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INTRODUCTION

Within the past few vears research into
the nonlinear mechanics of fracture has
started to have a practical payoff. T would
like to use the opportunity of this CANCAM
lecture to describe some of these recent
developments. I will start by reviewing some
of the fundamentals of nonlinear crack
problems. Then the initiation of crack growth
will be discussed, followed by a discussion of
a new approach to the growth and stability
analysis of small amounts of crack advance in
the presence of large scale plastic yielding.
The last part of the lecture deals with the
limited success which has been achieved to
date in employing a single basic near-tip
fracture criterion in the analysis of both
initiation and growth under general conditions
of yielding. Other recent survey articles
which cover some of the same ground reviewed
here have been given by Carlsson (1], Paris
[2] and Riece 13). My coverage will emphasize
the theoretical side of the subject, but T
will try to bring out the vital interaction
between theory and experiment which has been
so characteristic of much of the development
of nonlinear fracture mechanies.
THE J-INTEGRAL AND CRACK-TIP FIELDS

The unifying theoretical idea behind the

extension of linear elastic fracture mechanics
inte the range of large scale plastic yielding
is rhe J-integral introduced for crack problems
by Rice (4] in 1968 and, independently, by
Cherepanov [5] in Russia.

A small strain, nonlinear elastic
(deformation theory of plasticiry) material is
assumed with strain energy density W(g) such
that the stress is

=3aW/3¢e. , (1)

The proto-type body shown in Fig. 1 is assumed
to be in conditicns of either plane strain or
plane stress. The material is taken to be
homogeneous and isotropic. Let P denote the
generalized force per unit thickness acting on
the body and let A be the genevralized dis-
placement quantity through which P works,
For reasons which will be clear later, a
linear spring with compliance (per unit

thickness) C is placed in series with the

M
cracked body such that the total generalized

displacement of the system is

= (2
&T A+ CMP (2)

With PE defined as the potential energy of
the system per unit thickness, J is defined as
the energy release-rate per unit advance of
the ecrack in its plane (per unit thickness)
with AT held fixed, i.e.
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Fig. 1 <Cracked body in series with a linear
spring

The energy release rate defined above is
easily shown to be independent of the
compliance of the spring CM . Since CM—*m
corresponds to dead load with P prescribed
and CM==0 corresponds to prescribed & | J
is the same for these limiting cases, as well

as all those in between. With P regarded as

a function of A and a , (3) reduces to

Al
J=—J (5, a)dh ()
da
Q
Or with A as a function of P and a , (3)
becomes
P
JA_{ aa(P,a)dP (5
4]

These latter expressions are given by Rice
[6]. Wis path-independent line integral

expression Iexr J 1is

J-‘-[(Unl—o )ds (6}

13™3%1,1

where T is any contour encircling the tip
of the crack in a counter-clockwise direction,
is the

Uy is the displacement vector, o

outward unit normal to [ and ds 1is the

length of the line element.

While J is the energy release-rate for
the cracked deformation theory body, it has
another role which is more pertinent te non-
linear fracture mechanics. It can be regarded
as the amplitude of the singularity fields at
the tip of the ¢rack. As an example, assume

that the uniaxial stress-strain curve is

represented by
efe ~als/o )" (N
o o

for e>> E, » where g is the yield stress

and EG:=OO/E0 the yield strain. Furthermore,

assume the JE deformation theory generalization

of (7} rto multi-axial states, i.e.

3 o-1 2 3
eij/ao 2cz(oe/oo) sij/oO . Ue_ZSijSij

(8}

where Sij is the deviator stress. Then the

asymptotic crack-tip fields are [7, 8]

Fo1
I e+l

Uij’““o[aooeolnrj 6508 (o)
_n
J n+l..

Eij aso[ugoeclnr] Eij(e,n) (1)

where r and 8 are polar coordinates
centered at the tip. The dimensionless ©
variations, &,. and £.. , depend on the
1] 1]
symaetry of the fields with respect to rhe
crack and on whether plane strain or plane
stress prevails, as does the normalizing
constant I
n
The separation of the two crack faces

1 +
varies like r /{nt1)

r+0 . Defining an
effective crack-tip opening displacement 6t
as the separation where the 45° lines intcr-

cept the crack faces, as in Fig. 2, gives

- S
st- d(go,n)UO (11
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Values of d have been given by Shih [9] for
plane strain and plane stress. In plane

strain d ranges from about .8 for n+= to
.3 for n=3 with a relatively weak dependence
on € _ 4 in plane stress the same variation is

(o]

from 1.0 to about .4. In the range of low
strain hardening d 1is a fairly strong
function of n Reported results [9, 10] for
d for plane strain obtained from finite
element calculations for low and zero strain-
hardening materials range from .8 to about .5.
Although the connection between 6t and J

is not as well established as it should be, the
also measures

implication of (11) is that St

the intensity of the crack-tip fields.

Fig. 2 Crack-tip opening displacement
ZONE OF DOMINANCE OF CRACK-TIP FIELDS AND
LIMITATIONS OF SINGLE PARAMETER CRACK-TIP
CHARACTERIZATIONS

For a stationary crack subject to a
monotonically increased single loading wvariable,
it is expected that plastic leading will not
depart radically from proportionality. Thus,
the deformation theory solution should be a
good approximation to the corresponding
solution based on incremental plasticity theory.

A number ¢of numerical studies have shown this

to be the case. Ia particular, the line

integral representation of J (6) is found to
be essentially independent of the path in the
plastic zone when calculated using the standard
incremental theories. The argument for using a
critical value of J or of 5: to identify
the onset of crack propagation, independent of
other geometric and loading parameters, assumes
that the crack-tip fields (9) and (10) deminate
(i.e., are a good approximation to) the
behavior over a zone at the tip which surrounds
the region of finite strains and fracture
processes where (9) and (10) break down. Since
the region of finite strains {and also usually
the fracture process zone) is on the order of
6[ , the zone of dominance of (9) and (10} must
therefore be sufficiently large compared Lo 6t.
McMeeking [10] employed a finite element
method, based on a finite strain version of J2
flow thecry of plasticity, to study the near-rtip
behavior in small scale yielding under mode [
plane strain conditions. (Small scale yielding
is the asymptotic situation where the plastic
zone is small compared to the crack length and
other relevaut in-plane length quantities. In
mode I the fields are symmetric with respect to
the line of the crack.) McMeeking found that
finite strain effects are important over
distances of about 2 or 3 times Gt for values
of the initial yield strain less than .0l. For
distances from the tip greater than 35t the
small strain theory predictions were accurate
and the J-integral was essentially independent
of the path. We will use R to characterize

the size (radius) of the zone of dominance of

the crack-tip fields (9) and (10) in the small
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strain problem. From Mcheeking's work one
concludes that a necessary condition for using
} or 6t as a single, configuratiou—
independent parameter to characterize the near-

tip behavior inm plane strain is approximately

R> 36t (12)

Very recently there have been several
efforts [1l, 12] to ascertain the size of the
zone of dominance R under large scale
vielding conditions where the cracked bedy has
become fully yielded. As background to these
studies we recall that when J was first
discussed a possible intensity measure for
fracture analysis under large scale yielding
conditions, McClintock {13) pointed cut the
fellowing limitation on J (or on any other
single parameter such as 6t}. He noted that
neither the stress nor the strain fields near
the tip of a crack can be configuration-
independent in elastic-perfectly plastic bodies
under fully yielding conditions. Examples of
two plane strain slip line fields wich
fundamentally different near-tip stress and
strain fields are sketched in Fig. 3. The
edge-cracked strip in bending develops a high
triaxial and normal stress ahead of the crack,
similar to that associated with the well-known
Prandtl slip-line field. The stress ahead of
the crack in the center-cracked tension strip
is the plane strain tensile yield stress which
is significantly below that attained in the
other case. The strain fields are different,
as well, with straining concentrated on planes
emanating from the cips at 45° to the crack in

the center-cracked strio.
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Fig. 3 Fully yielded edge-cracked strip in
bending and center-cracked strip in
tension

These observations would appear to be at
odds with the assertion that the stress and
strain [ields, (9) and (10), uniquely determine
asymptotic conditions at the tip once J is
given. That assertion relies on the existence
of some strain hardening (i.e., finite n). 1In
the limit of elastic-perfectly plastic behavior
(n > =)

, singular terms not considered become

potentially as important as (9) and (10). Put

differently, the 8-variations O,. and £,,
ij ij

are only unique for finite n This is
reflected in the two cases of Fig. 3. 1In
general, some strain hardening is required to
justify the use o¢f a single parameter such

as J or Gt to correlate fracture of
different cracked configurations under large
scale yielding conditions.

A quantitative assessment of the
limitations ¢f a single parameter approach as
related to strain-hardening and configuration
dependence is just beginning to emerge. The

edge-cracked strip in bending seems to be

reasonably well in hand. The standacd compact



tension specimen can be regarded as a bend-type
configuration for the purposes of this
discussion.

McMeeking and Parks [11]| employed the same
finite strain, finite element procedure
referred to earlier. They showed that the
near-tip fields ¢f the small scale yielding
problem were essentially identical to the near-
tip fields in the fully plastic edge-cracked
strip in bending at corresponding values of J
as long as

b > ZSJIGO (13)

This condition does not seem to be strongly
dependent on the initial yield straio., OfF
greater importance is the fact that the
correspondence held up even without strain
hardening. Gondition (13) had been suggested
earlier and has been indirectly wverified
experimentally [Z, 14]. Since GtR¢.6J/UO in
plane strain for moderate to low strain
hardening, (13) states that the uncracked

ligament b must satisfy (approximately)

b > Ao\st (14)

Under fully plastic conditions the zone of
dominance R discussed earlier is necessarily
some fractioun of the uncracked ligament b ,
assuming yielding is confined to the ligament.
The functional connection is of the form

R= g(n,eo)b (15}

The above discussion suggests that for the
edge-cracked strip in bending g is not
strongly dependent on either n or EO

A comparison of (12) and (14), noting (15),

gives the estimate g% .07 . The more

fundamental expression of the condition for J-
dominance, i.e. R=.07b with R> 36t ,
translates into the better known expressions
{(14) or (13) when R 1is eliminated. Work of
Shih and German [12] lends additional support
to the value g% .07 in (15}. Using a small
strain finite element procedure, theyv compared
calculated stress and strain fields in the
fully plastic edge-cracked strip in bending
with the dominant singnlarity fields (9) and
(10) al corresponding values of J . The
agrecment between the two predictions was
reasonably good within a distance R of the
tip less than abont R¥ .07b for the two
levels of hardening exponent considered, n=3
and n=10

At the other extreme is the center-
cracked plane strain strip in tension. As
alreadv discussed, the radius R of the zone
of dominance must vadish as n—+® gince the
near-tip fields in the elastic-perfectly
plastie limit are inhcrently different from the
corresponding limit of (9) and (10). Studies
along the lines of those described above [11,
12] suggest that the counterpart to (13} for
the center-cracked strip in tension is
(tentatively)

b= 2003/00 (16)

for fully yielded cenditions with moderately
low strain hardeniong (u=10) At this level
of strain hardening, Egs. (12}, (l4) and (15}
imply g¥ .01 That is, the singnlarity
fields dominate a region of only about one

percent of the uncracked ligament when n= 10

Condition (16) places 2 severe limitation on



the applicability of a single parameter
characterization for fully plastic center-
cracked tensile configurations, as will be
discussed further below.

INITIATION OF CRACK GROWTH

The petential of J for extending
engineering fracture mechanics into the large
scale yielding range was appreciated
immediately after it was first introduced [6,
15, 16)]. But it was the innovative
experimental work of Begley and Landes [15, 14)
that established the feasibility of using J
and that provided the initial impetus for much
of the work of the last five years, including
some of rhat just described in the previous
section.

Begley and Landes showed that it was
possible to determine the fracture toughness
under large scale yvielding conditions using
various types of test specimens. With KIC
denoting the fracture toughness (i.e., the
stress intensity facter at initiation as
determined by a plak;iségggﬁ small scale
yielding test), the corresponding value of J

at initiation should be (8]
_ 2.2 .
Jie = {1-v )KIC/E (17}

where Vv is Poisson's ratieo. The test series
of Begley and Landes verified this connection.
Subsequent work in a number of laboratcries has
refined aod improved upon these first studies
(see the discussion in [2] and various
references in [17]). There now appears to be

a consensus that bend-type test specimens can
be employed under large scale yielding
conditions to determine fracture toughness.
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For testing purposes alone this is a major
accomplishment since it eliminates the
necessity of employing the huge tesr specimens
required in small scale yielding testing of
relatively high toughness metals with inter-
mediate yield strength.

There has been some success in relating
measured values of the crack tip openiog dis-

, to J

. o c
placement at initiation, St through

IC
(11} -- see [18] and the discussion in [10]. A
difficulty involved in making this comparison
is the apparent relatively strong dependence of
d in (1l1) on strain hardening. Typical values
of GE range from less than .0l mm for high
strength low toughness metals te several tenths
of a millimeter for intermediate strength high
toughness metals. ¥or a bend-type specimen
where 6i= .2 wm , say, (14) implies that the
uncracked ligament must be at least 8 mm. For
a center-cracked tension specimen of the same
material, (16) requires a ligament about eight
times as large. ILf either specimen were sized
such that initiation occurred under small scale
yielding conditions {i.e., under valid KIC
testing conditions) a ligament of at least
about 250 mm would be required. The advantage
of the fully plastic bend-type specimen is
obvious!

Shortly afrer Begley and Landes's pre-
liminary work was finished, a very useful
formula for J for deeply edge-cracked bend-
type specimens, such as that in Fig. 4, was
obtained by Rice, Paris and Merkle [19]). For a

deeply-cracked specimen they found a rigorous

formula for J in terms of load and



displacement quantities measurable in a test.
With ﬂnc denoting the load-point deflection
of the specimen inm Fig. & without a crack
(a=0) at load P , let

& =A-8 {18)

c nc

where A 1is the total deflection in the
presence of the crack. (A spring has been
inserted in series with the specimen in
anticipation of the discussion of stability
given later. The spring does not alter the
relation between J and P or A as
previcusly discussed.) The result of [19] is

A

2 (a4
J== PdA (19)
b c

i

The existence of simple feormulas such as (19)
tend to favor the use of J as a crack-tip
parameter over other potential candidates for
which analogous simple formulas are not

available.

P, Ay
Cm
b NP, A
“y_of
L 7

Fig. 4 Three-point bend specimen leoaded in
series with a linear spring

J-CONTROLLED CRACK GROWLH
A relatively simple means of analyzing
limited amounts of stable, quasi-static crack

growth has been proposed by Paris, et al. [20]

and Garwood, et al. [21] as a result of
experimental findings which will now be
described. In conducting tests to determine
the critical value of J associated with
initiation (JIC in plane strain), experimen-
talists [17] used {19), or a forwula like it,
to measure the relation between J and crack
advance Aa for small amounts of growth. A
representative J-resistance curve, JR(Aa) , for
a typical intermediate strength, high toughness
steel is depicted in Fig. 5. A small apparent
growth due to crack-tip blunting prior te
initiation has been subtracted off in Fig. 5.
For such steels the advance D needed to
double J above J[C is typically less than a
few millimeters. These curves were used to
extrapolate back to the initiation value JIC
But it became evident that under certain
restrictive conditions, called J-controlled
growth, the J-resistance curve could be
regarded as a material characterizing curve

which was independent of geometry -- see, for

example, the discussion in Rice's review [3].

Fig. 5 J-resistance curve



The J-integral is based on the deformation
theory of plasticity which cannot model effects
of elastic unleoading or highly nonproportiounal
plastic loading. Thus the argument for J-
controlled growth relies on the conditions that
the region of elastic unleading and non-
proportional loading, which is a region on the
order Aa in radius, be embedded within, and
controlled by, the singularity fields (9) and
{10}, as depicted in Fig. 6. The two
conditions for J-controlled growth [22] are

fa << R (203
and

D<<R (z1)
where D shown in Fig. 5 is

D= JIC/(dJR/da)C (22

The first condition is apparent. The second,
(21), ensures that J increases sufficiently
rapidly as the crack advances such that
deformation theory is a good approximation
within an annular region inside R , as shown

in Fig. 6.

NEARLY PROPORTIONAL
PLASTIC LOADING
GOVERNED BY
J-FIELDS

ELASTIC
UNLOADING

NON-PROPORTIONAL /" |~
PLASTIC LOADING Aa |

Fig. 6 Schematic of near-tip conditions for
J-controlled growth

For fully yielded configurations, such as

those in Fig. 3, in which yielding is confined

K

to an uncracked ligament, R 1is related to b
by (15). Tn such cases the condition (21) can
be stated nondimensionally as

b [‘”R

u)a————] >> 1 (23)
JIC da e

Judging from (20) and the discussion on
the size of R , the amount of crack growth
possible under J-controlled conditions is small.
But for many of the intermediate strength
alloys relatively large increases of J above
JIC are nevertheless possible under J-
contrelled conditions since D is very small.
Efforts to refine the conditions (20) and {23)
have only recently been made. For edge~
cracked bend-type configurations Shih and Dean
[23] have performed numerical calculations
which have led to the tentative proposal that
{20} and (23) should be (approximately)

Aa < 0.06b (24)
w> 10 (25)
For center-cracked tension configuratioms it is
expected that these conditions will be much
more restrictive, as has already been indicated
by a few tests [24].
STABILITY OF J-CONTROLLED CRACK GROWTH

Paris and coworkers [20] have proposed a
stability analysis based on the J-resistance
curve which is similar in spirit to the
resistance curve analysis of linear elastic
fracture mechanics. If small awounts of crack
growth are to be tolerated, with the attendant
relatively large increase in J , it becomes
essential to be certain that such growth is

stable.

To illustrate the approach of [20] and [22)



consider the system in Fig. 4. We will assume
that the total load-point displacement, AT , is
imposed. The compliance of the lirear spring
CM can be regarded as the compliance of a test
machine or as the compliance of the surrounding
structure transmitting Load to the cracked
element. Assume the crack had advanced an
amount Aa and is currently loaded for further

possible advance, i.e.,

I= JR(Aa) (26)

Stability at this state, with AT prescribed,
requires
dJ

3 R

—_— <__

[anA da en

T

which simply ensures that any small "accidental”
advance of the ¢rack can be sustained by the
tearing resistance of the material. Paris, et
al. 120] introduced a nondimensional tearing

force and tearing resistance as

dJ
N A - E R
T= Z{Ba]ﬂ and TR— 7 da (28)
a T a
o] o
so that the stability ceondition becomes
T<T (29)

R

A relatively simple formula for T can be
obtained for the system in Fig. 4 which is
exact in the deeply-cracked limit [22]. For
the case of a fully yielded, elastic-perfectly
plastic cracked beam that result is

2

4EP EJ
T=-"2=(C_ _+¢C)-—— (30)
cibz ne M oéb

Here P is the limit lcad of the cracked beam
and CnC is the elastic compliance of the un-
cracked beam. As expected, the system
compliance has a significant influence on the

stability through T , whereas it does not

affect J . Of course, under dead load (CM‘*W)

the fully vielded, perfectly plastic beam is
unstable.

Paris et al. [25] conducted a test series
in which a spring of adjustable compliance was
inserted in series with just such a deeply-
cracked bend specimen. By testing a sequence
of identical specimens in series with springs
of differing compliance, they were able to
check the validity of the stability coudition
(29). Their material had a tearing resistance
at initlation of TRg36 , DT1.2 om , and
their specimens met {25) with w=15 . Their
tests did reveal a transition from stability
to instability at T-values very close to
T, =36.

R

A table of values of T

R for a wide

variety of steels at various temperatures has
been compiled in (20]. FYor high strength, low
toughness alloys TR is often as small as or
below unity. On the other hand, many of the
intermediate strength steels have TR—values
which exceed 30, some being as large as 200.
In many circumstances the T-values will be far
smaller so that small amounts of crack growth
can be safely sustained. As an illustration,
cousider a finite crack in an infinite bedy
whose material behaves in simple tension as
€/€0= (O/Oo)n . If & is the remote strain
due to a remote uniaxial stress mormal teo the

crack face, then
n+l
@ n
T=h{n} (e /eo) (31}

where h(n) is roughly 3 for n less thao 10
[26]. Only when the overall strain € exceeds
approximately 10 times the effective yield
strain will T exceed 30.
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An appreoach with common features to that
described above is alsc being developed by
Garwood, Robinson and Turner (25 and
unpublished work].

PROGRESS TOWARDS A UNIFLED NEAR-TLP FRACTURE
CRITERION FOR LINITIATION AND GROWTH

The approach described above is inberently

empirical in that J and the resistance

IC
curve must be obtained experimentally for each
material for every set of counditions. In
addition the range of potential applicacion,
although important, is quite restricted,
particularly in that it is limited to
relatively small amounts of crack growth. Thus
the basic problem of identifying a near-tip
fracture criterion based on the fracture
processes very close to the tip is of con-
siderable practical importance as well as
fundamental scientific interesc. The problem
is far from being "'solved” but some significant
first attempts have been made. FProbably the
mast amhiticus attempt to understand the
mechanics of ductile crack initiation is that
of Rice and Johnson [27] who carried out an
approximate analysis of the linking-up process
of a void with the crack-tip. Other approaches,
one level removed from dealing with the wmicro-
mechanical fracture processes, have been
proposed for combined initiation and growth
(28, 29, 30].

We will make use of McClintock's (28, 29]
early results in anti-plane shear {mode III}
to indicate the source of stable crack growth
and to predict initiation and growth in terms
aof near-tip fracture criteria of the type used
in [28, 29]. With Y denoting the total shear

33

strain ahead of the crack, the condition for
growth is a critical strain criterion

Y:.Yc at r=r, (32)

where r. is a material length characterizing
the fracture process zone.

Small scale yielding is assumed. The
wmaterial is elastic-perfectly plastic with
initial yield stress in shear as Ty and yield
strain as YO==TOIC wvhere € is the elastic
shear modulus. A Mises yvield condition is used.
Prior to initiation the strain ahead of the
crack in the plastic zone (rE!rp , where rp

is the plastic zone extent ahead of the crack)

is

(33}

Imposition of (32) using (33) gives the value

of J at initiation
J =2y and = Br (34)
2 ¥ n T c

where
BEYQ/‘YO (35
Next consider steady-state growth where
the crack has grown sufficiently far ahead such
that it is able to progress at constant J
In this case the strain ahead of the c¢rack is

[28, 29, 6]
Y=y [L+n(r_{r)+ita®(r /1)) (36)
Yo ’ p 2 p

Chitaley and McClintock [31] have shown that

rp is still given by (33), to a very good
approximation, A comparison of (36} with (33)
shows that the strain near the tip in a growing
c¢rack at stecady-state is much less than the
corresponding strain the same distance ahead of

the crack in the stationary problem at the



same value of J The significantly weaker

singularity in (36) is a consequence of the

highly nonproportional plastic flow which

occurs ahead of the crack in the growing crack.

It is the substantial resistance of plastic
flow to nonproportional stressing which is the
primary source of stable crack growth.
Invoking the growth criterion (32) using {(36),
together with (33) for rp in terms of J ,

gives the value of J necessary teo drive the

crack under steady-state conditions

T I
Jss-_i rchTo exp[v28-1- 1] (377
The ratio of J to J is
S8 c
Jss 1 S
=== exp[vV2B-1- 1] (18)
S B

Large values of B=‘YC/Y0 imply substantial
potential stable crack growth. Approximate
calculations of the full J-resistance curve
in mode III based on the criterion (32) have
been reported iu {29, 6]. Here we will be
content to report the result for the initial
slope of the JR-curve following inictiation
which has been obtained using McClintock's

analysis for the transient case. In noo-

dimensional form that result is
G B g
TR_TZ[da]c 2(B 1- 2nB) {39
o

A "perfectly brittle' material with #=1

corresponds te T, =0 , while for large &

R
TR;{NB/Z The material-based lemgth quantity,
D, is
J
_ c _ B
b= (dJR/da)c Yo BI1- inB (40

It is interesting to note, that for B larger

than about LlG. D 1is essentially the
characteristic length associated with the
fracture process zone, r

The model suggests certain implications
relating macroscopic fracture resistance to
features of the [racture process zone. In
particular, note that the ratio, JES/JC , in
(38) and the nondimensional tearing modulus
TR in (39) depend only on B==YC/Y0
Furthermore, for large 8- JSSfJC increases
exponentially whiie TR increases linearly
in R . Note that for B=6G , T =160 and

R

JSS/Jc§?1000 For larger values of B the
small strain assumptions will certainly be
violated for rypical values of Vg at the
point where r= . But the model does
suggest the source of the large values of TR
which are observed. The very large values of
JSS/JC for large B result from the
considerable resistance an elastic-plastic
material offers to nonproportional straining,
as has already been noted. This effect 1is
undoubtedly overestimated by the simple smoo th
yield surface of Mises (and Tresca in mode I1T)
used in the present amalysis., In this sense
the values of JSSIJC for large B may be
considerably in excess of observable values.
Rice and Sorensen {3CG] have censidered
the more difficult mode I, plane strain
problem in small scale yielding. Qualita-
tively the findings are similar to mode TIL
and several features of the analysis are
closely analogous. While the criterion (32}

is sensible in mode TII, a critical strain

condition cannot be taken to be metb ahead of
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the crack in plane strain mode I since the
strains are most intense above and below the
tip in the small strain solution.

Instead,

Rice and Sorensen used an alternative criterion

which is essentially an integration of the near-

tip strains. They require the crack opening
displacement to reach a critical value at some
fixed small distance back behind the tip. By
making contact with numerical results they are
able to obtain an approximate integration of
the equations relating the crack opening
displacement, the crack advance and J
Resistance curves are determined. Large
tearing resistance is found, typical of
observed values, with realistic choices for
the near-tip fracture criterion.
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