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TENSILE INSTABILITIES IN STRAIN-RATE DEPENDENT MATERTALS

J. W. Hutchinson and H. Obrecht*

ABSTRACT

Neck development in bars of strain-rave dependent materials under tensils
load i¢ analyzed in several ways. For o civeular bar of ¢ power-law
creeping material, an exact lineartzed zolution ig produced for the velo-
cities and stresses due to a small nonuniformity in the radius which
varies stnusoidally in the awial direction. This solution is used to
asgess the accuracy of a long wavelength approximation commonly used to
analyze neck development. The long wavelength approximotion i{s then
adopred to study the growth of nomwmiformities in Bars of a general class
of strain-rate dependent maverials. This analysis, fogether with tuo
illustrative examples, elucidates Havt's stability criterion for such
materials, Attention ig drawn to the connection between the criterion and
experimental observation in tension testing and the eclogely parallel sifu-
ation in creep buckling of compressed colwms.

INTRODUCT ION

The development of necks in bars of stivain-rate dependent materials under
tensile load is analyzed from several points of view. To start, power-law
creeping materials are considered. An exact linearized solution for the
stresses and strain-rates is given for a solid round bar with a slight non-
uniformity in its current radius which varies sinusoidally in the axial
direction. The rate of growth of the nonuniformity is examined as a func-
tion of the ratio of its wavelength to the bar radius. Long wavelength
imperfections are found to grow faster, at least in thc early stages of
growth when the linearized analysis is valid. This growth rate can be
calculated accurately by a widely used long wavelength approximatioen in
which the rate of contraction of any cross-sectional area 1s determined by
taking the stress to be locally uniaxial and uniform over the section. The
long wavelength approximation is used to study the growth of geometric non-
uniformities in a general class of strain-rate dependent materials. This
analysis elucidates Hart's [1] stability criterion for such materials. Two
illustrative examples are chosen to show that the criterion is not univer-
sally useful in that it may greatly underestimate the c¢ritical strain or
time for noticeable necking to set in.

Hart's c¢riterion is closely related to an analogous stability criterion
proposed by Rabotnov and Shesterikov [2] for the creep buckling of columns
under compressive load. Attention is alsc drawn to the connection between
the stability criterion and experimental observation in tension testing of
rate-dependent materials and the paraliel situation noted in column buck-
ling almost twenty yvears ago.

* Division of Engineering and Applied Physics, Harvard University,
Cambridge, Massachusetts 02138, U. §. A.
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GROWTH-RATE OF SMALL GECOMETRIC NONUNIFORMITIES IN A CREEPING BAR

Consider an infinitely long, axisymmetric s0lid bar whose current radius
varies along its axizal direction z according to

R = RO[1+E cos(2mz/A)] (L

as depicted in Figure 1. Elastic strain-rates are neglected and creep
strain-rates are assumed to be given by the well known power-law relation

.3 _n-1 - {3 12
Bij T T W 54y 0 T (2 545 Sij) €2)

where s;; 1s the stress deviator and o, is the effective stress. In simple
tension 12) reduces to ¢ = agl.

The bar carries a total axial load P. The perfect bhar serves as a conven-
ient reference. With £ = 0 and R = R,, the stress and strain-rate in the

perfect bar are

o® =6 =p/mE, &% zé =l (3)
zzZ o o zz 0

where throughout the paper 2 subscript or superscript o will denote quan-

tities associated with the perfect bar under the same load P. This refer-
ence solution will also be used in later sections. Denote the difference

between values for the imperfect bar and the perfect bar at the same
instant of time as

pe =8 -8 ne. =0, -, . (4)

ij i] ij

The boundary value problem for these quantities is formulated in the
Appendix. There it is shown that for small £ the problem may be linear-
ized and solved in closed form.

Of primary interest here is th¢ rate of growth of the nonuniformity in the
cross-sectional avea AA = A - A;. A revealing form for expressing this
result is (see Appendix)

.

A

(n-L)éO sA f(n,q) {5)

where

AA ZNR;E cos (2mz/A) (&)

is the discrepancy in cross-sectional area at z in the linearized problem
and

q = ZNRO/A . {7}
The expressieon for f is given in the Appendix. Numerical values for f

as a function of q for fixed n are plotted in Figure 2. An expansion of
f in small q gives

S N 5 IS N €55 I
fln,q) = 1 - 3 (n_l) 9% - 37 ( 1 ) 9t .. (8)
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As seen from (8) and Figure Z, £ + 1 as q + 0. In this limit {5) reduces
to

MA = (n-l)éo AA (9)

Equaticn {9) is precisely the result obtained by assuming that at any
cross-section with a small nonuniformity in area AA the stress 15 uniaxial
and uniform across the section, as will be shown later. Calculations based
on these assumptions, which are quite common in the material science litera-
ture, will be referred to here as long wavelength approximations. Nonuni-
formities of long wavelength experience the fastest growth-rate in a
power-law creeping material and (9) is reasonably accurate if q < 1. From
{5) and Figure 2, nonuniformities with sufficiently short wavelengths
(i.e., gq sufficiently large) decay in the sense that AA > 0 if AA < O

and 2A < 0 if AA > 0, or more briefly that AA/AA < 0. For n = 3, for
example, it c¢an be seen from Figure 2 that AA/AA < 0 for wavelengths
shorter than about 2 1/2 times R,. A more meaningful measure of decay or
growth is the rate of change cf the relative size of the nonuniformity,
a(t) = sa(t)/ag(t),

. . : i N - . .
a = GA/AO—AAAOIAO = AA/AO EOAA/AO (AA/AO)[AA/AA EO] (10}

Thus a negative value of AA/&A+€O or, from (5), a negative value of
(n-1)f+1 implies a decay of the nonunifermity relative to the evolving
area of the perfect bar. Such relative decay never cccurs since it can

be shown that the limit of f for large q is -1/{(n-1) and f approaches this
limit from above. In summary, the amplitude of a sinusoidal nonuniformity
may decrease in absolute magnitude 1f q is sufficiently large, but the
relative amplitude does not decrease.

A discussion of the behaviour in the vicinity of n = 1 is included in the
Appendix since the (n-1)f in (5) has a nonzero limit as n > 1.

NONLINEAR GROWTH OF LONG WAVELENGTH MONUNIFORMITIES 1N A CREEPING BAR

The anslysis just carried out invelves linearization about the soluticn
for the perfect bar. We now restrict attenticn to nonunifermities with
wavelengths which are sufficiently long such that the long wavelength
approximation is valid over a substantial portion of the lifetime of the
bar. As previously indicated, the stress is assumed to be uniaxial and
uniform across each cross-section according to

o= P/A (11)

where A is the area of the cross-section in question. 1n this approxima-
tion simple formulas can be obtained for the fully nonlinear behaviour,
including the time to rupture., As the rupture time is approached necking
may become highly localized and then the long wavelength approximatiocn
may no longer be accurate. However it is reasonable to expect that the
rupture time obtained by this approximaticn should provide a lower bound
to the actval rupture time since the growth-rates associated with shorter
wavelengths are slower.

As before, let Ag{t) denote the cross-sectional area of the perfect bar

as a function of time, and let A{t) denote the area of the section of the
imperfect bar with the smallest cross-sectional area. With
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BA(L) = A(E)-A (D) (123

let n be the measurc of the initizl discrepancy in area between the section
of the imperfect bar in question and the perfect bar defined according to

n o= -AAL03/A (0 . (13)

Positive n thus corresponds to an initially imperfect bar with its smallest
cross-section satisfying A0} < AO(O}.

Let % denote the current length of a material line element aligned with

the tensile gxis and % denote 1ts rate of change. Assuming the deformation
is incempressible, the strain-rate (natural-rate) is

i/ = A (143

M
1

It is related to the stress by

= ag” (15)

ma
|

For copstant P, the equation for A(t) can be obtained by eliminating
G and £ from (11), (14) and (15) and integrating with the result

an[P/a(e)] ™t = 1-[ACL3/a(o)]” . (16)

First, the critical time of the perfect bar tg (i.e., the time at which
A > 0) i1s found from (16) to be

1/t§ = un[P/AO(O)]n - néO(O) (17

as noted originally in [3]. Then with T = t/tg, {16} may be written for
the perfect bar as

A (/A (0) = (10T a8

Next, introducing (12) and (13) and retaining the definition of T based
on the critical time for the perfect bar, one can rewrite (16) in the
form most instructive for the imperfect bar as

1 i
/A 0] = - (1) (1] T (19)
The rupture time for the imperfect bar is
¢ _ C., ..M 5
o= - (20)
Solid line curves in Figure 3 are calculated from (19). * approach

vertical asymptotes given by (20). Also included in Figure 3 as dashed
line curves are predictions based on a linearization of (19) in small m,
l.e.,

a-l

BA(E)/A(0) = -n/(-my T 1)



Tensile Instabilities

{Alternatively, {21} can be obtained by integrating (9).}1 For small non-
uniformities, e.g., 1 £ 0.01, the linearized solution is accurate over

most of the lifetime of the bar. Nevertheless, it 1s incapable of giving
any indication of the dependence of the rupture time on 7.

A fully nonlinear long wavelength analysis, largely based on numerical
computation, has been presented by Burke and Nix [4] for this same class
of materials. They give detalls of the spatial development of the neck
from some specific initial nonuniformities in finite length specimens.
Further discussion of power-law creeping materials will be given later in
the paper following discussion of a more general class of strain-rate
dependent materials.

ANALYSIS OF GROWTH OF LONG WAVELENGTH NONUNIFORMITIES IN BARS OF A MORE
GENERAL CLASS OF STRAIN-RATE DEPENDENT MATERIALS

Following Hart [1] we consider a constitutive relation in simple tensicn
of the form

o = F(g,&) (22)
where ¢ and £ are defined as before. The bar 1s subject to an axial
load P(t) which will be assumed to satisfy P(0) = 0. As in [1], the
long wavelength assumption is invoked so that (11) and {14) apply. As
before A(t) denotes the smallest cross-sectional area of the imperfect
bar and A, (t) that of the perfect bar. Both bars are subject to the same
load history P{t}). The initial nonuniformity measure n is again defined
by (13) with AA(t) by (12). Denote the scolution for the stress and strain

associated with the perfect bar by o,(t) and £,(t} and let o(t) and &(t)
be associated with the smallest cross-section of the imperfect bar. Let

ATfL) = o(t)—ao[tj , heE{t) = €(t]-€0(t) . (23)

We proceed to obtain the linearized equation for the growth of AA by

systematically linearizing with respect to n and the A-quantities. Mote
that by virtue of the definition of the A-quantities the linearization is
with respect to the evelving configuration of the perfect bar. From (11}

AGA +0 A = O (243
(s
and from [14)
. . . s .
= - a2 = . 2
AE BAJA_*A_LA/8% (an/A)" (25)
Integration of (25) subject to the initial condition (13) gives

he = -n-AA/AO . (26)

:T(%g) A€ (27)
Q
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where it is to be understood that the partial derivatives in (27) are
functions of time through their evaluation at £,{t} and £5(t). Elimination
of 4G, Ae and At from (24), (25), (26) and (27) gives the linearized dif-
ferential equation for AA(t). It is

Akeh(tysn = (y/mAn (28)
where
3FY 1 _{ar\ %o
y(t) = 52) 9 o m(ty = l5z] 7 (2%)
Q a 0
and .
h(t) = = (-1ryen] (303

Hart's original investigation proceeds along lines similar to the above
except that he does not explicitly bring in the effect of the initial
nonuniformity which enters as the nonhomogeneous term in (28). (Note that
only if v = 0 will this term drop out). Consequently Hart arrives at just
the homegeneous part of (28} and proposes that linear stability hinges on
the sign of AA/AA. This, in turn, leads to his condition for stability,
{-1+y+m} > 0. Apparently his suggestion that AA/AA is negative if
{-1+y+m) > 0 has led some to conclude that nonuniformities should tend to
decrease with time under these conditions. 1In general, this is not correct.
Indeed, it can readily be shown from {28} that the sign of AA/AA 1s not
tied to the sign of -l+y+m.

The load history enters inte (28) through h(t) and the nonhomogeneous term
which both depend on the deformation history of the perfect bar. The solu-
tion to (28) subject to the initial condition {(13) is

t
AA = -ne-H(t)[AO(G)-f[Y(T)/m(T)]AO(T)eH{T)dT
0

where

t
H{t) = fh(T)dT

Q

Depending on P{t) and on the nature of (22), h may change signs during the
course of the time history, as will be illustrated by example in the next
section. It is clear from the above solution that exponential growth or
decay depends not only on the instantaneous sign of h but on the integrated
histery of h as well. More important to our discussion, however, is the
magnitude of h which relates to the characteristic time associated with
exponential growth or decay. If m is not very small, for example m = 0(1),
then, from (30), h = 0{g,}. That is, the characteristic time is of the
same order as the time scale associated with development of axial strains
of order unity in the perfect bar. A change in sign of -1l+y+m from posi-
tive to negative is not likely to signal any noticeable increase in the
growth of a small nonuniformity until an additional axial strain of order
unity takes place. In other words, when m is not very small the early
stage of the necking process is extremely long-lived, and the sign of
-1+y+m cannot be expected to serve as a useful indicator.
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On the other hand, the sign of h may be a sharp indicator if the magni-
tude of h is large so that the characteristic time is short compared to
the relevant time scale associated with deformation of the perfect bar.
This can be the situation for materials which are nearly insensitive to
the strain-rate (i.e., 0 < m << 1} and which are subject to the history
of a standard tension test at some nominal strain-rate £5. Then

h = 0{eg/m). For m << 1 the sign of h depends essentially con the sign of
-1+y, Furthermore, from (29),

-l +y =0 = g = dOO/dE (31)

which is the well-known necking criterion of Considére. Condition (31) is
a reasonably sharp ¢riterion for predicting the onset of necking in bars
of materials which are strain-rate insensitive or nearly so. It is also
known that the long wavelength approximation used in deriving (31) is
adequate as long as the wavelength of the nonuniformity is not less than
several radii of the specimen [5]

Doubt can also be cast on the significance of basing a criterion on
(-1+y+m} hy noting that the criterion depends heavily on the choice of

M as thoe measure of the nonuniformity. Consider, as before, the measure,
a{t) = AA(t)/A,(t), of the evolving relative size of the nonuniformity,
which is at least as acceptable as the absolute size AA. Equation (28)

is readily converted using (10) to

2+ h(t)a = -(Y/m)éon (32)
where

. g,

hit) = == [-1+] (33}

thus suggesting the sign of -1+y as a possible criterion. Note from (25)
that Ae = -5, s0 that a cTiterion based on growth or decay of a 1s identical
to one based on localization of axial strain. This alternative criterion,
tied to the sign of -1+y, has been derived by Jonas, et al [6]. Only when

m is very small will any such similar criterion be essentially independent
of the c¢hoice of the measure of the nonuniformity, and then the criterion

is essentially that of Considére (31). Of course, the shortcomings for
instances when m 1s not very small apply equally well to any such <riterion,
as pointed out by Jonas et al.

A NUMERICAL EXAMPLE
To illustrate some of the above remarks we take the simple functional
relation between ¢, € and & which is frequently used to represent nonsteady
creep

& = agseP (34)
or

Fle,8) = o M negP/nglin (35)

Q
1]
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The parameters in (29) and (30) arve
m=1/n , y{t) = p/[ne (£]] (35)
hit) = 1+1/n+p/[nE [t)]}g /m o (37)

The response curves of Figure 4 are for constant applied load P. They
were calculated numerically using a straightforward incremental method
with due allowance for the initial time step. The nondimensional time T
is defined by

T = t[nacg(o)] ] (38)

With a dot denoting differentiation with respect to T, the response of
the perfect bar is governed by

A A AT A !
o _ __1. o . o (393
Ay 0) A0 ©oTo T PAADY)
o o

Q IIS

In the long wavelength approximation a similar set of equations governs
the time history of the smallest cross-section of the imperfect bar. The
initial nenuniformity is again defined by (13). Curves fer the imperfect
bar, n > 0, in Figure 4 are all plotted against the nondimensicnal time

T defined in (38).

From (37) it can be seen that h will be positive when €45 is sufficiently
small. The solid dots in Figure 4 indicate the time at which h becomes
negative. It 1s apparent in these examples at least that no special
significance can be ascribed to the time at which h = 0. The Considére
criterion, -1l+y = 0, is met prior to the time indicated by the dot.

An experimental investigation of necking in a strain-rtate sensitive metal
system was conducted by Sagat and Taplin {7]. In one case in which experi-
mentally measured values of m and y implied that (-1+y+m) became negative
for axial strains greater than about 9.02, the first detectable nonuniform-
ities were not observed until strains about 0.7 were attained. Hart [1]
noted a similar delay in necking beyond his stability limit for the

special class of materials where v = 0 and m is not very small. The pure
power-law creep relation (15} is such a material. In this case,

h = g5(1-n) < 0 with AAJBA > O (see (28)) for all long wavelength nonuni-
formities. Nevertheless, the time for any incipient neck to develop is

on the order of the rupture time of the perfect bar, as has been noted

in connection with Figure 3. Burke and Nix [4] have also emphasized this
feature. 1In addition, they have performed calculations to show that a
small nonuniformity has little influence on the overall load-elongation
history over most of the lifetime of the specimen.

RELATION TO WORK IN CREEP BUCKLING

The history of creep buckling of axially compressed columns is parallel in
some respects to events in the study of tensile instabilities in strain-
rate sensitive materials. 1n 1957 Rabotnov and Shesterikov [2] proposed

a criterion for creep buckling of columns based on an analysis of the
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exponential growth or decay of small disturbances obtained by perturbing
from the evolving solution for the perfect column. These authors considered
dynamic disturbances and therefore inc¢luded inertia terms in their stability
equation, which turned out to be a third order ordinary differential equa-
tion. However, their stability criterion is determined by the quasi-static
terms in their equation (i.e., the inertia-independent terms) and the quasi-
static equation is first order, analogous to (28). (Rabotnov and Shesterikov
do not introduce small initial imperfections in their analysis. 1f they
had, their resulting quasi-static equation would be unaltered except for a
nonhomogeneous term analogous to that in (28)). The Rabotnov-Shesterikov
criterion attracted considerable attention. Yet comparison of their c¢ri-
terion with test data on creep buckling times revealed that the experimen-
tally measured critical time was usually greatly in excess of the predic-
tion of the criterion, similar to the situation for tensile testiang of
strain-rate sensitive materials. An extensive review of creep buckling of
columns has been given by Hoff [8].

APPEND1X: ANALYS1S OF CREEPING BAR WI1TH AN AXISYMMETR1C IMPERFECTION

The boundary value problem for the stresses and velocity fields in a bar
of material characterized by the power-law creep relation {2) 1s a non-
linear, viscous flow problem which depends on the current geometry and is
otherwise independent of prior history. The problem considered (Figure 1)
is an infinite axisymmetric bar with a sinusoidal variation of the radius
according to (1).

ln a cylindrical coordinate svystem (r,®,2) with z directed along the axis
of the bar, the field equations for axisymmetric, incompressible flow are

r r,r § r z 2,2
(40}
. (Vr,z+v_,r)/2 , E +EB+EZ =0
-1 -1 -
r (ror),r+crz,z r/iog =0 (41)
-1 -
o, rtro ) T 0 (42}

=2

where vy and v, are the velocity components in the r and z directions, and
the stress and strain-rate components are denoted with a standard notation,
These equations are supplemented by the constitutive law (2). Traction-
free conditions on the lateral surface, r = R, can be written as

Urcos2w+ozsin2w-20rzsinwcosw =0 (43)
(or-cz)siuwcosw+orz(coszw—sinzw) =0 (44)

where W(z) is the angle made by the tangent vector to the surface with a
vector in the z-direction as depicted in Figure 1. The bar is assumed to
support a total axial load P so that for any z
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R
P=2n/o_ rdr. (45)
0 2

The amplitude £ of the nonuniformity is assumed to be small which permits
the governing equations to be linearized in & and the A-quantities.
Equations (40), (41) and (42) are already linear so the A-quantities simply
replace their counterparts in these equations. Equation (2) becomes

N
S -1
Aez =k nAsZ
o = —1 - -
Aer k [Asr (n l)AsZ/Z]
; (46)
< o e
Aee =k [Ase (n l)AsZ/Z]
A, = ks
P
where k = 2/(3a02-1). These equations may be inverted to give
N
AoZ = kAez/n-Ap
Aor = k[Aer+(n-1)A€Z/(2n)]—Ap
b (47)
Ace = k[Aee+(n—l)A€z/(2n)]-Ap
Ao__ = KAe
rz TZ
p

where Ap = -(Aoz+Aor+Ace)/3.

A systematic linearization of the boundary conditions (43) and (44) gives

Acr =0 on r= Ro (48)

Aorz = -quosin(an/A) on ‘'r = Ro 49)

where q is defined in (7). In the linearized problem the conditions may
be applied at r = R, as indicated. Condition (49) is consistent with
applied load P. To see this write (45) as

Ro R
P =27 é (0°+Aoz)r dr+2m [ (o°+Acz)r dr

[o]
R
= 2 2 2
= RZ0 +2m é° Ao, r dr+2mR2EC _cos (2Mz/A)+0(E?,EA0 ) (50)
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Thus the linearized version of (50} implies

éo bo, v de - (ZﬂRéEGO/)\]sin(Zﬂz/A) ) (51)

But by integrating the equilibrium equation (42) from 0 to Ro’ one finds
(51) reduces to (49}).

Incompressibility permits the introduction of a velocity potential ¢ such
that

bv_ = f¢12 s b= r_][r®),r . (523

The governing field equations can be reduced to a single partial differ-
ential equation in ¢ along lines similar to those carried out in [5] and
[9]. We find

T () - (2;1_3)‘5@,22)*@ -0 (53)

,ZLZZ

wheres

T = 7 ey ) (54)

3

and where L2 indicates two applications of T. The boundary conditions
(48) and (49} become

-1 3 3-2n -1 _ _ -
r [rL(¢)],r + (H)-Q,er + ( 0 ) r Q,ZZ =0, r= RO (53]

T - = -3Egc si 3 =
L{®) m,zz JEqEOsln(Zﬂz/A) . T RO . (56)

Equation (53), with the boundary conditions, admits a separated solution
& = ¢(r)sin(@mz/A) . (57)

The equation for ¢ can be written as
(L+q?p?) (L+q*0*) = 0 (58)

where the operator L is defined in terms of the nondimensional coordinate
o= r/RO by

PSS |
L) (z (C¢),g),g . (593
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With i = v-1, p is defined as the first quadrant root of
2 _ n-3 . _ n-3%2
ol EH—-+ 1 1 EH_) {60)
and () denotes complex conjugation.

The general solution to (58) for a real, bounded & can be written in terms
of an unknown complex constant c as

¢ = [-EE AR/ (2M) IR fedy (api)} (s1)

where Rg denotes the real part and the terms in the square brackets have
been introduced for later convenience. Here, J; is the Bessel function of
order n of the first kind with complex argument. Substitution of (61) into
the boundary conditions (55) and (56) and use of identities for Bessel
functions leads to the following pair of equations for determining c:

R felT1am-qo(e®+3/n)Je(an)/2]} = 0 (62)

R fe(l-p%01(ap)} = 3 . (63)
To determine AA, and thus f£(n,q) defined in (5), first note from (52) that

bv (R ) = géORORe{ch(qp)]cos(zmm . (64)
Next, from

. . . o B ot

A0+AA = A= 2WR[vr(R)+Avr(R)] = 2R [ REO/2+&vr(R)]
one can obtain the linearized expression

AA = -ﬂAEO+2ﬂROAVr(RO) . (65)
Using (5), (6), (64} and (65) one finds

1
E(n,a) = =7 R {edi(ge)}-1] - (66)

Numerical results plotted in Figure 2, and those discussed below, were
determined from (62), (63} and (66).

The definition of f in (5) is not convenient for displaying results for
n in the vicinity of unity. Let g = (n-1}f so that, instead of (5), one has
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AR = éDAA g(n,q) . (67)

Numerical results for g for n in the range 1 < n < 2 are shown in Figure 5.
Equations {62}, (63) and (66) degenerate for n = 1 and this case must be
treated specially, which we have not done. WNevertheless, the numerical
results for n = 1.001 in Figure 5 are for all practical purposes identical
to those one would cobtain for n = 1. Furthermore, the expansion of g for
small q obtained from (8) holds when n = 1; it is

g = -q%/8 + 5q"/876 +

As seen in Figure 5, AA/&A < 0 for all finite q when n = 1. However,
as already mentioned, the relative size of the nonuniformity AA/A, always
increases according to the linear theory.
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