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A study of steady creep of face centred cubic (f.c.c.) and ionic polycrystals
as it relates to single crystal creep behaviour 18 made by using an upper
hound technique and a self-consistent method. Creep on a erystallographic
slip system is assumed to ocour in proportion to the resolved shear stress to
& power. For the identical systemms of an f.c.c. erystal the slip-rate on any
system ig taken as y = a(7/7,)" where ¢ is a reference strain-rate, 7 is the
resolved shear stress and 7, is the reference shear stress. The tensile be-
haviour of a polycrystal of randomly orientated single crystals can be
expressed as & = a(7F /7)™ where & and 7 are the overall uniaxial strain-
rate and stress and @, is the uniaxial reference stress. The central result
for an f.c.c. polycrystalin tension can be expressed as @, = k(n) 7. Calcula-
ted bounds to A{n) coincide at one extreme (n = oo) with the Taylor result
for rigid/perfectly plastic behaviour and at the other (» = 1) with the
Voigt bound for linear vizscoelastic behaviour. The self-consistent results,
which are shown to be highly accourate for n = 1, agree closely with the
upper bound for » » 3. Two types of glide systems are considered for ionie
crystals: A-systems, {110}{110), with y = a(7r/7,)"; and B-svstems,
{100} (110, with y = a(rfrg)*. The upper bound to the tensile reference
stress oy is shown to have the simple formi @, € A(n)7, + B(n) rg; A (n) and
B(n} are computed for the entire range of », including the limit » = oo,
Self-consistent predictions are again in good agreement with the bounds
for high »n. Upper hounds in pure shear are also caleulated for both f.c.c.
and ionic polyerystals. These results, together with those for tension,
provide a basis for assessing the most commonly used stress ereep poten-
tials. The simplest potential based on the single effective stress invariant
is fonnd to give a reasonably accurate characterization of multiaxial stress
dependence.

{. INTRODUCTION

A pure power relation between strain-rate and stress is often used to characterize
steady creep of metals and other materials at temperatures above, typically, one
third the absolute melting terperature in the stress range lying one or two orders
of magnitude helow the stress at which the creep-rate (s7!) becomes of order unity
{Ashby & Frost 1975). The connection between single crystal creep properties and
those of a pelyerystal are studied in this paper for such power law materials, We
confine attention to the steady creep of polycrystals comiprised of randomly
[ 101 ]
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orientated single crystals. Single crystal slip is taken te he the sole source of in-
elastic behaviour; additional sources such as grain boundary sliding, void growth
and micro-cracking are not considered. The rate of sliding across & grain boundary
is thought to depend essentially linearly on stress. Since power law creep usually
involves stress to the third power or greater, increasing the overall stress tends to
decrease the ilmportauce of grain boundary sliding relative to single erystal creep.
Thus, for most materials, grain boundary sliding should be negligible in at least the
upper portion of the stress range of power law creep. Void growth and micro-
cracking are ncn-steady processes which bring about the breakdown of steady
creep. During much of the steady state lifetiine their contribution to the overall
strain-rate is small.

Two methods are used to calculate the overall steady creep properties of face
centred cubic (f.c.c.) and ionic polyerystals in terms of the properties of their
single crystal constituents. The simplest is the nniform strain-rate upper bound.
An attractive feature of the present formulation is that, by considering all degrees
of power law nonlinearity, we connect up the Taylor-Bishop—Hill-type bound for
rigid/perfectly plastic behaviour and the Voigt-type bound forlinear viscoelastic be-
haviour. Calculations are made for overall tension and sliear. Based on these results
it is possible to draw some conclnsions with regard to potentials for steady creep.

ITill’s (19635) self-consistent scheme is shown to apply in a form which is simpler
than might be expected for such highly nonlinear material behavionr. At the limit
corresponding to linear viscoelasticity the self-consistent method gives highly
accurate results, as will be established using the relatively tight bounding techni-
ques of Haghin & Shtrikman (1962). The only available bounding technique which
continues tc apply in the nonlinear range is the uniform strain-rate upper beund
(and the less interesting uniform stress lower bonnd). Thus the self-consistent
method is a welcome adeitional procedure for the analysis of these uonlinear
materials, particularly so given its physical plansibility and its known success in
linear applications.

Throughont the paper we will use a combination of Cartesian tensor notation
and a standard tensor/matrix notation. Bold-face lower case letters denote sym-
metric second order tensors; bold-face upper case letters represent fourth order
tensors. The contracted prodnct a;;b,, is dencted by ab, 4@, by Aa, ;4,50
by aAb and 4,5, By, by AB. All fourth order tenscrs in this paper have the
indicial symmetries 4, = 45 = A4 1 in addition 4, = 44, then A will
be said to have diagonal symmetry. The inverse of a positive definite, diagonally
symmetric fourth order tensor A is denocted by A-1; it shares the samec indicial
gymmetries as A and satisfies A™'A = AA- = I where the identity tensor is
given in terms of the Kronecker delta by

L = 3000+ 0,405)- (1.1)

The notation permits a straightforward conversion to vector/matrix operations
for numerical caiculations.
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2. CONSTITUTIVE BEHAVIOUR OF SINGLE CRYSTALS AND POLYCRYSTALS
IN STEADY CREEF AT CONSTANT TEMPERATURE
Denote the unit normal to the slip plane of the kth system by n® and the slip

direction in the plane by m®. The fundamental tensor characterizing this system
is defined as

1 = HomPnd) + P ad), (2.1)
With ¢ denoting the stress, the resclved shear stress ou the kth system is
70 = gy, (2.2)

Let y¥) denote the shear strain-rate {engineering definition) on the kth system. Then
Y9 is the contribution of this system to the total strain-rate . Since p,; = 0,
the ereep strain-rate is volume preserving and the hydrostatic component of stress
has no influence on 7.

The connection between the shear-rate and resolved shear stress on the kth
system is talken as

Y = g7 frEhn, (2.3)

if 7% is positive or, for arbitrary sign, as

Y8 = g r® i

n—1 741;)/7%&)_ (2.4)

Here, & is any convenient reference crecp-rate which could, without loss in mathe-
matical generality, be taken to be uuity (s71) but will be carried aloug explicitly
for ease of application of the subsequent results. The reference stress 789 for the
kth system is a strong function of temperature, but cur concern will be with iso-
thermal deforinations and therefore 749 is regarded as known for each system. The
exponent n also depends on temperature, although somewhat less strengly, and
usually falls between 3 and 8 for metals. Ashby & Frost (1975) have broadly sur-
veved polyerystal and single crystal data for many metals to determine the range
of temperature and stress over which steady creep can be reasonably approximated
by a power law stress dependence. For many materials this range can cover,
typically, from onc to two orders of magnitude of stress and four to eight orders of
magnitude of strain-rate.

The creep rule for the kth system (2.4) embodies the assumption that v depends
on the stress only through 7% and otherwise not on creep activity on the other
systems. There is relatively little experimental creep data available to subject this
independency assumption to critical examination. Most single crystal creep data
is obtained with one system more highly stressed than all the others. In time-
independent plasticity the strain hardening characteristics of a crystal are signifi-
cantly affected by the interactions between active systems, For f.c.c. metals Kocks
(1970) has shown that polyerystal strain harvdening data can be correlated with
single crystal data, via Taylor's (1928) well known formula, if the single crystal
data is obtained from a test in which multiple systems are active. This is consistent
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with oceurrence of multiple slip in nearly all grains of a polyerystal. In the present
context, (2.4) cannot be expected to represent both predominantly single system
creep and multiple system creep if strong interaction between systems occurs.
Then, for present purposes, the 7,’s in (2.4) should be assigned values on the basis
of data from multiple system creep tests, consistent with Kocks’ idea.

The total strain-rate is the sum of the contributions from all systems and can
he written as

€s5 = % y(k)ﬂgj) = ’M?Jﬁnq T pg> (2.5)
where, from (2.4),
Mg = Sfr) 21 5 (20

We will call M° the tensor of creep compliances, or briefly just the compliances,
of the crystal. The compliances are homogenecus of degres n— 1 In the stress so
that

Mc(Ag) = A»1Mg). (2.7)

Let #¢(c) be the stress potential and #°(¢) the strain-rate potential of the crystal
defined such that
¢ =0F0s and o= 0E/0e. (2.8a, b)

For the present crystal law there is an unusually simple connection between £'¢, e
and the dissipation-rate, o¢

o= (n+1)Fc =[(n+1)n]Ec =3 r¥ny®, (2.9)
&
A further connection which can be verified cirectly is

My = (2.10)
It follows that the relation between a stress increment de and the associated change
d&in the steady creep-rate is

de = nMcdes. (2.11)

Except for the factor 2, M¢ can be regarded as the stress-dependent ‘incremental’
compliances in the sense of {2.11); this additional property will be useful in the
sequel.

The polyocrystal is regarded as a large collection of perfectly bonded, randomly
orientated single ervstals of roughly the same size. Some exact relations for such
a polyerystal in terms of single crystal behaviour are derived quickly below. More
general treatments can he found in Hill (rg67) for inelastic behaviour in general
and in Rice (1970) for creep behaviour specifically. However, the structure of the
steady creep constitutive relation of the polyerystal as it relates to the single crystal
is so simple that it is revealing to start from first principles.

Consider a finite polyverystal with a definitive arrangement of single erystals. As
a first possibility impose a uniform straining velocity »; = &, over the entire
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outer surface of the polyerystal, where x; is the Cartesian coordinate and the
constant strain-rate quantity 2 will be called the overall strain-rate. Define & to
be the average of the stress over the volute V of the polycrystal,i.e. & = {¢} where

1= V—ljy( ydv. (2.12)

The single crystal potentials given by (2.9) are convex, as can readily be established,
and this guarantees a unique solution to the boundary valuve problem posed for
the polyerystal (Hill 1956). As a consequence of the pure power law relation (2.5)
for the single erystals, the strain-rate ¢ and stress ¢ at every point are homogeneous
functions of degree 1 and 1/n, respectively, of €. The average stress is also homo-
geneous of degree 1/n in ¢ so that

FOE) = UnFE), E(\T) = A"E(@). (2.13)

Using the prineiple of virtual work one can show the following exact relations
between the barred quantities and the local quantities

ot ={oe}, ode={gde}, eds = {eds} (2.14a, D, ¢)

where dv; = dé;;2; is an increment in the prescribed steady boundary velocity
and do = {da} is the associated average stress change.
Define overall stress and strain-rate potentials in terms of the local potentials as

F@) = {Fe(o)}), BE) = {Ee), (2.150, b)
or, from (2.144) and (2.9), equivalently as
(n+1)F(7) = [(n+1)/n] BE) = 5&. (2.16)
Next, using (2.80) and (2.146) together with (2.150), one can show that

g = 0F/CE. (2.17)
Then, from the fact d{ge) = d¥ +dE, it also follows that
¢ = 0F[0s. (2.18)

Rather than applying uniform straining boundary velocities we could instead
apply uniform traction over the outer surface of the polyerystal according to
T, = G;;¢; where g is the outward unit normal to the surface and the constant
stress quantity @ is called the overall stress. Now, ¢ is defined to be the average
strain-rate, i.e. £ = {g}. All the relations, (2.13)-(2.18), also hold exactly for the
uniform traction problem, although the precise functional dependence of & on 7,
will be slightly different. However, if the polyerystal is macroscopically homo-
geneons with an overall size which is large compared to the characteristic grain size,
then the distinction between uniform straining boundary conditions and uniforin
traction becomes negligible (Hill 1967). Henceforth we will assume this is the case.
Accordingly, ¢ may be referred to interchangeably as the average, overall or macro-
scopic stress, with similar designations for the strain-rate €.
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The overall stress potential () defined in (2.15a) is homogencous of degree
n+1in ¢. A mathematical consequence of this homoegenecity, which follows from
Euler’s theorem, is

_ oF 1 QF _
Cij = 3= =T = 2T (219)
) Go—‘ij n Oo’ijoo’kl

In parallel to (2.5} or (2.10) for the single crystals, define the tensor of overall creep
compliances as

1 °F
II'ItJ.’rl 2 aﬁi'ja&kis ( 20)
and thus £ = Mo, (2.21)

Note also that an increment in overall steady strain-rate dz is related to de by
de =nMde (2.22)
in analogue to (2.11).

Since the single crystal grains are randomly distributed the relation between
¢ and ¢ is isotropic. In a uniaxial stressing of the polyerystal along any axis the
tensile strain-rate € is, by (2.13), proportional to (¢}, where 7 is the overall tensile
stress. Throughout the paperit will be convenient to write, withoutloss in generality,
the tengile relation as g = a(F[F,)", (2.23)
where « is the same reference strain-rate infroduced in (2.3). Thus, (2.23) is the
defining equation for the overall tensile reference stress @;; knowledge of @,
completely specifies the tensile behaviour of the polycrystal. One of the aims of
the paper will be to determine @, in terms of the characterizing parameters and
structure of the single crystals.

3. UPPER BOUNDS FOR F.C.C. POLYCRYSTALS

A fc.c. single crystal has twelve crystallographically similar slip systems. In
the grain axes there are four slip planes of the (1, 1, 1) type and three slip directions
per plane of the (1,1,0) type. The reference value of the resolved shear stress is
the same for each system and we write 7\ = 7, k = 1, 12. This information com-
pletely specifies the erystal compliances in (2.6).

The limiting case n = 1 is special in that the compliances are stress-independent.
The bounds and estimates calculated below can be carried out without reconrse to
numerical work only for this case. For n = 1, the compliance tensor necessarily
has eubic symmetry with respect to the grain axes. In its axcs of cubie symmetry,
any diagonally symmetric fourth order tensor A is completely specified by the
three quantities: d,qy;+ 24159, A1~ Ai1q0e and 4,1, By earrying out the sum-
mations indicated in (2.6), one finds

M+ 2M S0 = 0, MS— MSee = 2af7y, My, = /37, (3.1)

The first combination of terms in (3.1) is proportional to the volume change com-
pliance which is identically zerc in steady creep.
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The upper bounds for the polycrystal can be based on the minimum principle
for the strain-rates which has been given for power law materials by Hill {1¢63).
Suppose ‘uniform straining’ is imposed on the outer surface of the polyerystal
according to v; = &%, Among all velocity fields ¥ satisfying the prescribed velocity
conditions on the outer surface, the actual field minimizes the functionalt

{Ee(2)), (3.2)

where £ is the strain-rate associated with #. The mimimum value of (3.2) calculated
from the actual fields is E{z) as defined by {2.15%). The simplest upper hound is
obtained by taking =3 everywhere in the polyerystal. Then the minimum
principle gives

(B@) > ). (3.3)

Let 6% denote the local stress assoclated with imposed uniform z. Multiply (3.3)
by (n+1)/n, noting (2.9) and (2.16), to obtain the equivalent statement of the
upper bound

l6¥e} = ae. {3.4)

With £ imposed throughout, the stress in each erystalline grain is tmiform and,
from (2.6), must satisfy
&gy = Mijle") oy (3.5)

In other words, to determine He(g) or ¢% for any grain it is first necessary to
solve the nonlinear equation (3.5) for 6% The following extremum principle asso-
ciated with this inverse problem can be shown to hold. Among all possible stresses
&, 6% maximizes the function

55— IF4(G) = 3z—ni170§ (#8741, (3.6)
where #0 = g, The importance of this prineiple is that it allows us to establish
a connection with the maximum work principle of Bishop & Hill (1952) for the
Hmiting case n-» oo corresponding to rigid/perfectly plastic behaviour. The Bishop-
Hill principle states that, for all o satisfying the constraints [#%] < 7, for k = 1,12,
the actual stress maximizes 6z. But (3.6) reduces to this principle as %->co. This
can be seen by noting: (1} Fe(o®)—= 0 as n—co, from (2.9}, with ¢* itself satisfying
the constraints and (i) for any & satislying the constraints, Fe(g)—>0 as n—co.
The maximum principle associated with (3.6) then reduces to 6& < ¢%Z which
establishes the desired connection. Thus, in the limit n->c0, the stress ¢% corre-
sponding to ¢ is the same as that caleulated by the Taylor-Bishop—Hill scheme,
Hence the limit for #—co of the present hound coincides with the Taylor-Bishop—
Hill bound since (3.4) is the same as their overall bounding equation.

T Intwtively, it may help to think in terms of strains rather than strain-rates and dis-
placements rather than velocities, in which case the present formulation Is a small strain
theory for & class of nonlinear elastic crystals and polyerystals. With this interpretation (3.2)
is just the strain energy functional of the polycrystal divided by its volume.
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Let |g] = /(22¢/3). Then one can show that ¢* can, without loss in generality, be
written as
v = (lg|jayry o, (3.7)

where @ depends only on =, the orientation of the grain and &/|g|.

TyfTq

; upper bound f{n)

<—\ A(n) solf-

consistent result

1 I | L
0 04 0.8

1fn

Freure 1. Upper bound and self-consistent result for the tensile reference stress
of an f.c.c. polycrystal.

(@) Upper bound to the tensile reference stress

In simple tension along the 3-axis, the nonzerc components of the averall stress
and strain-rate are

Ty =0 and &p= —26), = — 26, =¢ = |¢| (3.8)
The upper bound statement (3.4} can be written as
{0'E} > TE. (3.9)

But, by (2.23), & = (fa)!*7, and, from (3.7) and (3.8), the upper bound can be
restated as
TolTy < f(n) where f(n)={ws}/e. (3.10)

The upper bound calculation specified by (3.10) is discussed further in the appen-
dix. The numerical method uses a highly efficient procedure for solving for o*
{or @) from (3.5} The volume integration defined in (2.12) is replaced by a uniformly
weighted integration over all orientations of the grain axes with respect to the
specimen axes. This integration is in turn replaced by a sum over discrete orienta-
tions. Sufficiently many discrete orientations are taken to ensure an accuracy in
f{n) to within 0.6 9%, The results of this caleulation are shown as the upper curve in
figure 1, where f(n) is plotted against 1/n, and in table 1.
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Ag already mentioned, the calculation of {3.10) can be carried out analytically
when n = 1. The result is the Voigt-type bound.

f1) = 4§ (3.11)

The largest value of » for which f(n}) was calculated was n = 10; but, in aceord

with our previous discussion, the curve in figure 1 is extrapolated to the well

known Taylor value F(o0) = 3.06. (3.12)

(B) Upper bound in shear and bounding potentials

Congider a pure shearing of the polyerystal (7, €,) with the overall reference
stress in shear 7, defined by the equation

Ero = A(Ty{To)™ (3.13)
Now, |g] = 28,,/4/3, and (3.4} can be reduced to
TolTo < g(n) where g(n) = (2//3)1" {w,,)}. (3.14)

The result of this calculation is given in table 1 and is shown as a solid line enrve in
figure 2. For n = 1,g{1) = 1}; and for n—co, the curve is extrapolated to the
Bislhiop-Hill value g(cc) = 1.656.

TARLE 1
Ifn S g{m) h{n) A(n) B(n) C(n) Din)
1.0 33/20 11/10 3/2 2{5 9/10 415 3/5
0.8 1.90 1.24 1.78 0.460 1.03 0.320 0.669
0.6 2.18 1.37 2.08 0.573 1.16 0.385 0.739
0.4 2.48 1.50 2.41 0.733 1.31 0.459 0.807
0.3 2.62 1.55 2.57 (.828 1.39 0.497 0.836
0.2 2.77 1.58 2.73 (.925 1.46 0.535 0.860
0.1 2.92 1.63 2.89 1.030 1.54 0.575 0.883
0 3.061 1.6561 3.04% 1.1541 1.633t 0.62¢ 0.90%
1 Calculated as discussed in text. 1 Extrapolated value.

For general overall strain-rates ¢ define an upper bound strain-rate potential as

B,5) = {B@), (3.15)
where, from (3.3), E,(¢) = E(¢). The associated upper bound stress potential is
F(6)=n"1E,&) where &= CF,/0. {3.16)

The definition of @ in (3.16) is equivalent to ¢ = {¢*} where ¢* is given in terms of
& by (3.5). Since the overall behaviour is isotropic and independent of @, £, must
be a funefion of the two invariants

T, = (35;5,5/2), 34593 (3.17)

where § is the deviator stress.
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Consider the simplest approximation in which F, is taken to depend on &, alone.
With @, = f(n)7,, the choice

F, = [aGo/(n+1)] (T[T0)" (3.18)

brings the potential into coincidence with the upper bound results for tension. In
simple shear (3.18) gives

€1a = OF,[0T15 = &9 = (@4/3/2) (//3T1/T)™. (3.19)

By comparing (3.19) and (3.13), one obtains the approximate upper bound to
TolT, 88

TolTo = (2[y/3)4nf (n)[y3. (3.20)

This is shown as the upper dashed curve in figure 2.

20— —

Tolto

10— ~

,

1 | | | |
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Fiaure 2. Upper bound to the reference stress in shear for f.c.c. polycrystals and comparison
with estimates obtained from the uniaxial bound using two phenomenological theories:
1, Based on the effective stress from (3.20) and 2, based on the maximum shear stress
from (3.22).

The assumption of a universal relation between the maximum shear strain-rate
and maximum shear stress is another criterion which is commonly used to convert
back and forth from uniaxial data to shear data in an isotropic material. Applying
this criterion to convert the uniaxial relation (2.23) to pure shear gives

€10 = (30[4) (201,T)™ (3.21)
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Comparing (3.21) and (3.13), again with @, = f(n)7,, gives

TofTo = (4{3)17 f(n)[2 (3.22)

which is shown as the lower dashed curve in figure 2.

At n = 1 the two estimates (3.20) and (3.22) necessarily coincide with the actual
bound. At the other limit, » = c0, the actual bound falls roughly half way between
the two estimates. However, over the range 1 < n < 5 the estimates based on the
approximate potential (3.18) appear to be inherently better than those based on
the maximum shear stress criterion. In fact, for n € 3 the results of figure 2 suggest
that the simple potential (3.18) supplies a rather accurate approximation to the
actual uniform strain-rate upper bound. A potential such as (3.18) which is based
on the single invariant @, is frequently taken as a phenomenological characteriza-
tion of steady creep behaviour (Odgvist 1960; Rabotnov 1969).

4. SELF-CONSISTENT THEQORY FOR STEADY CRENP OF
POLYCRYSTALLINE MATERIALS

For macroscopically homogeneous deformations of a polycrystal the overall
stress and strain-rates are just the averages of their local values, as discussed in
§2,1.e.

o={s}, &={g (4.1a, b)

The self-consistent model provides an approximate procedure for calculating the
stress and strain-rate in each individual crystalline grain and, through (4.1}, pro-
vides an estimate of the overall behaviour. As it applies to linearly elastic poly-
crystals and composites, self-consistent theory has been developed by Hershey
(1954), Kroner (1958), Budiansky (1965) and Hill (1965). Two different models
have been proposed to extend the theory to include time-independent plasticity:
(i) the X.B.W. model of Kréner (1961) and Budiansky & Wu (1962) and (ii) Hill’s
(1965} model. Both models are formulated to deal with incremental behavicur.
That is, these models relate increments in overall stress and strain to the single
erystal incremental behaviour at each stage of the deformation history. A com-
parative study of the models as they apply to the plastic deformation of poly-
crystals was given by Hutchinson (1970). While the K. B.W. is computationally the
simpler of the two, the Hill model is more realistic, particularly in the way that it
deals with overall anisotropy. Hill’s scheme will be applied here to the steady prob-
lem. First, we will formulate the steady creep problem in incremental form and
apply the self-consistent theory to calculate the overall behaviour for an inere-
mental step. Then we will show that the incremental self-consistent equations can
be ‘integrated-up’ to a convenient form. Finally, it will be shown that the resulting
gelf-consistent equations can be arrived at directly via a short cut interpretation.
A related study of non-steady creep of f.c.c. polycrystals was conducted by
Brown (1970) using the K.B.W. model. He assumed the same single crystallaw (2.3)
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used here. Under a step application of overall stress the erystals arve stressed elasti-
cally at the start. Initially the crystals respond in a non-steady manner, but with
increasing time the stresses in the grains relax to their steady-state values, which,
for the IX.B.W. model, are identical to those predicted by the uniform strain-rate
upper bound. Thus, the limiting steady-state relation between the overall stress
and strain-rate according to Brown'’s formulation of the K. B.W. model is precisely
that given by the procedures of the previous section.

{a) Formulation as an tncremental problem relating de and de

Let @ be applied to the polyerystal and suppose (for the moment) that the stress
g in each grain is known and is uniform within each grain. From (2.6) and (2.11)
the instantanecus incremental compliances are then also known in each grain;
within a grain s stress increment is related to an increment in steady strain-rate by
de = nMcde. Apply an increment of overall stress de to the polyerystal. We wish
to calculate the increment in overall steady strain-rate de. Equivalently, fromn (2.22),
we will caleulate the instantaneocus overall incremental complhiances »M in terms
of the single crystal compliances nM¢. To do this we will follow the prescription for
the application of the self-consistent method to incrementally linear problems as
faid out by Hill (1965). The typical grain with uniform instantaneons compliances
nMe¢ i3 taken to have a spherical shape (or, more generally, an ellipscidal shape)
with its erystal axes orientated in a definite way with respect to the specimen axes.
The grain is embedded in an infinite matrix with instantaneous compliances nM
which are the unknown overall ineremental compliances. The overall stress incre-
ment dg is applied to the matrix at infinity. Self-consistency reqnires that

d7 = {do}, (4.2)

where { } denotes the properly weighted average over all shapes and orientations.
In the present study we restrict attention to spherical shapes and & random distri-
bution of grain orientations so that { } denotes an equally weighted average over
all orientations,

Eshelby’s (1957) well known general solution to the isotropic elastic inclusion
problem can be used to solve for de in the grain in terms of dg. An important pro-
perty of this solution is that, for spherical or ellipsoidal grains with nniform com-
plances, de is uniform within the grain. Denote the fourth order concentration
tensor relating de and dg by Be so that

de = Bedz. (4.3)

The most convenient general expression for B¢ is obtained using the fourth order
constraint tensor M* introduced by Hillin the following way. Remove the spherical
grain and dg at infinity; apply a traction dojin; over the surface of the spherical
void, where n is the inward unit normal to the void surface and de* is constant.
The instantaneous incremental compliances of the infinite matrix are still nM.
The resulting deformation of the void surface corresponds to a uniform straining




Estimates for creep of polycrystalline malerials 113

d&* in the sense that the velocity-increment at any point on the surface is given
by dv, = dej; o, (plus a possible rigid body contribution). The constraint tensov is
defined by

de* = —nM*de*, (4.4)

where we carry along in the definition the multiplicative factor n present in the
overall incremental compliances. Since M has diagonal symmetry, it can be shown
that M* docs. For spherical shapes, M* depends only on M. Calculations carrvied
out here will be restricted to overall uniaxial tension for which M and M* have
transverse isotropy with respect to the tensile axis. General formulas for A* are
available for this case as discussed in the appendix.

The constraint tensor can be used to relate the discrepancy between the strain-
rate inerement at infinity and that in the grain to the corresponding diserepancy in
stress increments di—ds — —nM*(dg —do). (4.5)

TUsing (2.11) and. (2.22), one can rewrite (4.5) as

(M*+ Me)dg = (M*+ M)dg. (4.6)

Hence, by (4.3), Be = (M*+ Moy~ (M* + M). (4.7)
From (4.2) and (4.3), the self-consistent condition is

(B¢} = I, (4.8)

where I ig the fourth order identity tensor in (1.1). Alternatively, since
de=nMcBede, de={d¢ and de=nMde,

another self-consistent equation is
M = {MecB¢}. (4.9)

A variation which combines (4.8) and (4.9) is
{(M—Mc) Be} = 0. (4.10)

As Hill (1965) has shown, the self-consistent equations (4.8)—(4.10), as well as
other variants, are completely equivalent for spherical grains. Equation (4.10) has
a slight advantage over the other two, for numerical work, in that (M- M¢) Be
has diagonal symmetry, while the same is not true in general for Be and M<Be.¢
In deriving (4.8)—(4.10) it was assumed that the stress ¢ in each grain, and con-
sequently M¢, was known at the overall stress ¢. It remains to close the system of
equations by integrating the incremental equations from the state of zero stress to
the overall stress ¢. We are free to choose any overall history to reach & since the
end state is independent of history. The simplest is to take the proportional history

B, 0<Ag], (4.11)

t It can be shown that (M —M°) B® = (M*+ M) (M*+ M°)~1 (M= 3 M) — (M*+ M) from
which diagonal symmetry of this combination is cbviens.

8 Vol. 348, A.
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o that corresponding to dA is the increment dg = 7 dA in the overall stress. Because
of the pure power relation between the strain-rate quantitics and the stress guan-
tities, the sfress in each grain increases in direct proportion to A (in the actual
boundary valne problem as well as the self-consistent model) and therciore in a
typical grain the stress is A where o, as previously introduced, is the stress asso-
ciated with . Now we exploit the homogeneouns stress dependence of the compliances
and the constraint tensor according to

Me(Ag) = A 1Me(g), M(AG) = AmIM(7), M*\g) = A»1M*(G). (4.12)

Animmediate conscquence of (4.12) is that Bein (4.7) for each grain is independent
of A and depends only on the end state. Thus, integration of (4.3) gives

o = B7. (4.18)

Also, from (2.11) and {4.12), de = nA*'M¢(g)sdA; integration from A = 0 to
A = 1gives
£ = M(g)o. {4.14)

Similarly, (2.22) can be integrated to give
¢=DM(g)o. (4.15)

The system of equations hag thus been integrated to a total form. The complete
svstem of equations used here in the numerical calculation of the overall com-
pliances M in terms of a given ¢ can be summarized as

o = B¢, B¢ = (M*+ M)\ (M*+ M), {(M-Me)Be} =0, (4.160,b,¢)

where M¢depends on g according to (2.6) and M* depends on M as described further
in the appendix.

(b) Inierpretation as a total problem relating & ond &

Having arrived at {4.16) via an incremental formulation, we can now give an
interpretation in terms of a total formulation. Equations (4.16), together with
(4.13)-(4.153), are precisely those one would obtain from the model as depicted in
figure 3. Now the typical spherical grain has compliances M¢(¢), in the sense of
(4.14); and the infinite matrix has the unknown wniform compliances M{eg), as in
(4.15), where & is applied at infinity. In applying the self-consistent scheme, regard
M as fixed in the sense that (4.15) provides a linear relation between ¢ and &. The
resulting equations are then (4.13)-(4.16) so that this total formulation is com-
pletely equivalent to the integrated incremental equations. The equivalence de-
pends cruciaily on the pure power character of the constitutive law which permits
the two interpretations for the compliances, (2.21) and (2.22).

The total forrmulation brings out one feature of the self-consistent scheme, as it
is applied here, which is somewhat obscured by the incremental derivation. The
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infinite matrix is assigned the unknown overall compliances (as in an application
to a linear material} but, in addition, these compliances are taken to depend on the
average stress ¢ in the matrix and not on the local stress in the matrix. (Of course,
for a linear material this distinction does not arise.) Thus, grain interaction is
approximated by ‘smearing out’ all grains surrounding the typical spherical grain,
as usual, but, in addition, stress induced variations of the compliances in the
surrounding grains are smeared out as well.

An alternative self-consistent scheme suggested by the above discussion would
allow the unknown overall compliances to depend on the local stress in the matrix
according to M(e). Although this modification is likely to give sommewhat improved
estimates of overall material behaviour, the computational aspects become almost
prohibitive. However, Huang (1971} has carried out the necessary calculations for
the plane deformation of a nonlinear material with rigid circular fibers. T'o do so
he was forced to assume an approximate functional form for M(s).

I

a

Ficure 3. Self-consistent model.

(¢) Self-consistent results for f.c.c. polycrystals in tension

With the tengile reference stress @, defined in (2.23), the self-consistent result
can be presented as C S Y (4.17)
Inthelimitn = 1the compliances (3.1) are stress-independent with cubicsymmetry.
The overall compliances are isotropic since a random distribution of grain orienta-
tion is assumed. The averall moduli can be calculated in closed form {details are
omitted); when translated into the form (4.17), the result is

B(1) =

(=

(4.18)
8-z
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Some feeling for the accuracy of the self-consistent result for » = 1 can be had by
comparing it with the following rigorous upper and lower bounds:

53 633 7, 1293 113

puied — g Vg e 2 4,
626627, 1262 102 (4.19)
(Reuss) (H.-8.) {H.-8.) (YVoigt)

The outermost bounds are the simple Reuss and Voigt (3.11) values. The inner
bounds, denoted by H.-S. are obtained by usiug the procedures of Hashin &
Shtrikman (1962) and Walpole (1966). (Again, details of these calculations need
not be ineluded here.j From (4.19), the self-consistent estimate can be in error by
at most 4 %, when n = L.

In the nonlinear range, n > 1, the solution to the self-consistent equations de-
pends on the overall stress & in a highly implicit way and use of a numerical iteration
procedure becomes essential. In principle, the scheme adopted here is as follows.
Take & to be prescribed and assume that at any stage of the iterative process an
estimate of M (and therefore M*) is available. The compliances of any grain M¢
are the function of the stress ¢ in the grain given by (2.6), and ¢ isin turn a function
of & through (4.164). Thus, even with o, M and M* specified, the calculation of ¢,
Me and B¢ is not explicit but must be caloulated in an iterative fashion. This sub-
step is performed for each grain orientation by using a highly efficient Newton
method described in the appendix. Once caleulated, the values of Me¢ and Bt
are used to obtain an improved estiwmate of M from (4.16¢). This higher level
iteration is also based on Newton’s method with its associated rapid convergence.
The numerical method takes advantage of the fact that results over the entire
range of n are desired. Results for the linear case, » = 1, are used as the starting
point in the iterations for 1/n = 0.8, for example, and, when convergence has been
obtained in this case, that solution is in turn used to start off iterations for a smaller
value of 1/n. Sufficiently many grain orientations were taken to ensure that the
calculated values of A{n) given in table 1 are in error by less than 19,. Further
details of the numerical procedure are given in the appendix.

A plot of A(n) is inclnded with the upper bound in figure 1. Perhaps the most
significant aspect of this comparison is the decreasing discrepancy between the twao
scts of results with increasing 7.1 The largest value of » used in the self-consistent
caleulation was n = 10; extrapolation of A{n) from 1/n = &5 to 1/n = 0 in figure 1
suggeats that the limit value h{o0) is very close to the Taylor upper bound value
3.06, A straight line approximation passing through the values £ at n = 1 and 3.06
al 7 = oo provides an excellent approximation to the self-consistent results, nawnely,

Tof7o = 3.06 — 1.56/n. (4.20)

The Limit value Tyf7, = 3.06 iz sometimes used in the metallurgical literature to
convert steady creep shear data for single crystals to equivalent tensile data for

T We have not calculated the analogue of the Reuss lower bound for n > 1 since it is un-
realistically low.
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polycrystals or vice versa. Aside from the difficulty of properly accounting for the
dependence of 7, on grain size, the use of 3.06 rather than (4.20) leads to an error
in the strain-rate in this conversion which is roughly a factor of 2 for all values of .

5. UPPER BOUNDS FOR IONIC POLYCRYSTALS

We consider icnie crystals which can slip on the two systems shown in figure 4:
the A-systems, {110}{110}, and the B-systems, {100}{100). The A-systems include
only two linearly independent g’s; the B-systems include three linearly independent
a’s. Together they comprise five linearly independent systems. An additional
property, which is easily established and which will be significant in the analysis
below, is that the g’s of the A-systems are orthogonal to those of the B-gystems, i.e.

HRpw =0, for kin A and min B. (5.1)

Gilman {1961) has given an extensive background discussion of the iuelastic
properties of a largenumber of ionic materials. Many polyerystalline ionic materials,
ceramics being examples, are extremely brittle at low or even rooin temperatures
due to the fact that slip on a B-system requires inordinately high stress for its
activation. As a result each crystal has effectively only two linearly independent
slip systems and a general inelastic accommodation of the crystals is not possible.
At higher temperatures the stress required to cause slip on the B-systems may
become sufficiently low to provide a full complement of five linearly independent
systems and then an overall inelastic deformation of the pelycerystal becomes
possible.

Tor such ionic crystals (2.3) specializes to

W) = qfr®fr, )™ for A-gystems,
Y (r#f74) ¥ } (5.2)

Y# = (7@ for B-systems,

where 7, and 7 will be called the reference stresses for the A and B systems and »
is restricted to be the same for both systems. Some data of Gilman {1g5g) for lithium
fluoride crystals is included in figure 4 to show the strong temperature dependence
of the critical resolved shear stress for this material. Gilman’s tests were run at a
strain-rate on the order of 10-% s~ IHis data was not taken under steady condi-
tions, so the plots of the shear stresses in figure 4 can only be regarded as qualitative
estimates of 7, and 7y for present purposes.

For n = 1 the tensor of compliances of the crystal can be calculated simply. In
the cubic axes of the crystal the compliances are completely specified by

My +2My 155 = 0, My — Myge = 30/27,, My, = af27y;. (5.3)

The compliances are isotropic if 7, = 37r4/2.

We now investigate the uniform strain-rate upper bound which was discussed
in §3 for a polycrystal with randomly orientated ionic erystals. It is convenient to
exploit the property (5.1) for orthogonality between the two sets of slip systems.
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For any trial stress in (3.6) we can always write c=0 1+ 05 where o A ¥ = 0 for
A
kin B and o5 u® = 0 for k in A. Then (3.6) becomes

aT,
n+1

8?.—F°(&)=[&AE— zlf(k)/TA|"+1]+[3'BE— &7p z|f<k>/TB|n+1], (5.4)
A n+1°g

where #® = g, #® for k in A and #® = g u® for % in B. The decomposition in
(5.4) shows that to maximize o0&~ Fc(a') each of the two parts may be maximized

6 L i i i ¥ T 1T 1 T
= _
go B ]
= - -
= B-systems —» N\
g o
'g‘ 4~ -]
= L N
= L
;' j o | A-systems {110} <n0-
2
[+}]
£ T [ A—systems h
g
& 2r \I 7
(-] .\\ “\
§ i "
e \I
gL \ : .
N
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0 400 800
temperature/K B—systems,{lOO} <110>

Ficure 4. Gilman’s (1959) data for the yield stresses on the two systems of
lithium fluoride single crystals.

independently, since the terms in one of the square brackets are completely inde-
pendent of those in the other. As a consequence, the maximizing stress ¢* must
be of the form

o = (|&] /)7y @, +Tp @] (6.5)

for all combinations of 7, and 5. Here w, and @y depend on n, grain orientation
and £/|¢| but not on 7, or 75. The upper bound (3.4) for prescribed & can be written
as

o2 < ([&|[a)" [To{w, &} + Ta{wpE]. (5.6)

In words, the upper bound to the dissipation-rate, for a prescribed g, is a linear
combination of 7, and 7. This property cannot be expected to hold when the two
sets of slip systems are not mutually orthogonal.
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{a) Upper bound to the fensile reference stress
In simple tension, as in (3.8) with &, defined in (2.23), the upper bound (5.6) can

be reduced to Ty < An) Ty + Bln)Ty, (5.7)

where A(n) = {w, ¢}fé¢ and B(n) = {wge}fe. For n = 1 the calculations can be carried
out analytically leading to
A1) =3 B = (5.8)

!

Forn > 1 numerical caloulations are required but these are not different in principle
from these carried out for the f.e.c. structure. Plots of A(n) and B(n) are shown in

A(n), B(n)

1fn

Ficore 5. Upper bound to the tensile reference stress for ionic polyerystals:
To = A(n) 7,+Bin) 75.

figurs 5 and numerical values are given in table 1. Limiting values corresponding to
rigid[perfectly plastic single crystals (n—o0) are

A(co) = 1.154, B(oo) = 1.633 (5.9)

and are accurate to four significant figures. To determine these values we have used
the analytic expressions for w, g 8nd wpg,, 0L 0ut notation, which were obtained by
Chin (1973) in his study of the deformation of perfectly plastic ionic crystals. We
evalnated {w,q,} and {wys,} using numerical integration. From figure 5 it is seen
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that the resnlts for large, hut finite, n extrapolate smoothly into the limiting values
(5.9), oven though the results for finite # were obtained using an entirely different
numerical procedure. This must be the case since the imit as n— <0 of the maximum
principle associated with (3.4) is the Bishop-Hill maximum work prineciple.

Thus the analogue for the ionic structure of the Taylor result for the tensile limit
load of an f.c.c. polyerystal of rigid-perfectly plastic single crystals (i.e. @, € 3.067,)
is

T, < 1.1647, +1.63374. (5.10)

If 7, and 7y differ widely, texturing effects, snch as those discussed by Chiu &
Mammel (1973), may be important. "Then the assumption of a random distribution
of grain orientations used in caleulating (5.10) must be replaced by distributions
with preferred orientations.

(B) Upper bound in pure shear and approximate bounding potentials

In a macroscopic pure shearing with the overall reference stress in shear 7,
defined by (3.13), the upper bound (5.6) reduces to

To € Cny7,+D(n)7p, (5.11)
where C(n) = (2/3)¥" {wayo} and D(n) = (2/3)¥ {wp,} Forn =1,

Cly=45 D)=

o

(5.12)

Numerical values of ¢ and D are given in table 1 and plots are shown in figure 6.
By extrapolating to the limit 1/n— 0, we find

7o < 0.627, +0.90 7y, (5.13)

Proceeding as was done for f.c.c. polycrystals, we compare (3.11) with the esti-
mates of 7, obtained from 7, by using the two most common phenomenological
theories. Usiug (3.18) with &, = A7, + Brg, we find after manipulations similar to
those used in the f.¢.c. compariscn

To = (1/y3) (2[y3)1 [A(n) 7, + Bln) 75]. (5.14)

Similarly, using the conversion based on maximum shear stress and maximum shear
strain-rate, we find
To = (3) (§H[A(n) 7y + B(n) 78] {5.15)

The multiplicative factors of 7, and 74 in (5.14) and (5.15) are compared with
C'(n) and D(n) in figure 6. The conclusion for iomic polyerystals is similar to that
drawn for f.c.c. polyervstals. Use of the single invariant @, to represent multi-axial
states appears to involve littls error in the bounding potential.
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Fieure 6. Upper bound to the reference stress in shear for ionic polycrystals,
To € Clny 7, + Din) 75,
and coroparison with estimates obtained from the uniaxial bound using two phenomeno-
logical thecries: (1} based on the effective stress from (5.14) and {2) based on the maximum
shear stress from (5.15).

6. SELF-CONSISTENT RESTLTS FOR IONIC POLYCRYSTALS

The self-consistent theory described in §4 was also apphed to the tensile be-
haviour of ionic polycrystals with randomly orientated single erystals. For n = 1,
the overall moduli are isotropic and can be caloulated in terms of Me specified by
(5.3). The self-consistent calculation gives

Fo = rp[1+ (1 + 167, [rp)]. (6.1)

This prediction is compared with various bounds in figure 7 where, to cover the
entire range of 7, and 7y, 7, has been normalized by 7, for 74 < 7, and by 74 for
7, < Tp. With # = 1, (5.7) is the Voigt upper bound; the Reuss lower bound is

To 2= (B) (17 + 1)~ (6.2)

The bounds obtained by the methods of Hashin & Shtrikman (1962) and Walpole
(1966) can be expressed as

Ty < (8) (17, + 1f75) 1 x the greater of (i, 1,), {(6.3)
Ty = (3)(1/7, +1frp)~" x the smaller of (. ,), (6.4)
where Yy = [19+ 47, [rp]/[10+25(1 + 75/7,4)7"],

Wy = [32 4+ 277p[T /(20 +T5(1 + 74 fry)72].
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All bounds coincide when 74{7, = 2 since the crystal compliances are isotropie.
Otherwise, the self-consistent results fall roughly halfway between the inner bounds,
and these are relatively close as long as 7, and 7y, do not differ by more than a
factor of about five.

The simple property of the upper bound (5.7), whereby the bound was a linear
combination of 7, and 74, obviously does not carry over to the self-consistent results.
Thus @, must be calculated independently for each value of 7,75, We have cal-
culated @, as a function of » for three values of 7, /7 chosen to typify the range of

1
2
4 —1.0
3
NS
S
0.5
! | 1 | L | L.
0 04 G5 1.0 0.8 04 i
TeiTs TulTg

Fraune 7. Comparison of self-consistent results and various bounds for linear viscoelastic
behaviour (n = 1) of ionic polycrystals. 1, Voigt upper bound; 2, H.—8. upper bound;
3, Self-consistent result; 4, H.-8. lower bound; 5, Reuss lower bound.

possibilities, i.e. 7,/rp = 10, 1, L. For 7,/7, = 1, the self-consistent result falls
below the upper bound (5.7} by only 3 % when » = 1 and this difference diminishes
as m increases. For 7, /7 = 10 and } the discrepancy between the self-consistent
results and the upper bound (5.7) is considerable when » = 1. However, for larger
7 the discrepancy diminishes significantly as can be seen in the two plots of figure 8.
We are again led to conclude that in the highly nonlinear range characteristic of
the creep of most materials (» 2 3) the uniform strain-rate upper bound is reason-
ably accurate, assuming one is willing to use the self-consistent predictions as a
standard of comparison.
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Fieure 8, Upper hounds and self-consistent results for the tensile reference
stress of ionic polycrystals.

7. CONCLUSIONS AND DISCUSSION

Self-consistent theory and the uniform strain-rate upper bound have heen em-
ploved to estimate the properties of a class of nonlincar materials with a pure
power stress dependence. Numerical work associated with the self-consistent
method is more complicated than for the npper bound but is still far from being
prohibitive. Significantly, the discrepancy botween the upper bound and the self-
consistent results is relatively small for » = 3 in each example considered here.

The results contained within provide a basis for couverting single crystal steady
creep data to polycrystal data and vice versa, althongh the usnal difficulties involved
in such conversions still remain. In particular, the single crystal data must be repre-
sentative of the size of grain in the polyerystal. The creep law taken to describe
single crystal behaviour neglects interaction effects between actively creeping
systems. This is likely to be an over-simplification. A careful correlation of single
crystal data and polyerystalline daia brought inte correspondence through the
formulas presented here should shed some light on this question. Grain boundary
sliding has been neglected which may render the present results invalid in certain
ranges of temperature and stress, as has already been discussed.

Exploration of steady creep potentials has been limited to comparing bounds in
tension and shear. The most commonly used steady creep law, based on the single
effective stress invariant @, in (3.17), appears to account for multi-axial stress



124 J. W. Hutchinson

dependence reasonably accurately, even more so in creep applhications in the range
# & 5 than for time-independent plasticity. This finding is generally in accord with
Rabotnov’s (1969, ch. V, §§77 and 78) conclusion based on his extensive examina-
tion of experimental data for a number of different metals in tension and shear.
The self-consistent model can be extended without essential additional diffi-
culty to analyse effects such as texturing where a non-random distribution of
crystal orientations is present. In ineremental form, it can also be applied to the
calculation of non-steady creep behaviour. As mentioned earlier, Brown (1g70)
examined noun-steady behavigur using the K.B.W. model and the same steady
single crystal constitutive relation used here. In his study non-steady effects were
due entirely to grain interaction. Non-steady single crystal mechanisms are also
lileely to make amajor contribution to non-steady polycrystailine behaviour. Mitra &
McLean (1966) have performed some critical tests related to work hardening and
recovery mechanisms in non-steady creep, and Ponter & Leckie (1975) have in-
corporated the features of their experimental findings into a phenomenological ereep
law for multi-axial stress states. Further work along the lines carried out here should
provide some guidelines for the formulation of such phenomenological theories.

The author is indebted to the Guggenheim Foundation for partial support during
his stay at the University of Cambridge where most of the work was done, and to
M. F. Ashby, H. J. Frostand R. Hill for helpful discussions. This work was supported
in part by the Air Foree Office of Seientific Research under Grant AFOSR-73-2476,
in part by the Advanced Research Projects Agency under Contract DAH(C15-73-
G-16, and by the Division of Engineering and Applied Physics, Harvard University.
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APPENDIX
(2) Numerical method for upper bound caleulations

With prescribed &, {3.5) must be solved for ¢* for each grain orientation. This
requires an iterative procedure. Let ¢ denote the estimate of ¢* at any stage in the
iteration process and let ¢ + Ag he the next estimate. Solving for Ae¢ from (3.5), one
finds that to order |Ag|?

Ag = [(OM°[00,,,) 0,0+ Me] 1 [£ — Meg], (A1)

where M¢ and its partial derivatives are evaluated at ¢. One can show directly from
the definition of M¢ in (2.6), or simply as a consequence of the homogeneous
dependence on stress, that

(OMefoo,,) 0p, = (n—1) Me, {(A2)
Thus, (A. 1) reduces to the atiractive form
Ag = (1fn) (Mg —g). (A 3)

Since the material is inherently incompressible, Me is singular. For numerical work
this is easily overcome by converting ¢ and £ to 5-component vectors with an
appropriate conversion of Me¢. In this way, M° becomes non-singular; the inverse
of Mcin (A 3) is to be taken in this sense.

An iterative procedure based on repeated use of (A 3) leads to the rapid conver-
gence associated with Newton’s method. To start off each iteration we used the
value of ¢ for the same grain orientation at a slightly smaller value of n. This proved
to be a highly efficient way to cover the range 0 < 1/n € 1. At n = 1 no iteration is
needed. Typically, steps of 1/n = 4 were used. Calculations were made for values
of n as large as 20; but for » > 10 rather small steps in 1/n were necessary to avoid
poor starting values.

The integrations over all orientations were replaced by summations over a
discrete number of orientations using a standard numerical integration technigue.
In overall tension, symmetry permits integration over only one of the spherical
triangles associated with the Euler angles which relate the crystal axes to the
specimen axes. In this case 36 orientations were chosen. In pure shear it is necessary
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to integrate over the spherical triangle plus the third Kuler angle; but, again,
gyminetry permits a considerable reduction of the number of integration stations,
g0 that 105 stations gave aceuracy to within 1 9% when n = 1.

() Nwmerical method for self-consistent calculalions

Firgt, the method for solving for &, M¢ and B¢ for each grain will be discussed
given that M and & are specified. Then a method for obtaining M from the self-
consistent equations will be given.

In simple tension specified by (3.8), M must have transverse isotropy with respect
to the 3-axis. In this case M* also has transverse isotropy and a defiuite recipe for
M#* is available (Hutchinson 1g70).T One minor difficulty with this recipe is that
it does not apply for a strictly incompressible solid, even though M* itself is non-
singular and well defined.T Smece in the present application M is incommpressible, it
was necessary to include a very small compressibility compliance in M, but only
for the purpose of caleulating M*. Using the isotropic case as a gauge, we cliose the
compressibility sufliciently small to ensure that M* was accurate to four significant
figures. In the presence of significant anisotropy, numerical experimentation indi-
cated the same degree of accuracy.

Given o, M and M* the problem for ¢, M¢ and B¢ in (4.16¢a,b) and (2.6) is still
nonlinear since M¢ depends on a. Let ¢ denote the estimate at any iterative step and
let o + Ag denote the estimate at the next step. Application of Newten’s method to
(4.164,b) and (2.6) can be shown to give

Ac = [(M* +nMe)= (M* + MY)] (BG — o), (Ag)

where M¢ and B¢ are evaluated by using #. With a good starting value &, repeated
application of (A 4) gives quadratic convergence associated with Newton's method.
As in the upper bound calculation, a value of ¢ associated with the solution at a
slightly larger value of {/n was used to start each iteration,

The overall comphances M are also obtained by a rapidly convergent iterative
process. Since the material iz incompressible and transversely isotropie, only three
independent constants are needed to specify M. For components in the specimen
axes, let 20, = Mq;; + M09, 265 = M 3 — M 100 and ¢y = M50, Then,

Mgy = e+ Myggs = do, Myss = ¢~ €as ) (A 5)

Mgy = =201, Mypyp =0,

T The recipc for M* is based on a solution by Kneer (1965). As pointed out by Hutchinson
(1970), and by Lin & Mura (1¢73) snd Gubernatis & Krumhensl (1g75), there are several
minor errors in Kneer’s results. There are also two misprints in table 1 given by Hutchinson
{rg70): The last term in @, should bo —2L,, Ly, Ly instead of — 204, L., Leg and the first
term in AP, should be Ly Ly, instead of Ly, L.

I The difficudty lies in the fact that the formula for M* involves components of the moduli
L = M- and not the compliances. It should be possible to obtain M* cxplicitly in terms of
M for the incompreszible case, but neither a direct calculation nor a limiting process appeared
very tractable from our exploratory efforts.
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With & specified and given any M in the form (A 5), let
H = (M- M) B}, (A 6)

where Me¢ and Bt (at any stage in the itcration of the overall compliances) are
functions of orientation and the current value of M which can be calculated as
discussed in the previous paragraph. Since (M — M¢) B¢ has diagonal symmetry,
H does. In addition, . _
Hypg = Hy g = 0. (A7)
Since M and M* have transverse isotropy with respect to the 3-axis and since (A 6)
is an equelly weighted integration over all orientations, H must also have trans-
verse isotropy with respect to the 3-axis. This property, combined with (A7),
implies that H, like M, is completely specified by three independent constants.
A convenient choice for these constants, as will be discussed later, is

H = E[{jij) H2 = chﬂaﬂ! Ha = Haaﬂﬂ: (A8)
where ¢ and g sum from 1 to 3asusual. In (A 8), H, and H, are defined in the specimen
axes with « and £ summed only over 1 and 2.

With & specified, H 1s a function of M and by (A 5) and (A 8) we can indicate this
functional dependence as Hjc;) with ¢ = 1,3 and j = 1,3. By (4.16¢), the self-
consistent equation for M is H = ¢ which will be satisfied if and only if

H =H,=H,=0.

Let ¢; be the current estimate of the compliances in the iterative process and let
c;+ Ac, be the values sought, i.e. Hjc,+Ac;) = 0. The equations for Ac; associated
with Newton’s method are

%@&ﬁ@Aq:—& (i =1,3), (A 0)
i=1

where H,; and its derivatives in (A 8) are evaluated at ¢;. An exphicit expression for
the derivatives of H;in (A 9) can be obtained from the governing equations (4.16),
but the expressions are extremely involved and too complicated to be useful for
numerical work. Instead, the derivatives were evaluated numerically by an easily
implemented procedure according to formulas such as

OH, 00y = {Hy(ey + 8, ¢4, ¢5) — Fi{cy, 00, €5)1f8, (A10)
where & is taken as a very small fraction of ¢,.

The advantage of the choice of constants H, in (A 8) is that each contribution,
{M — M=) Be,in (A 6) to these constants is invariant with respect to rotations of the
grain axes about the overall tensile axis (the 3-axis of the specimen axes). Thus,
symmetry permits the integration in (A 6) to be reduced to an integration over
just one standard spherical triangle. Asin the upper bound caleulation, this is done
numerically using 36 diserete orientations. For # = 1, the numerical results were
always within 0.5 9, of the exact values from (4.18) or (6.1).

Computation of A{=n) for the f.c.c. polycrystal took 2min of c.p.u. time on an
TBM 370168 computer. Caleulation of (%) for the upper bound took about 0.5 min.



