 and Eij Z(Ui,j uj,i)

() i = 3 ( )/Bxi . Combining {(4) and (5) gives, for any closed contour,
3 . .

J(W nl-Tiui’l)ds =0 . : (6)
T

where Ti = Gijnj .
The path-independence of this integral can be demonstrated directly by applying

Green's theorem to the first term in (6),

anlds=J w’ldA=-I[-a—a]XdA,. | &)
Iy . A A

and then noting that (5) applies. The derivation assumes there are no singularities
inside I' . But it still holds when discontinuities in the second derivatives of
the displacements and in the first derivatives of the stresses occur across

contours contained within T , as can be expected across the instantaneous boundary

between the plastically loading and elastically unloaded regioms.

Each of the two terms in (6) has a simple ph&sicai-interpretation; The first
is the rate per unit crack extensioy at which stress work passes through the contour
T wh;ch is translating with the tip. The second is the rate of work per unit crack
extension done by the tractions acting on ' on the material within. Since the
total stress work within T' is constant in fhe steady state, the sum of these two
terms must vanish. |

Now consider a ciosed contour such as that shown in Fig. l.where
- I'= P1+ F2+-P3f-fé . The contributions along the crack face, I'’) and T, , vanish

2 3

identically. Thus the integral on Tk equals the integral on T That is, the

l -




integral on any contour Fc , such as Pl or Ph s, which encloses. the crack tip

is the same. Let

s
= - 8
J [ W ny Tiui,l)ds (8)
r
c
where the superscript s is to emphasize that it is restricted to steady conditions.
The similarity in notation between (8) and the integrals discussed by Eshelby

[8) and Rice [4] is deceptive since (8) is path-independent for any material as

long as steady conditions pertain. In general, (8) is not path-independent when
crack propagation is not steady. In contrast, the integral discussed by Eshelby
‘and Rice is restricted to nonlinear elastic solids (e.g., a deformation theory of

plasticity) but is not restricted to steady conditions.

We now argue that- =0 for steady growth of.a line crack“inman eiéétic-
plastic material under the small strain assumptions for which (8) wa;'derived. For
elastic-perfectiy plastic problems involving a line crack in anti*plane_shear, plane
strain or plane stress it has been noted that the singelarity in the strains (and
more generally the disp}acement gradients) at the crack tip is only logarithmic.

It follows that the singularity of the integrand in (8) is also logarithmic.
Consequently, if Fc is taken as a small circle or radius Irc cenéered at the tip

so that ds = T d0 , then by letting r_+ 0 it is immediately seen that J° = 0 .

Physically, =0 implies that no energy feeds out at the advancing tip of the

line crack in the elastic-plastic material as it does in a linear or nonlinear elastic
‘material. This same procedure has quite a different conclusion when the material is
nonlinear elastic. Then, it is known that J # 0 and the aﬁove procedure implies

that the integrand in (8) must have a 1/r singularity, which has been verified

for a class of nonlinear maﬁerials in [9, 10].




No information is available on the singular behavior of the stress and strain
at the crack tip in a strain hardening material for nbnstationary cracks. However
it would not be expected that a small degree of strain hardening could lead to a
dramatically stronger singularity in. W than tﬁat“éccurring in the perfectly plastic
case. In fact, we suspect that any amount of irreversible plastic flow in the steady
problem will lead to a singularity in W which is weaker than 1/r so that IF=0 .*
The path-independent integral (8) is qlosély related to an integral derived by
Cherepanov [6], although in several respects our creatment differs from his. Most
importantly, our Eonclusion that -J° vanishes for steady growth is in direct’
contradiction te hic Eonclusion. As iﬁ this paper, Cherepanov considers general
-material behavior. However, he does not resfrict consideration to steady crack growth.
Following a series of physical and mathematical arguments, he arrives at them

propagation criterion (in the present notation and neglecting thermal and inertial

effects which are also considered in [61):

-J w nl-Tiui’l)ds = 2Y '7 . (9)

Consider the following argument. Suppose irfeversible plastic flow did occur
such that W~ 1/r as r = 0 . If material having undérgone this level of
irreversible straining was left behind in the wake, this would imply that at
any fixed value of x; behind the tip (i.e., %, <0) W~ 1/Ix2| as

X, =+ 0 . But this is clearly not possible since it implies infinite energy
in any finite length of the wake. The argument is not rigorous since it is
conceivable, although it seems unlikely, that, once plastic straining cccurs
such that W ~ 1/r , this level of plastic straining could be reversed so
that the residual plastic strains in the wake were of smaller order of

magnitude so that |x2]W -0 as Xy ¥ 0 for fixed X .




where Y 1s the surface energy per unit area requirgd to create a new sﬁrface.
The surface energy Y is introduced into (9) on physical ané not mathematical
grounds. Furthermore, Cherepanov goes on to conclude that, since Y # 0 , W must
have a 1/r singularity in all cases. This is correct for nonlinear elastic
materials as corroborated in [9, 10]. But for steady growth of a line crack in an
elastic-perfectly plastic material, at least,-the integral in (8) is zereo; and,
_therefore, the proposed fracture criterion can never be satisfied within the context
of this theory. From a different approach, Rice [11] has also shown that, for the
small strain theory of a line crack in an elastic-perfectly plastic material, the
surface energy cannot be accouﬁted for in the enefgy balance,‘ﬁhether the motion is
steady or not.

" The derivation of [6] suggests that this equation holds for nonsteady growth.
As already mentioned, the integral in (9) is not.path*indepeﬁdent, in general, unless
steady conditions prevail or unless the material is nonlinear elastic. Evidently,
Cherepanov has tacitly invoked one or the other of these restrictions in his
derivation. |

With the proper interpretation of W and T , the integral (8) is path-

independent for a fﬁll finite strain theory analogous to the nonlinear elastic

results of Eshelby [8] and Knowles and Sternberg [12].

3. IMPLICATIONS OF THE PATH-INDEPENDENT INTEGRAL FOR SMALL SCALE YIELDING

" 1f staﬁle crack growth occurs, steady condiﬁions in the vicinity of the crack
tip will be appfoached once a crack has propagated a distance on the order of several
times the activé plastic zone size. If the plastic zﬁne size and the width of the |
wake of residual plastic strains are sufficiently small they will have a negligible
perturbating effect on the elastic solution away from the tip and shank of the crack.

In some region surrounding the tip, which is small compared to the crack length and




other relevant geométric lengths but large compared to the active plastic zone size,
the field of the dominant elastic singularity governs. Under steady conditions the
size of the active plastic zone and the w;dth of the wake remain constant and the

residual plastic strains outside the?active plastic zone in the wake are necessarily
independent of Xy -

yielding for a semi-infinite crack with a semi-infinite wake shown in Fig. 2a. A

We consider the limiting problem for steady, small scale

similar problem formulation is discussed in [3] for the anti-plane shear problem.
For fixed © in the open range [8] <7

K
2Tr

o,, *

1] Eij(e) as r > ® _ (10)

- where K is the elastic stress intensity factor and 3ij(6) are the B-variations
of the stress components associated with the dominant singularity of the elastic
solution. 1In the wakev(i.e., 0 = *7) as r + « finite residual stresses and
strains occur which are ﬁot known a priori but depend on the deformation ﬁistory in
‘the active plastic zone. In addition to (10), it can also be asserted that as

+ - for any fixed =x, outside the wake {(i.e., lxé[ > 2h) the'stfess field

| 2
approathes zero. This follows from the fact that far from the crack tip either

half of the wake can be viewed as an infinite strip of widfh 2h 'which has undergone
xl-independent plastic straining and which is attached to an elastic foundation of
infinite depth. In such a problem the stresses and stralns outside the strlp are

not influenced by the re51dua1 stresses and strains in the ;trlp, since for such
xl-independent deformations the stiffness of the strip is zero compared to that of
the underlying elastic foundation. By viewing the wake far from the tip in this

same way, it also follows that ul,1 + 0 and u2,1 + 0 in the wake as xl > =,

Let Pc be a circular contour of radius T. centered at the tip as in Fig. 2a.

Consider evaluating J° using this contour and then let r,* . The elastic
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field (10) makes a finite contribution to J° ' since for large T, s W~ 1/rc s

for IGI <mT, and ds = L d6 . Furthermore, since the wake does not influence

the elastic field outside it as T, + o« and since a 1/rc contribution to W in
the wake portion of the line integral (8) makes no contribution as T, + o . the
contribution off(IO) to the line integral decouples from the contribution of the
wake. The.contribution of (10) to 3° s K?/E fé; plane stress and Kzl[(l—vz)E]
for_plane strain, where E is Young's modulus and Vv 1is Poisson's ratio; i.e., the
well known energy release rates per unit thickness for the elastic problem. The
contribution from the wake is

=2 lim J (W~T.u, ,)dx

i%,1 (11}

2

The second term in the integrand vanishes since u g + 0 as discussed above. Let
’ .

WAVE denote the average residual internal energy deﬁsity in the wake far from the
tip, 1.e.,
. 2h : .
YavE = zlh xlif-m I W ax, | | (12)
1 0 ,

Combining K2/E {for plane stress) and 1) using (12) and the requiremént that

=0 gives

KYJE = bh W (13)
For the problem posed, (13) implies that the elastic energy release fate,

K?lE » must equal the residual internal energy per unit length 1eftrbehind in the

wake. Equation (13) should not be regarded as a fracture criterion (unless the

value of 4h associated with steady fracture conditions happens to be known

WyvE

from other considerations). It is a necessary condition for steady problems which
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must hold for any value of K ; it is the simple consequeﬂcg of the fact_that all
the elastic energy released by the extending crack is'deposited in the wake.
Equation (13) is a direct demonstration of the Irwin-Orowan modification of Griffith's
original energy balance arguments for perfectly brittle materials to include plastic
deformation. The small strain, e;astic~plastic theory of a perfectly sharp line
crack permits no energy to be lost at the crack tip; as already discussed, and thus
(13) cannot include a surface energy contribution. Under ﬁost conditions the surface
energy per unit length of propagation of a metal is an extremely small fraction of
rthe residual internal energy per unit length associated with plastic deformation so
that its absence from (13) is of little consequence, at least as far as the overall
energy balance is concerned. It is not clear, in general, what importancerthe
surface energy plays in establishing a fracture crlterlon.

Cherepanov [7] has derived a relation similar to (13) using a Dugdale model of
tﬁé plastic zone with no consideration of the wake. However, he includes the work
done by the tractions in the strip zone in with the surface energy to give an

~effective surface energy per unit of surface area formed.

4. PRELIMINARY SOLUTIONS fOR MODELING WAKE OF GROWING CRACK
In Section 5 é model of steady cfack growth in thin sheets will be formulated.
A wake of residual plastic strains and stresses will be introduced which extends from
the crack tip at x = -d to X} = =® as depicted in Fig. 2b. (For convenience,
the origin is now chosen to coincide with the leading edge of the plastic zone.)
Solutions used in representing this wake are given in this section. Since these
solutions ﬁan be obtaiqed using complex variable metho&s which are now ;easonably

well known, they will be given without derivation.

Introduce the complex variable 2z = Xy + ix2 and let ¢(z) and Y(z) be the
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Muskhelishvili functions for isotropic plane elasticity theory as usually defined

so that
= ' L
011 + 022 2(¢' +9")
- . = el 1
022 011 + 2i 012 2(z¢" +¢") (14)

w +du, = [(1+V)/E1k$ - 29" - §]

where K = (3-v)/(1tv) for plane stress and the bar denotes complex conjugation.

4.1 Elastic field surrounding a circular plastic spot

. . - I
Let a circular region of radius R and center z, = xi + ix, 1in an

isotropically elastic infinite sheet undergo a uniform plastic straining EEB .

Continuity of tractions and displacements across the circular boundary is maintained.
This is a plane stress version of the Eshelby problem [13]. The complex functions
for the elastic field outside the circular plastic spot, [z-zol > R, are

¢,(z) = %EAcz(z—zo)_l
(15)

¢6(z) = FA[-(c +c2)(z-z ) ; 2z (z~z ) ; 2R (z-z Yy ]

where

A= ﬂRz s € + 2ie

- 1,..pP
2 = 4y - 22 12) (16)

;6P
1° (522 i€),) e

4.2 Elastic field'due to two circular plastic spots which are symmetrically placed

on either side of a crack

Consider two circular regions of equal radius R . The center of the upper

spot is at z, = x; + ixg and the center of the lower one is at Eo 3 the restriction
o

x, 2 R is assumed. Along Xy = 0 for x < 0 the tractions are zerc on the crack

faces. Let the upper spot undergo a uniform plastic stralning (ell,sgz,elz) and

let the lower spot undergo (Ell’€22’-£12) . The resulting stress distribution is

= 0 . The solution for the elastic field outside the

symmetric with respect to X,
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two spots is given by

$(2) = 0, (2) + § (2) + ¢, (z) + F(2)

- N an
v(z) = b (2) + b, (2) + ¥y (@) + 9, (2)
where ¢o and !wo are the functlons in (15) Here the standard notation
-— - - ] = - "
¢o(z) = ¢°(z) » etc., is used. The functlons ¢l and wl are given by wl z¢l
. and
61(2) = - 3120" (2) + 29" (2) +¥' ()] - & EA£(z)/V2 (18)
‘1 277 Yo o 2
where
[z cz(—z3-+6222-+3z22 -3222 -62z z 4—222 )
£(z) = o —c. (242 ) + [+ o o 0 oo o
_ 2 1 o bz (z -2)
2z {z~z ) o oo
o o
3c2R2 (--523 - 15222 +5z 22 - z3)
0 o o
- 2 2 (19)
16(20-2) z

The square root is defined such that 1 = 1 with its branch liné chosen to lié
.along the neéative real axis. | |

Two quantities which will be of special interest are the stress inten31ty factor
and the crack opening dlsplacement. Using the standard definition for the stress
intensity factor, one finds

lin
K= x. +0F (21Txl)

1

1/2 Gpp(x,,0) = ~2/3T EATRe [£(0)] (20)

where ZPe [z] stands for the real part of z . For a pair of spots whose distances
- from the free crack surface are small compared to the distances from the tip, i.e.,

xgllxil << 1, (20) reduces to

o oy2
X X
Km - Z pal e 2y pl(eR P % (21)
2/2m x| x)

1
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The plastic strain components Eiz- and 822 have an inherently smaller influence

on the stresses at the tip than does Egl when xgllxi| is small,
With 6(x1) = uz(xl,0+)-u2(xl,0“) for X < 0, the crack opening displacement i
is given by

X _112 :
8(x)) =8A | (-n) "Fe [£(n)]dn (22)
0o '
. where n 1s a real integration variable. Let Eo be an arbitrary reference strain.

It is a simple matter to reduce (22) to a nondimensional form for 6/(R€o) involving

. e o 0,1 0 o p P
only the following quantities: xlllxll . x2/]x1[ . R/x2 . Ellleo . 612/80 and

P
€22

solid line curves in Fig. 3. .In Fig. 3a xg/[xz| is taken to be 1/10 while in

/Eo . Curves of 6(x1)/(R8°) calculated numerically'using (22) ‘are shown as

Fig. 3b it is 3/10 ; in both cases R is chosen to be equal to x; so that the

spots just touch the crack faces as indicated in the insert. The curves identified

P __p
12~ %22

.with_similar jdentifications for the other cases.

by (8;1/€O¥=1 s € =0) were computed using those-values for the parameters,
Whgn -xg/|x;| is small one would expect the displacements in the vicinity of
the spot to be essentially the same as those predicted for a plastic .spot situated
near the free edge of a semi-infinite sheet (i.e., where the tractions vanish along
‘X, = 0 for all xl). By taking the appropriate limit of (22) as xg - 0 one can
show that this is the case. The dashed line curves in Fig. 3 are the predictions of
this simpler solution for the spot of radius R centered at z, in a semi-infinite
sheet (x2 >0) . The identification G(xl) = 2u2(xl,0) has been made. Note that
for kg/lxil = 1/10 the two sets of predictions are essentially indistinguishable
over the range of %; shown, and even for x;/]x;| = 3/10 the approximation is-

feasonably good except right at the crack tip.
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5. SMALL SCALE YIELDING MODEL OF THE EFFECT OF THE WAKE ON STEADY
CRACK GROWTH IN THIN SHEETS
As indicated in Fig, 2b, the active plastic zone will be modeled by a Dugdale
strip zone extending from the crack tip at x, = -d to x, =0 . The sheet is slit

1 1

along x, = 0 in this zone and the tractions are rgquired to satisfy Gpp = O and
012 = 0 on each face. Identify Go with an éffective yield‘sgress of the material
in tension. The length d  of the zone will be adjusted so that the stresses are
bounded ahead of the plastic zone.

Small scale yielding is assumed and thus far from the tip oﬁ any radial line
except O = im the dominant singularity of the elastic solution (10) is approached.

The stress intensity factor K is regarded as prescribed. In terms of the complex

Huskhelishvili functions the far field is

o' = 29 > K/[2(21rz)1/2} as J|z] + e (23)
No attempt will be made to relate the details of the distribution of the plastic
strains in the wake to the deformation field in the active plastic zone, but it will

‘be assumed that all the elastic energy released goes into the internal energy of the

wake consistent with (13). In other words, the work done by the tractions 022 = 00

in the strip zone is considered to appear as part of the internal energy left in
the wake.

Let ¢f represent the inplane plastic strains averaged with respect to X,

af
across the wake; these are independent of Xy - The wake is modeled by integrating

" contributions of the plastic spot solution (17) from x: = -® to x;

the uniform plastic strains in an elemental spot with the average plastic strains in

= =d . Identify

the wake EEB . At a typical point x° in the wake identify the area element A

1

in (16) and (18) with 2h dx; and take the element tb be centered at z, = x;-+ih
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with its partner centered at Eo . Note that (17) makes ﬁo-contfibutibnh¥6fthéﬂ;
tractions on the surfaces in the strip zone ahead of the crack.

The emergy relationship, K2/E =4h W discussed in §3 will be imposed. It

AVE ?
is convenient to introduce a set of dimensionless quantities gaB defined by the
equation

o eP (24)

o%aB - Bap ¥ave
These quantities reflect the relative amounts of each component of the average strain
in the wake. For example, if Egz is the only nonzero inplane component generated
in the active zone, then the average residual internal energy in the wake, WAVE » 1s
equal to Ooegz if the material is elastic-perfectly plastic énd, thus, 8yy = 1 and
gll==g12;=0 « In general, the elastic residual energy in the wake will comprise only
a relatively small fractiomn of WAVE so that the quantities gaB will range inx
magnitude from zero to approximately unity.

At this stage the width of the wake, 4h , will be left unspecified except that
it will be assumed that the ratio h/d is small compared to unity, not exéeeding
gbout 4/10 , consistent with theoretical and experimentai results on the shape of
plane étress plastic zones. Later it will be seen that the main predictions of the
model are essentially independent of the choice 6f; h .

The amplitude of the inverse square root singularity of Gzz(xl,O) ahead of
the active plastic zone is the sum of the contributions from (23), from the traction
Oyp = O applied along the strip zone and from the wake. The first two‘are the
. contributions which enter into the Dugdale;Barenblatt model and the third is obtained
by integrating the contributions in‘(20) over the entire wake. Thus,

-d

lim . 1/2 o,
xl_}0+ VZﬂxl‘GZZ(Xl’O) = K.f Go(Sd/W) - 4/27 Eh I dxlcﬂh [£(0)] (25?




The.radius R of the spot appears explicitly only in Fhe third term in the
brackets in the expression (19) for £(z) . TFor the time béing we wilI‘retain the
term in (19) which explicitly involves R without identifying it with a specific
length, but_it will be assumed that R is not greater than h . Later it will be
seen that this term has very small influence on. the predictions,

For the stationary crack the third term in‘225) is absent and d is chosen

such that there is no inverse square root singularity in the stress 022 at the
leading edge of the plastic zone; i.e.,, for the Dugdale-Barenblatt model,
: 2 _
4, = (ﬂ/S)(K/UO) (26)

The third term in (25) can be integrated with the result that this term is (letting

b = -d + ih)

lmep32_2 r% /2

-1/2
~4Y/2T Eh e [(c;+e,)b 5 ) - 36 ¢

Expanding this expression in a Taylor series in small values of h/d gives

-2vV27 Eh d"llzgee [(h/d)(cl+2c2) + 0(h/d)2]

= @AM 2 W[l + ofm/a)el,, m/a)d )

~

Now, use (13), (24) and (26) to-rewrité the.abové expression for the contribution
of the wake to (25) in terms of the gaB's with the result

R ela] o

- an
- A B s e e W e we me M S S wr am me e

For the steady growing crack d will also be chosen sﬁch that (25) vanishes.
The underlined term in (27) will be only a few percent if h/d is not larger than
about 3/10 and if 551
the magnitude of 811 will not exceed, say, 0.3 to 0.4 . Thus, the contribution

is not the predominant plastic strain component so that.
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of the wake (27) will not exceed arfew percent of the secdnd_term in (25). Therefore,
the length of the active plastic zone for the steadilj% growing crack is almost
identical to that of the stationary crack at the same value of K, i,e., d = dD .
This result is consistent with the similar finding of‘Chitaley and McClintock [3] in
their complete a;alysis of the anti-plane shear problem.

The total opening displacement in the active plastic zonme is the sum of the same
 three contributions mentioned above. Using (22) for the contribution from the wake

plus the two contributions present in the stationary strip model gives, for

~d<x <0,

1 .
. Y1/2 1/2. 1/2
2x g x x 1+ (-x,/d)
6(x1)=4lE<---—“—-J4] -%%d{z--al] - |1+ 2 1 1/2}
;- (-xl/d)
~d X .
+ 16h I dx: J dn(—n)_liza?e [fm1 ' (28)
- 0 '

To calculate 6(xl) for a prescribed value of X it.is necessary to first
choose d such that (25) vanishes. We will simplify éhis procedure by taking
d= dns, which as already discussed is an exgellent approximation if h/d is not
too large and is exact fqr h/d + 0 . The'inéegra;ions in (28) cannot bé carried
out in closed form, but an excellent apprdximation can bg obtained for small h/d
using the simpler solution alluded to in §4.2 for the spot in a semi~infinite sheet.

- The approximate expression for G(xl) is (with d = dD and for -4 < x, < 0)

1
, g O d x, /2 d o= l+(-x1/d)1/ z
S =g -3 ~zZ[ttal* 172

1- (-xlld)

+ 16h m {(cl—i-cz)ln(l -xllb) + ih c, [(b-xl-)-l— b-l] + % c2R2 [(l:;--:-:l)2 - b—z] }

(29)
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where #m [z] denotes the imaginary part éf 2 ,b=Z~d+ih, and Ln[z] is
the natural logarithm of complex argument defined such éhat .ln[ll =0 with the
branch line taken along the negative real axis.

Let ﬁt = 6(xl= -d) denote the crack tip opening displacement. By setting

X = -d in (29) and rearranging the result, one can obtain

2
O, = (8/m0 d/E - 8mh(c +e,) + 4hl4- (R/D)] gm [e,]

+ 8h I {»2(c1+¢2)£n(-b/d) -~ 2ih e b T - %{R/h)zczhzb_z} (30)

Denote by 62 the crack tip opening displécement for the stationary crack; i.e.,

. the Dugdale-Barenblatt value

D 2 - .
8, = (8/M0 d/E = K/ (0,E) @D
Here again, use the relation (13) between K and the residual internal energy in

the wake together with (24), and (26) to express Gt in terms of the gaB‘s with

the result

' thﬁlz =1 - %(311"'322) + -21;[4-— (R/h)zlgl2 + gh/d) S (32)

The termé indicated by & (h/d) are the terms from the second line of {30); they
go to zero linearly with .h/d as h/d. >0 . For the mathematical limit h/d + 0 ,
(32) gives the exact expression fof, Gt as based on the unapproximated equations
©(25) and (28). ‘

For small‘ h/d , St as given‘by (32) is essentially independent of the choice
of the width &4h of the wake bylvirtue of the fa;t that the quantities gaB
introduced in (24) are themselves independent of h , except to the extent that
the relative proportions of the average plastic strain components in the wake may
be a function of h/d . Note that the term involving R , which has been retained

in the analysis, enters only in the one term. Its influence is clearly small since
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over its meaningful range, 0 < R < h , the coefficient of 819 in (32) changes by

only twenty-five percent.

The wvalues of gaB depend on the details of the plastic deformation
occurring in the active plastic zone. For the purpose of discussion suppose

32 is the predominant inplane plastic strain component so that 899 =1

that ¢
andl 811 = 89 0. In this case, according te (32), the crack tip opening
displacement of the steadily growing crack is about one-half the value of the
stat?onary crack at the same value of K . If Gt is used as a measure of the
intensity of deformation at the crack tip and if a fracture criterion is used
which involves the attainment of a critical wvalue of Gt s thén the model

indicates that, due to the wake alone, the critical value of K for steady growth

should be approximately Y2 times the value for initiation.

' The fact that the wake reduces the crack tip displacement by an amount 52/2
when Egz is predominant can be seen very simply in the following way. Neglect

. the interaction with the end of the zone at x, = 0 and éonsider a semi-infinite

1
half sheet with a traction-free edge on x, = 0 . Let a uniform plastic straining
ezz be induced In the wake regiom, 0 < X, f 2k and x5 < ~d . The displacement
= - = —heP P _
u, for this problem at (xl d,x2 0) 1is exactly h522 . Using 9,€55 WAVE
and (13) to express -hegz in terms of K gives
u,(-4,0) = K/ (4o B) (33)

Since the total contribution to St from both halves of the wake is twice the above
amount, it is immediétgly‘seen from (31) that this is exactly -52/2 . This same
result . (33) holds for any distribution of egz

This observation lends some confidence in our

(x2) in the wake region as long as

it is independent of X; o
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representation of the plastic strains in the wake as being essentially uniform.

P P
11 and 512

contributions can also be expected to diminish Gt relative to 62 since various

Generally ¢ will also be present in the wake and their

evidence points to positive 841 and negative 81y In particular, the trailing
edges of an advancing crack in a thin sheet are often observed to buckle out of the

plane which is most likely due to a residual compressive stress 611 associated

with positive Eil . If lines are lightly scored perpendicular to the line of the

advancing crack in the face of the sheet ahead of the tip, following passage of

p
12

values below, consistent with negative 8y, - The value 6t/82 = 1/2 seems to be

the crack the lines indicate negative wvalues of ¢ above the crack and positive

more-or-less representative for any such combination of g ,'s constrained by (24).
, oB

The result (32) holds for plane strain as well as plane stress, although the

strip model of the plastic zone is not realistic in plane strain. Nevertheless,
(32) 1is very suggestive as far as the effect of the wake is concerned. In plane
strain €§3 is small and, since the plastic volume change is zero, this implies

-

P P et _ ; y
that g, * € 0 or 81, t By = 0 . Thus, the term (g11+-322)/2 in (32),

22
which gives the major contribution to reducing the crack tip opening displacement
in plane stress, is_négiigible in plane strain. This suggests that thé effect of
the wake on stabilizing crack growth is less in plane strain than in plane stress.
Figure 4 shows curves of 6(x15 in the strip zone fér three combinations of
gaB's from which any qther combination can be computed at the same value of h/d
' by linear superposition. The curves were calculated using (29) for h/d = 0.2
and R="h . The smaller is h/d , the more the effect of the wake on G(xl) in

the strip zone becomes concentrated near X = ~d . Thus, for example, for Byy = 1

and 817 = 8y T o, 6t- is no longer the maximum value of G(xl) on the interval

=4 < x < 0 when h/d 1s less than about 0.2 . The model as formulated can no
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longer be considered physicélly relevant when G(xl) .does not decrease monotonically
from the crack tip to the leading edge of the strip zone. The cutoff value of h/d
ranges from app?oximately .1 to .2 depending on the combination of gus's. Thus,
while {32) is exact for the mathematical limit h/d + 0 » the model loses its
significance before this limit is reached. 1In particular, its relevance to stable
propagation in very'thin shee;s becomes questionable when the plastic deformation is
léégély confined to a thin zone of width comparable to the sheet thickness in which
necking occurs. Then, if the sheet is very thin the length of the active zone may
be many times the sheet thickness such that h/d falls outside the range of validity
of the model. | |

We reiterate that irreversibility associated with nonproportional loading in
the active plastic zone, which also coniributes to a stabillzatlon of crack growth
has not been taken into account in this study. A complete analysis would necessarily
involve an accurate modeling of both the active plastic zone and the wake such as
. that carried out in [3] (but, perﬁaps, based on a stress-strain relation with a
non-smooth yield surface). The main conclusion of this study is that the wake of

- residual stresses and strains contributes a significant stabilizing effect to crack

growth. -
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FIG. 3 CRACK OPENING DISPLACEMENT RESULTING FROM A PAIR
OF CIRCULAR SPOTS WHICH HAVE UNDERGONE UNIFORM
PLASTIC STRAINING
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