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crack growth under steady cyclic loading. Besidual plastic stretches and the effects of
crack closure on crack opening and elosing loads are caleulated by complex function

methods for a range of loading ratins. An assessment {5 made of the influence of cyclic
strain hardening and softening.

Introduction

This paper presents a theoretical model for the phenomenon of
fatigue-crack-closure discovered experimentally by Elber [1. 2] and
explores some of its analytical consequences. The theory comtem-
plates the steady-state growth of a long crack under the assumptions
of small-scale yielding according to the ideally-plastic Dugdale-
Barenblatt model. Function-analytic methods are used to derive
plastic wake residual stretches and crack opening loads as functions
of the applied load range.

Earlier calculations of this kind have been executed by finite-ele-
ment methods [3-5]. A recent analytic study [6] is based on an as-
sumed size for the plastic wake stretch, in contrast to the present work
in which this stretch magnitude is an cutcome of the caleulation. In
[7, 8] the Dugdale model was used to make an integral equation for-
mulatiun of the closure conditions, which were then used to estimate
closure contact stresses and reduced effective stress intensity factors.
Finally, Paris (9] has made an ingenious engineering calculation that
incorporates the essential features of the closure phenomenon in an
approximate, ad hoc fashion.

We note that the Dugdale model is most appropriate for plane stress
problems, whereas plane strain conditions are generally more relevant
to fatigue crack growth. For this reason, we do not propose to explore
the implications of the present model to great depth.

Theoretical Model

We consider a 20, Mode [ craek (Fig. 1(a)) and invoke the as-
sumptions of small-scale yielding. This means that the region of
plastic deformation is so small that the asymptotic elestic erack-tip
stress distribution given by
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stays accurate at distances r that are large compared to the plastic
zone size. In (1), K is the conventional elastic stress-intensity factor
that would be obtained in the absence of plasticity, and may be re-
garded as a prescribed applied load parameter, Small-scale yielding
crack-tip analysis then proceeds on the basis of the geometry of Fig.
1{b), wherein the crack lies along the negative x-axis, the stresses are
presumed asymptotic to (1) for r — =_and appropriate constitutive
relations and crack boundary conditions are invoked.

Under the Dugdale-Barenblatt hypothesis, all plastic deformation
is confined to an infinitesimally thin zene along the x-axis, which may
undergo an arbitrary stretch &(x) in the v-direction whenever the
stress o, reaches the ideally plastic tensile yield stress ¢v. Coupled
with the assumption that compressive crushing (negative stretch)
occurs at the compressive yield stress, and that all stresses must re-
main bounded, the Dugdale model permits the formulation of well-set
bonndary-value problems of plane elasticity for the determination
of the plastic stretch distribution, and, as will be shown, the residual
plastic stretches lefl in the wake of a growing fatigue crack.
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Analysis and Resulis

Stationary Crack. The well-known Dugdale solution for the
single loading of a stationary crack, given by the bounded plane
elasticity solution of the problem formulation of Fig. 2, provides the
result, [10)

w = (x/8)(K/ay)? (2)

for the plastic-vielding zone size. For plane-stress, the crack-tip
opening displacement is given by

fg = K2/ Eoy = 8ayw/(nFE) (3)

and the plastic stretch variation in (0, w) is given by

&ty = glx/w) (4)
where
1+ v
86 = VIt~ Llog | | =t | )

For x <0, the same expression for &/ég provides the crack opening
displacement, as illustrated in Fig. 3(a).

To provide further perspective to the subsequent crack-growth
analysis, we reproduce the known result [10] for unloading the sta-
tionary crack to Ko, = 0. If reverse plastic flow may cecur under
compressive stresses o, = —oy, the compressive yield zone at K yin
= 0 lies in the interval (0, w/4). The formula

6/8p = glxfw) — ég('-lx/w) (6)

gives the residual plastic stretch in this interval, and also provides the
residual erack opening at K = 0 for x <90, as illustrated in Fig. 3{(b).
In the interval (w/4, w), the plastic stretch 6 that was produced by
K max temains unchanged. Note that the crack-tip stretch is reduced
to half the value it had at K = K ;.

Under cyclic loading between K = K .5, and K = 0, the stationary
crack oscillates between the configurations of Figs. 3{a and 5). It is
evident, however, that a growing crack under the same cyclic loading
must experience quite different crack-tip deformations. As the crack
grows, it leaves in its wake plastically stretched material that, in our
model, remains appended to the upper and lower surfaces of the crack
as the crack tip penetrates the stretched material ahead of the crack.
The total thickness of these stretched appendages just behind the
crack tip must equal the plastic stretch just ahead of the tip at K =
K ram- Clearly, the configuration of Fig. 3(5) is not consistent with this
process, because the crack opeuing displacements behind the crack
tip are too small to accommodate the residual stretch, The stretched
material attached to the crack surfaces will necessarily make contact
before the unloaded state is reached. This is the essence of the crack
closure phenomenon; its detailed analysis follows, first [or the case
Kmm =1.

Growing Crack { Kmin = 0). The stationary-crack states shown
in Figs. 3(a,b) for K pax and K min = 0 are replaced by those in Figs,
4(a,b} for the crack growing under cyclic loading. We assume an ide-
alized steady-state situation: the crack has always been growing under
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Fig. 4 Growlng crack: (a) K = Kpaand (b} K=Knn =10

constant K ae. At K = Koax, Fig. 4(a) is the same as Fig. 3(a) except
for the residually stretched material of as-yet-unknown size 3z/2 at
the upper and lower crack surfaces. In Fig. 4{), we suppose that the
plastically stretched upper and lower crack surfaces are in contact all
along their lengths; that there is a region ahead of the crack tip, of
unknown length ¢, that has gone into reverse plastic flow, leading to
a total crack tip residual strain equal to 4z: and that between x = a
aud x = w the plastic stretch 3 that existed at K = K4, remains
unchanged.

The state at Kmn = 0 mav thus be analyzed in terms of the
boundary-value problem illustrated in Fig. 5. We seek the elastic field
(symmetrical about the x-axis) consistent with the conditions shown
along the x-axis: a dislocation & = 3g along {—«, 0); 0, = —ov, the
compressive yield stress, in (0, a); and the dislocation é = 85 =
doglx/w) in (¢, w) Since Kmm = 0, the stresses ¢, must decay faster
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Fig. 5 Problem formulation, K = Ky, = 0

than r=172 for r — =, Finally, we require that the stresses be bounded.
This last condition, it will be seen, suffices to determine 65 and a. It
will also he shown that |o,| £ sy everywhere along the x-axis and
6, 2 0in the contact region.

An analysis involving the standard complex Mnskhelishvili po-
tentials ¢(z) and ¢4z) may be used. Stress continuity across the x-axis
permits the elimination of ¢ [11]. allowing the stresses to be written
just in terms of ¢ as

ox + oy = 2[¢'(2) + ¢ ()] {7
Gy = iTgy = ¢'(2) + ¢'(2) + (2 — D)9"(@) (8)

The potential ¢(2) must be everywhere analytic, except for a branch
cut along {—=, w) on the real axis. Along the x-axis, r,, = ¢, and so
(8) gives, for z real,

Gy = 0"+ 9] EH
where
fe=fxxin)

In plane stress, the displacements u and v in the x and y-directions
satisfy

7> 0,90 (10}

d . -
Ea {w+iv)=3—-weiz)— 1+ 2)[¢Ey+ (z —Dp" ()] (11}
Use of the continuity of © across the r-axis then leads to the result
(2) _(ﬂ) P
dx/ + oxs - iET -
for the jump in dv/dx across the x-axis. [t follows from (9) and (12)

that the following conditions on @ = ¢’ must hold along the x-axis (see
Fig. 5):

{(12)

Gy —P_=9 for x <0

Iy +d_=—oy 0<x<a

¢+—¢7=@di¥ a<x <w "
4 dx

Py, —d_=0 x> w

With the introduction of x =+/'z(z — a) (branch cut on the interval
(0,a); x ~ z for |z| — =) equations (13) become equivalent to

(x®)4 — (x@)-=10 for x <0
= —X+OY 0<x<a
By dé {14)
=i—M a<xy <w
4 dx
=0 > w

The general solution for x$ then {ollows from a standard application
of Plemelj integrals [11] as

VG —a)d) = - = fa@dx
2rJdo ¥ —z
+£Iw@md1+c -
Br vJa

x—z dx
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But the constant C can be immediately identified by use of the re-
quirement that for |z| — =, ®(z) must be asymptotically equivalent
to the potential corresponding to a dislocation g all along the negative
x-axis. This gives

o
c==2 {16)
8r
It is convenient to introduce the nondimensional variables
22
(= z/fw, =xfw, a=afw, F= (*) & {17)
Ty

With the use of (3), the general eqnations (9) and (12) relating stresses
and dislocations along the real axis to the stress function transform
to

F++F‘:TFZ(O_\/G'Y] (18}
and
. d
Fy —F_=2x3i—(5/60) (19)
ag
The result (15) becomes
2 .
M= wF == (VIG=a ~ (4 a2+ "
2 0
WEE—a) d b
+ [ (MY ar (20
S o w ) o

wherein use has been made of
av'EHa—E —_—
f #dg = ‘rr[\/ (t-((-_ (1’) —_ (- + 0/2]
0 =<
for { not on the real axis in (0, o). We now assert, viz (18}, the
boundedness of the stresses ¢, at { = 0, a; this gives the equations

& 2 ] E _
T I A 1)
b 4 o £
M 2 1
e il M A (5 (22)
13() 4 o E -
wherein we have introduced dp/6y = g(¥) (see {4)) and
R = & (©3)
= —g'(s) =—lo Z
e Pl RV
Equations (21) and (22) combine to give
2 1 f ¢
™ _ filg)ds 24
2 a VEE—a)
Solving (24) numerically for « gives
a = 0.09286 {25)
and then (21) gives the residual stretch as
22 08562 (26)
o0

Thus, in contrast to the stationary crack, which suffers reverse plastic
flow in an interval of size w/4, the growing fatigue crack has, in each
cycle, reverse yielding in less than 10 percent of the Dugdale zone; and
the residual stretch is a somewhat surprising 86 percent of the
crack-tip stretch. For this solution at K = 0 to be valid, it is necessary
that the contact stresses in (—=, 0) along the x-axis satisfy 0 = ¢, =
—oy. We find from (15) and (20) that for £ = x/w in (—=, ()

LA H

[I_EJ"' Alr) T*adT]
oy e+ |£] 7 Ja 14 |£] T
and, it is found numerically, this gives a o, thal varies monotonically
from —oy at £ = 0 to zero at £ = —=. It can also be checked that | o, |
= oy for £ z « along the positive real axis.

Having determined the magnitude of the residual stretch, it is now
possible for us to study the unloading and reloading processes in de-
tail. If there were no residual streteh, the crack opening displacement
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along ¥ <0 as a function of K, as K decreases from K .5, would be
88, = glx/w) — (2ag/wg(z/ak) (27)

where ax given by

w L K 2
e
4 K max
is Lhe varying size of the reverse plastic yield zone during the un-
loading process. This result follows simply from the superposition on
the displacements (4) of a similar, scaled displacement associated with
a yield stress of (—2ay) in a zone of length ak given hy (see (2))

(28

ag =

ks (Kmn = K)Z
3 .
We note that (27) has a local minimum in (~=, 0}, so that when the

stretch dg/2 is attached to each crack face, the first contact will oecur
at values of x and ak that satisfy

2oy

glx/w) — agwgxlag) = drids (29)

and
2/} — 28" (xfag) = 0 (30)

Denute the critical values of (x/w) and (e x/w) by £ and «, respec-
tively; then

g(Er) - 2”1'g(£c/ac) = 6[?/60] ((ﬁ)
—filE) + Y ilE ) = D ‘
where
1 Kif!flt 2
= — _— e —— - 2
@ = (1 Km) (32)

in terms of the nominal stress intensity factor K., at contact. [t turns
out, with the help of the fact that g(£) = v'1 — £ — #f,{£), that (31) can
be solved analvytically, with the resulis

1 — (6riig)?
o = L2 Orli)? (33)
4
and
da, 1 — (3p/bg)2)?
= otee o _[_(L.LJ_ (34)
1 - da, 4{dx/b0)?
Then (32) gives
Keon
= = | — T < (Br/e)E (35)
Kimax
With (26), these give
- Kconl _
a, = 0.0667, & = —0.0243, —— = 0.4R3 (36)

max
Thus first contacl oceurs very close to the crack tip. With the residual
stretch taken into account, the net crack-Lip opening displacement
{67 — bg) at contact is given hy (see (27))
bre — O O
L G Qe — -
by do

=0.010 (37)

which is very small indeed.

As the load is reduced further from K ., the boundaries of the fi-
nite contact zone will move to opposite sides ol the initial point of
contact, with complete closure along x = 0 eventually occurring at K
= 0. We shall not analyze this process in detail {although there is no
essential difficulty in doing so0) and consider next the process of re-
loading from K = 0. Tt turns out that the contact region starts to open
at —=, with the edge of the contact zone at ¥ = & (b < 0) moving in
toward the crack tip as K increases, and during the reloading process
closure is maintained between x = b and the crack tip. As long as there
is any amount of crack closure, the stress changes remnin elastic, and
the formulation of the appropriate clastic prohlem is illustrated in
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Fig. 6 Problem formulatian, K increasing, X < Kgpen

Fig. 6 for —= < b <0, In this figure, the dislocation é = §,, in the in-
terval (0, o) represents the plastic stretch left over from the state at
K = Kua = 0. From (19) and (20), with the use of (21) and (24), we
find in {0, &)

d 6m 1 . 1 fl T‘ldr

£ (__) = —falf) = =~ VE{a =) f Y . L,
T a

dE (50 (T — f)\ T(T - )

(It can be verified that this gives

(38)

lim f2(8) = fale).
F—a
as it should.) The problem illustrated in Fig. 6 can now be formulated
directiy in the {-plane, in terms of a new £'{(). Accordingly, with £ =
x/w and 8 = bfw, we want
A

Fo+Fo=10 for F<B
Fp —F_=0 BLCECD
Fr— Fo= 0w s p<i< L
—F_ =27t — (bp ¥
+ i d{— 0 (39)
. d
Fo—F_=2x Py (5a1/00) a<t<l
=0 E>1
Also, the potential & associated with the stresses (1) is
K
p=——
2V 2z
so that the far-[ield hehavior of F is
Pz X {40)
"/? Kmax
Introducing
W = v~ 3 (branch line along £ <3, (1) = +V'1 — 3j
permits the conditions {39) to be transformed to
e = ($F)-=0 for £<0
2‘¢d(a/a) 0<t<
= amiy —— g
dr 0 %3
-‘>:'d(5 /oa) <Ll
=zZm — [} 29
¥ dr wi/ B0
=0 £>1
Theo the Plemelj integral solution satisfying (40) becomes
a3 d 48
VESBR = T () a
0 E—§ diNdo
V=1 i) K
+ f L _,,,_i( MY di 41— (4)
o f—s dE [ K:-:'w_\

for the reloading process, with 3 < 0.
To keep ¢, bounded at { = § we require
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Fig. 7 Problem formulation, K increasing, K > Kopan
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K L « folEddE 1 )
== - (42
Ko W-J:) VEA;S‘+7r « VE—§ )

Here f3(() must be calculated numerically from (38). By picking values
of 8 <0, we can calculate directly from (42) the variation of K with
the position of boundary b of the contact region as the crack is opened
up. Of most intercst, however, is the value K pe of the nominal
stress-intensity factor associated with b = 0, when the crack has finally
been fully opened up, and the region ahead of the crack is on the verge
of vielding in tension again. Thus, if we set 8 = 0 in (42), we get

K 1 a fr(5)d 1 1 d
open__‘ﬁf fZ[E E+“‘J‘ fl(E) E (43)
Ko w0 \/E T \/E
which, by numerical integration, gives
K open/K max = 0.557 (44)

Continued reloading beyond K gpen will preduce plastic restretching
in an interval (0, ¢) where ¢ < a. The problem formulation is sketched
in Fig. 7, and, with vy = ¢/w, and y = v/{ — + |, the conditions on F({)
hecome

WF)y — GF)_ =0 for  £<0
=72y 0<E<y
- 2niv L s <t<
—ZFIJ/dE (om/éo] b E «@ s (45}
9'\1«d(a /80) <ELL
= Qi — 5 o
a M/ g ¢
=9 £>1
The solution is
Vy—i§ evi—y d sé
VITF == qr“ricnf€+ — I — (24
o 2-.[:; e—p - .J: i-¢ dg(ao)
WWE—y d sim K
+ _— df+ = 46
J. P-¢ ds(ao) T K 1
Requiring bounded behavior at { = ¥ then gives
K 1o folBddE 1 0 jolide
vy - | | 4
max i WJ: VE—y Teda ViE—x k

as the relation between the size v = {¢/w) of the restretched region,
and K > Kgpen. For v = 0, we recover the result (43) for K ypen/K max-
It can be shown that

Lo fdide
TYa VE—o
for 0 < a < 1,s0 that K/Kax — | for v — a. Also, it follows that an
expression for K/K e equivalent to (47} is
K 1 @ — -
BRI
vy VE-y

(48)

- e 4

(49}

Kmax T

and so we also have
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Fig. 8(a) Crack closing process (K = Koo — K =10)
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For any value of 8in (—=, (), or v in (0, o) and the correspending
vahues of K/K may, dislocations é/8p can be calculated wherever they
were unspecified. For example, for v > 0 and £ < . use of (46) in (39)
and subsequent iutegration leads eventually (we omit details) to

K max T

& K
F—=*‘2V*r—é(1- )+g($)
&} max
2 o r—
-= Jﬂ [fil7) — fal=)] arc tan '/ L (51}
oSy y— £

For 0 £ t < +, this gives the plastic stretch during reloading past
Kipen; and for £ =2 0, (6/8g — dr/b¢) provides the crack-opening dis-
placement left after the residual stretch is suhtracted off. This for-
mula, together with equations {27) and (28) for é/éy during the un-
loading phase down to K = Ky, were used to prepare the scaled
diagrams of Figs. 8(a and b}, which show what happens during one
¢yele of unloading from Kpax to K = 0, and then reloading back to
K nax Fig. 8(a) 1llustrates the spread of the reverse yielding zone as
K decreases, and shows, at-K = 0.48, how very close to crack-tip clo-
sure is the situation when first contact occurs just to the left of the tip.
In view of the idealized assumptions of the present analysis it would
evidently be absurd to try to corroborate experimentally the precise
location of the initial contact poiut. In Fig. 8{h) we skip over the details
of the behavior between K = 0 and K pen, during which the edge of
the contact region sweeps in toward the crack tip. For K increasing
ahove Kopen, the sketches show how the zone of plastic reloading
spreads into the region ahead of the crack tip until the inftial con-
figuration reasserts itself at K = K ax. Note that in the region a/w <
x < 1, the vield stress oy in tension is just barely reatiained. with ne
additional stretch occurring.

In Fig. 9, we show how the crack-tip plastic stretch varies with
K/K yax during one cvcle of loading. The riging part of the curve, for
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Fig. @ Crack-tip strelch versus K/ .,

K > K ypen i3 given by equation (51), with £ = 0; from (27) and (28),
the deseending curve, down to K ont, is just

Sefin = 1= (1= K/K pu? (52)
The variation on the unloading curve between K o and K = 0 was
not calculated, but must follow a path like the interpolated dashed
line.

Although all of the foregoing analvsis and discussion comes under
the heading “Growing Crack,” we have not given explicit consideration
to the actual process of crack extension, which is imagined to occur
in a small step at any time during the cycle of loading and unloading.
The stress and deformation analysis we have given may be considered
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Fig. 10 Problem formulation, K = K, > 0

Lo apply to the vicinity of a moving erack tip in the [ollowing sense:
Let A be the crack growth per cycle; then we have really addressed the
problem for the asymptotic limit A/w — 0.

Growing Crack (K,in > 0). Fora positive value of the load ratio
R = K pin/K max, a similar analysis can be executed. The situation lor
K = K in, in particular the magnitude of the residual stretch ég and
the reverse plastic zone length ¢ = auw, can be determined on the hasis
of the conditions indicated iu Fig. 10, this time directly in the {-plane.
For Kpin > 0, it is to be expected that the contact will terminate at

t = b= Bw (§ < 0). The conditions on F are
Fy+F.=9 for £<g W
Fy—-F_=9 B<E<D
Fi+F = —x% D<E<a L (53)
d
Fe—-F_ =2 d—g(é.w/ﬁo) a<E<l
F+ - F— = 0 E> 1
We now introduce the auxiliary function
¥ = V= B)(OH{¢ — «) {branch lines along (—=, §) and {0, &);
L =+v(1 = 31 —a)) (54)
and then
WF) e - WF)-=0 for £<0
= ~wlfy 0<f<a
o d (55}
= 2xid — (dar/60) a<i<l
d§
=0 £>1
For { - «, we want F ~ 7{K pin/Kmax) V{50 that
e L
Vg -3 E—o) d iy
—_————(—d
* J; E=¢ df ( 50) £
+ "T[A + (Kmin/Krnax).d (56)

where A is a constant to be determined. Indeed, making the Cauchy
principal value of the right-hand side of (56} vanish at { = 3, 0, and
« provides three relations among the quantities K un/K max @, 8, and
A. For various assumed values of a between 0.09286 {corresponding
19 K min = 0) and a = 0. it was relatively straightforward to solve these
equations (we omit details again) for K. 8, and 4. To determine
the associated value of dg/8), we used these values in (56) and (19) to
calculate (d/d £)(6/55) numerically in (0, o) (with (d/d£)(5/8p) = 0 and
—f1{e) at the endpoints of the interval). Finally, we found

. ad ;8
drlbp = g1la) — fo ar (5—0) d

The results of these calculations are summarized in Fig. 11, which

Transactions of the ASME
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Fig. 11 Residual stretch, litt-off point, and compressive yield zone at K =
Kmm

shows plots of 8g/dg, a/w, and b/w at K = K ,in as functions of K ,in/
Kmax

The value of K at first contact during the unloading process can now
be found directly form equation (35}, which remains applicable at all
values of K nin/K max between zero and unity. Furthermore, the opening
loads are still given by equation (43) with the understanding that, for
a given value of &, [2(£) = —d{6m/da}/dE now refers to the residual
stretch in (0, o) already found earlier for the calculation of ég/6max,
and the results apply to the value of K 4,,/K nax associated with the
given value of &, The results for both K cont/K max and K open/Kmax ate
shown as functions of K pin/K max in Fig. 12. We remark that both
curves are quite close to Elber’s experimentally estimated formula

Kopen/Kmax = (.5 + 0-1(Kmin/Kmax] + 0-4(Kmm/Kmax)2

However, not all experimental data collected to date substantiate this
formula (e.g., (9]).

We do not address, in this paper. the question of predicting the
crack-growth-rate per cycle. However, the present results do provide
a theoretical basis for the use of a closure-based effective stress-in-
tensity range {AK )i in correlating crack-growth rates for different
load ratios Kinin/Kmax- By cross-plotting the results of Figs, 11 and
12, we find that the cyclic stretch at the crack tip is fairly well ap-
proximated by (Fig. 13{q))

{87)

oo — OR Kmax — }{Open)2

~0.73 (
1] K max
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Fig. 12 Opening and contact load ratios versus Kmp/Kmax
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or by (Fig. 13(&)}

60‘_5)?%0.54 (Kmm" Kcnnl,)2 (58)
00 Kmn
By equation (3). these are the same as
bp — dg = 0.THK max — Kopen) H{Eay) (59)
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&, ~ Kmax o-,l

Fig. 14  Problem formulation. cyclic hardening, K = Kq,y

and

60 —dp = 0-54(Kmax - Kconl)Q/(EﬁY) (60)

The point of these observations is that the craek-growth rate {or a
particular material cught to he a function of the cyclic-stretch 8 —
6. Hence the approximate validity of (59) and (80) suggests that
crack-growth-rate might equally well he a function of an effective
stress-intensity range defined by either (AK)er = Kmax — Kopen OF
(AK) et = Kmax — Keont, iIndependentlv—at least as a first approxi-
mation—of K pn/Kmae Experimental evidence on this hypothesis
is inconclusive, with indications [12] that K ,,./K, is another signif-
icant parameter when it is not too small, where K, is the critical stress
intensity for static failure.

Effects of Cyclic Hardening. The calculations made so far can
readily be modified to incorporate the effects of a presumed change
in the yield stress in the region ahead of the crack tip that undergoes
repeated reverse plastic flow. We continue to denote the original yield
stresses by oy but let the hardened (or softened) ones be 2oy in
tension and compression. We will present abbreviated descriptions
of the maodifications that arise when cyclic hardening is taken into
account.

At K = Kjax a modified Dugdale solution for # must satisfy the
conditions shown in Fig. 14. The size of the plastic zone is still denoted
by w. The relative size a = a/iw of the reverse yielding zone is, of
course, as yet unknown, but it coiucides with the interval withiu which
the yield stress must be taken as 7y rather than oy. It is readily found

that, with s = gv/av,
VST G AT i) f MIZE oy Ko
zJo ¢ Y3 Kq
(B1)
where we have introduced the reference stress intensity
Ko=20yv 2w/ (62)

This (see (2)) is the stress intensity that would correspond to the
plastic zone size w if oy were the same as oy. Requiring bounded
stress at £ = 1 then gives

Kmax/KO:S_(S_ 1)\’ l-a (63}
The dislocations implied by (61) for £ = 1 are found to satisfy
d /4 -
2 ()= e =~ - - vel 6
where
als, )—l Vicatvi-i (65)
O T Vit ?

and we have used §g = Boyw/(7F), the tip stretch fors = 1, as a nor-
maliziug quantity. (Note that dq is not the crack-tip stretch for s =
1.) Integration of (64) gives

oo =[s — (s = VT — o VI =~ sEhH(E) + (s = 1)E — alqlE, &)

=g{t, a,s) {66)
and so the actual erack-tip stretch, (§7)max, 18 given by
6 , K 1+ 1 -
( 7)ma — Dmax —is—1) ( ) log o ®7)
dg Ko 2 -V1-a
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Fig. 15 EHect ol cyclic hardening or soHening—stalionary crack with no

closure

{Note that f;(£, &, 1) = f1(£), and i, a, 1) = g(£).)

It may be instructive to look first at the cyclic loading of a sta-
tionary crack, in which cyclic hardening or softening occurs in the
reverse yielding region (0, &), but no residual stretches have been at-
tached to the erack faces, and no closure effects occur. It 1s easy to see
that after unloading, the dislocations at i = K, are given by

&6y = E(f, &, 3) — 250g{§/a) (68)
where « is determined by
1 8% -K in 2
- (Km—_m_) (69)
452 Ko

1f we call the residual crack-tip stretch {37 )min, we have, from (63),
{67), and (68)

(67"] min

=1-25¢
(5T)max
1+v1=4% —1
X[S—(S‘l)[\/l—a+§log ————\/l———%” {70
From (63) and {(69), we have
2sv' e K min
=1- {71
-l -1VvVI-« K max )

For given values of K min/Kwmax aud s, equations (70) and (71) provide
the associated values of & and (67)min/(37 Jmax- Fig. 15 shows such
results for the case Kmn/Kmax = 0. We see that for 5y/ay > 1,
(57 ) min/ (8T max iNCreases [rom its value % for oy = @y. Curiously, for
cyclic softeuing, as y/oy — 0, the stretch ratio approaches %. These
results for the stationary crack lead us to anticipate that the growing
crack will suffer more severe crack-closure interference effects for
oy/oy > 1.

The analysis for the growing crack, with K = K y,, = 0 will now be
outlined. The problem setup is the same as that shown in Fig. 5 (in
the z-plane) except that 4, = —oy in (0, a). The solution for F retains
the form of equation (20), except that the initial bracketed terin gets
multiplied by s, and {d/d£}(64/8¢) in the lutegral is now defined by
—f1(E, a, s} as given by (64). Similarly, equation (24) for the deter-
mination of « is replaced by

wis 1A a, s)dE _
_—= _ (I'Q
2 J’; VEE=T&) :
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Fig. 16 Effecl of cyclic hardening and softening on Ko and Kogen

Finally, 6z/64 becomes

5 w2 1 — -
A=t | Ve g‘ Folt, o $)d (73)

2]

The results for K = Kmun > 0 also follow a pattern very similar to
that for s = 1. In equation (56} for F, we simply multiply the first in-
tegral by 5. use {(d/d£){6p/30) = ~F1(%, o, 57, and replace K pun/K max
by K \yuin/Ko. With s assigned, the subsequent computation of K mun/Ko,
A, and g for any assumed value of « proceeds as before. Since, for
assumed s and &, K /Ko Is given by (63), the calculation of K nn/Ko
lets us find the load ratio K min/Kmas. To determine 6z we use the
meodified F for K = Ky, to caleulate (d/d£)(3/80) = —2(£) in (0, o),
and then integrate to get

b B T it + .7 rateras
o Ko 0

To compute K eoni, we must assert the appropriate modifications
of equations (31) and (32}, which are readily found to be (see the re-
lated equaticns (63) and (69))

FlEe, a0, 8 — 2sa,gEf ) = dplby (14)
—Filke, a, ) + 2s/1(E/ac) = 0

and

a, =

Kconl) 2 (75)

1 Krnax -
45‘2 ( Ko

An analytic solution of {74) for s % 1 was not apparent, but for known
values of @, 5. and 6z/60, solutions for £ and . may be found nu-
merically. Then (75}, together with {63) for Kma/Ko, gives Kond/
Kmax-

The calculation of Kpen 1s entirely straightforward, differing not
at all in principle from that for s = 1. We simply use (43) as a formula
for Kspen/Ka, with f1(£) replaced by F1lg, e 5, and fo(&) still under-
stood to be —(d/d£)i(6/8g) at K = Kpin. Again, Kopen/K mas is then
found with the use of (63).

Some numerical results obtained by these calculations are shown
in Figs. 16 and 17. For K yqin/K max = 0, we show in Fig. 16 how K ypen/
K pmax 80d K cone/ K max vary with the eyclic hardening ratio 7y/oy. The
trends are plausible and unsurprising. To complement Fig. 12, anal-
ogous results are shown in Fig. 17 for stress ratios oy/oy = 2 and
.
Concluding Remarks

The analysis and results given in this paper l¢ni theoretical snpport
e the existence of the crack-closure phenamenon in latigue crack-
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Fig. 17 Opening and contact load ratios versus K/ Kqa, for cyclic hard-
ening, 7y/ oy = 2, and cyclic softening, oy/ gy = 1/2

growth, elucidate the mechanics of this behavior. and provide some
justification for the adoplion of an effective stress-intensity range,
based on closure effects. for the correlation of fatigue crack growth
rates. Consideration of cyclic hardening effects show how such
hardening produces increased closure effects, while cyelic softening
alleviates them. On the other hand, the Dugdale model on which the
analysis is based 1s not directly applicable to the plane strain condi-
tions presumed to apply over most of the crack-tip region, and so a
plane-strain analysis complementary to the present one would be
welcome. Such an analvsis would help to resolve the cnrrent uncer-
tainty concerning the extent to which closure actually occurs under
plane-strain conditions.
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