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Buckling: Progress and Challenge

B. Budiansky and J.W. Hutchinson*

Summary

The general theories of elastic and plastic buckling and post-buckling behavior of struc-
tures are summarized briefly, and several special topics of current interest are discussed.

1. Introduction

[t is tempting to begin this survey of the subject of buckling with a long backward look at
its history and to muse on the special fascination it has held for so many engineers and
scientists. Everybody loves a buckling problem! Without sentimentality, however, we will
limit ourselves to the simple but confident introductory assertion that great progress in the
understanding of buckling phenomena has been achieved in the last four decades. It is
symptomatic of the vigor of the subject that surveys, assessments, and recapitulations of this
progress have been appearing with unusual frequency [e.g. 1, 2, 3]. Nevertheless, we wel-
come with pleasure this opportunity to present our own overview at this symposium in
honor of the central contemporary figure in the field of buckling and stability of structures,
Warner Koiter.

With deference to the fact that we face a mixed audience of specialists and non-specialists
we will try not to get too technical as we summarize progress, outline solutions, and pose
problems. To sct the stage, we shall give a succinct précis of some of the main concepis and
resulis of general elastic buckling theory, and then describe several of the mode-interaction
problems that have recently been under scrutiny by various investigators. We will turn next
to a description of the far less well appreciated results of the general theory of plastic
buckling and post-buckling behavior, focus on some central unsolved basic problems, and
indicate current attempts to reach acceptable solutions. Finally, we will conclude with some
observations, necessarily brief, on several related topics that have engaged the attention of
the buckling community, including optimum design, stochastic buckling, and the unresolved,
nagging problem of the quest for a basic, general stability theorem.

2. General Theory of Elastic Buckling

The general theory of clastic buckling and post-buckling behavior was presented by Koiter in
his 1945 Ph.D. thesis {4]. After a dormant period of over fifteen years the basic ideas of the
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theory started to become widely known, and by now have been the subject of numerous
alternative (but essentially equivalent) expositions {3, 5-7]. The theory has found applica-
tions to many specific problems and, indeed, informs all current understanding of buckling
phenomena. We shall summarize briefly some essential features of the general theory, in 2
functional notation [3] that, while not in common use, is succinct, general and convenient
for applications.

In the study of the equilibrium displacements u produced in an elastic body by pre-
scribed loads proportional to a scalar measure A, it is convenient to introduce an inner-
product functional <, > and a norm lju{l = <u,u>1/2. We suppose the existence -of a
fundamental displacement u,(M) that varies continuously from X = 0 (see Fig. 1(2)), and
contesnplate the possibility that a distinct equilibrium path

u=up(d) +v(d) (2.1)

sprouts from the fundamental path at the critical load X = A.. The normalized bifurcation
mode may be defined by

uy =lim vfilyll _ (2.2)
A—dp

and then, with the introduction of the scalar parameter

E=<wvu, > 2.3)
the bifurcated path can be described via the dependence of v and A on £. The expansions

u=ug(A) +uy +8uy +... (<u,,u;>=0,n>2) (24)
and

A=A FNEFNE +. .. (2.5)
may then be used in a standard perturbation procedure for solving the governing equations

of equilibrium and thereby deducing u,,u,, ... and ALz, e
In a conservative elastic system, equilibrium may be enforced by the variational assertion

A =0
A2<0

fluil € ¢
(0} (b) (c)

Fig. 1. Bifurcations, imperfections, limit points.
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8p=¢'[u;A]ou=0 (2.6)

where ¢ is the potential energy functional of the system, the prime denotes Fréchet differen-
tiation, and Su is an arbitrary admissible variation of displacement. Either (2.6), or its
Euler-equation consequences, may serve as the vehicle for the generation of a hierarchy of
governing equations of various orders in £ that follow from the expansions (2.4) and Q2.5.1f
"(2.6) is used, the result is:

£[o) 1, 5u | =0
+E [gguz + M B uy + 5000 Jou =0
e [6cua + X (8 ua +6, u}) + 0 Gdur)
Ay + ¢ Uy uy + ¢ 18u =0
+... =0 2.7

where ¢£n) = ¢(n){uo()\c), A ] and () E%( )-

The perturbation equilibrium equation of order & -provides a homogeneous problem for
the lowest eigenvalue A, and the comresponding eigenfunction 1, , and if the solution for Uy
is unique (except for sign) the perturbation procedure is unambiguous. In this single-mode
case, setting du =u, in the equilibrium equation of order £2 gives :

A =500 0 (—pul (2.8)
and if A; =0, a similar calculation with the third-order equation yields
A = (ol + ¢, ulun )/ (— 4w}
= (56l u; — oLu)/ (~du?) (2.9)

(Stability considerations imply positive values for the denominators of {2.8) and (2.9).)
If & linearly independent eigenfunctions u,,; are found at A, they may be orthonor-
malized (<, 2,;> =8,) and the expansion (4) may be modified to

N N N
u=ug(d) + _E] Gu;+Z I & S+ ... ttgijsttyg > =0 (2.10)
i=

i=1 j=1

N
where §,=<v, u,;;>and £? = _21 &%;- In turn, each £; is expanded in powers of £, which is
i=

now intrinsically positive. Then perturbation equations of successive order provide informa-
tion for the determination of admissible bifurcation modes specified by v; =lim £,/¢, the
corresponding values of X, , and, if necessary, the My and Ap. A-de

The major significance of the quantities A, and A, is their implication concerning imper-
Jection sensitivity. If, in the single-mode case, Ay #0, or if A; =0 and A, <0, small initial
geometrical imperfections will generally induce snap buckling at loads A, smaller than A, (see
Fig. 1(b, c)) (The same is true for the multi-mode case, except that, since £ is then intrin-
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sically positive, A, >0 does not necessarily imply imperfection sensitivity.) Explicit asymp-
totic formulas for A, can be found on the basis of a modified potential ¢z, %] valid when an
initial displacement u is present. Thus, for the special case of a linear Jundamental state, in
which u,()) is proportional to A, the knockdown-factors A SN, are:

AMEN 2 _
AMA, =12 (— ) (ME<0) 2.11)
[+
-2, 1/3
Xak
AN, ~1—3 (— ) (A1 =0,%, <0) (2.12)
aa,
where
E=<u,u, > : (2.13)

is the ‘amount’ of bifurcation mode u, contained in an initial imperfection i. The same

_N
formulas apply in the multimode case if &= 2_21 ¥;u,; is in the shape of one of the
=

bifurcation modes. A method for deducing the influence of initial imperfections in the
shapes of a few nearly coincident eigenmodes u 1 18 t0 use the expression (2.10) directly in
the variational equation ' o

8¢ u, ZEu =0 ' (2.19)

and thereby deduce approximate relations among A, the displacement measures £;, and the
imperfection parameters £,. In some problems only the terms of order £; will be needed; in
others the quadratic terms are necessary, and then the u,,; can be chosen in the forms they
would have had if the modes were actually coincident [21]. More about this later.

The importance of the results (2.11) and (2.12) is that they offer a rational explanation
for the inability of many structures (particularly shells) to achieve their ideal buckling
strengths: they demonstrate the sensitivity of their actual strengths to initial imperfections,
and they providé useful quantitative estimates for the magnitude of this sensitivity. We
should also mention the significant fact, emphasized by Koiter, that the equilibrium along
the descending portions of the curves in Fig. 1(b, ¢) is unstable. Numerous references to
specific problems that have been solved by application of the general theory are contained in
the surveys 1], [8], and [9].

3. Mode Interaction Problems

Despite the apparent special character, from a mathematical viewpoint, of muitiple-eigen-
value problems, practical situations in which several bifurcation modes imteract must be
considered frequently. There is a fundamental reason for this: optimum design tends to
produce structures having nearly equal resistances to more than one mode of failure. There
are two well-known primitive structural systems — the spherical shefl under external pressure
and the circular cylindrical shell under axial stress — that are already, in a sense, optimum,
and have a large number of independent bifurcation modes at, or very close to, the lowest
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bifurcation load. The notorious imperfection-sensitivity of these shells has been studied
extensively, and although unresolved questions remain, these problems will not be addressed
here. Rather, we shall direct our attention to recent attempts to understand mode-intes-
action problems of column, plate, and shell assemblies that are designer-induced by the quest
for optimality.

The model structure shown in Fig. 2(a) captures many of the characteristic features of
mode-interaction phenomena. It consists of an assembly of two elementary spring-supported
structures, with the little component providing support to the big one. The strain-energy
functions for the restraining springs are taken as '

2 B4
gﬁl 27 + z] (3.1a)

4

&, =2 l:—yg + i{iii] (3.1b)

respectively. The special choices B=+1, A = +1 lead to the familiar initial post-buckling
behaviors sketched in Fig. 2(b, c) for the two components considered as separate structures.

1Y ’ X

B=1

B=-1

A
z

1
2

Fig, 2. Mode-coupling model,

For the combined structure of Fig. 2(a) the governing potential energy functional (to fourth-
degree terms) is

2 4 2 4
& & _ Z Z a A A 39
¢ z+yA12(1+y)+8(+1)+2+8 3.2)
I L. 09 09 . . .
and from the equilibrium conditions Fraatw 0 a rich vadety of behaviors emerge.
z oy

For the sake of future analogy, we dub z and y the displacements corresponding to local and
overgll modes, respectively. The associated buckling loads of separate structures are 1 and
Ag. These remain the two critical loads for the combined structure, with the post-buckling
behaviors sketched in Fig. 3 for the case 4 = B = 1 and I = 1/4. For A<l the lowest
bifurcation is stable, but a secondary bifurcation at A = A, lurks in its vicinity. Furthermore,
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A =
N\ fr N e
\I \l‘i/ 1 -._..1___\_- ~ e
s {
Yy z y z ¥ Z ¥y
{a) B5=<2ipg=<l (b))  Ag=1 (e} J=<Xg= 4/3 {dY 473=<)
E E E E

Fig, 3 Mode-interaction behavior of model (A=RB = ),

this secondary bifurcation is unstable for Az > .65. When Ag = 1, so that the lowest eigenvalue
i a multiple one, an unstable mode reveals itself right at bifurcation, and instability of the
fundamental mode persists up to A = 4{3. For Az > 4/3, the critical mode is once more
stable, but now no secondary bifurcation, unstable or not, exists in the vicinity of the
buckling load A = 1. (In this range determination of the maximum load of the perfect model
structure would depend on higher order terms in the potential energy, not taken into
account in the present analysis.)

Analogous results could be sketched for other combinations of 4 and B corresponding to
unstable post-buckling behavior of one or both of the individual structures. Further, the
effects of initial imperfections in y or z or both can be assessed. A small sampling of the
kinds of resulis obtainable is exhibited in Fig. 4. In this figure stable bifurcations are
denoted by solid lines, unstable ones by dashed lines, and limit-point buckling by dotted
lines. The various behaviors of Fig. 3 for the perfect structure, with A = B = 1, comespond to
Fig. 4(a), which also shows resulis for an impeifection ¥ = 01 in the overall mode. The
imperfection-sensitivity in the neighborhood of A =1 is evident. The results in Fig. 4(b)
(imperfection-sensitive overall mode) and Fig. 4(c) (both modes imperfection-sensitive) dis-
play enlarged domains of imperfections-sensitivity, but it is notable that near hp =1 the
magnitudes of the knockdown factors are not much dependent on 4 and B, at least for the
very small imperfection considered. In other words, even if the decoupled structures are
individually impesfection-insensitive, they can interact unstably, and near A =1 they may
do so in a way that is not changed very much by the introduction of imperfection-sensitivity
into the decoupled structures.

Two underlying mechanisms of unstable mode interaction are evident from our model;
they may conveniently be characterized as load amplification and support degradation. Thus

¥y=0

1= 1'—::.2-——- — P — P amieel—t

k ’: Vs -_./‘- /._."-
- s 7
4 //

5 { ‘ 1 i

5 1 1.5 S 1 1.5 S 1 1.5

Ag Mg Ag
{a) A=B=1 {b) A=-1, B=} (c)A=B=-]

Fig. 4. Stable bifurcations { ), unstable bifurcations (—), limit poinis {...).
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(see Fig. 2(a)) a positive displacement y in the overall mode makes the load applied to the
local supporting structure greater than A. On the other hand, a displacement z in the local
mode reduces the effective support supplied to the primary structure at the juncture of the
two components. These two basic mechanisms of mode interaction can be recognized in the
more realistic structures to which we tum next.

Fach of the structures shown in Fig. 5 has received detailed analysis during the last
decade, and each involves the interaction of recognizable local and overall modes. The lattice
column |7, 10] displays interaction between overall Euler buckling and the Jocal buckling of
the vertical members as columns over many supports. Here there is negligible post-buckling
increase of load associated with both the individual modes, corresponding to essentially
neutral stability of each. The two-flange column [11-14] and the wide, stiffened-plate col-
umn [15-20] both permit local, multi-wave, plate-element buckling (stable} to interact with
overall Euler buckling (neutral). Finally, the axially loaded, longitudinaily stiffened cylin-
der [21, 22] permits interaction between local, longitudinally multi-wave, interstiffener skin
buckling (either stable or unstable) and an overall, circumferentially multi-wave, skin-stiffen-
er mode (usually unstable). In each problem-type, unstable mode interaction occurs, with
results that are ofen remarkably similar to those displayed by our simple two-degree-of-free-
dom model. We will not exhibit these special results, but a qualitative discussion of various
lines of attack on the problem of Fig. 5 may be of some interest.

TR T

u i

{a) (b) (c) (d)

Fig. 5. Mode-interacting structures.

Three different approaches have been made. The first (and oldest) analyzes the decoupled
local buckling behavior, and then presents to the overall structure an associated degraded
local support stiffness. The coupling mechanism of load amplification is thereby also taken
into account, because overall deformations will automatically induce forces that drive the
local buckling. This approach goes back, at least in concept if not execution, to the early
thirties and effective-width ideas. Thus, in the lattice column, the axial stiffnesses of the
vertical members are computed as functions of local load and initial local imperfection, and
used for the estimation of reduced bending stiffness in an overall column buckling analy-
sis {7, 10]. Similar use has been made of the effective overall bending stiffness supplied by
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locally buckled flanges (Fig. 5(b)) [11-13] and buckled plate assemblies (Fig. 5(c)) [17, 20].
(In [19] Koiter and Pignataro show how to make rapid engineering estimates of the effective
post-buckling stiffnesses of various kinds of plate assemblies.) But this approach has at least
two apparent deficiencies. First, it does not seem to fit comfortably into the framework of
the general theory, and so appropriate measures for improvements on iis results are not
obvious. Second, there is a conceptual flaw in the use of an effective focal stiffness as a truly
local property in the overall buckling phenomenon, because the local buckling deformations
along the length of the structure are not decoupled from each other, as is implicitly assumed
when the local stiffnesses are considered to depend only on the local loads. Both objections
are met:-by the approaches taken in [15, 16] for the stiffened panel problem, and in [21] for
the stiffened cylinder problem, which are based essentially on the use of the expansion
(2.10) in the variational Eq. (2.14) of the general theory, and take into account two, nearly
coincident buckling loads, with their associated buckling modes. But the story can not end
there. In the problems ilustrated in Fig. 5 there may be many local buckling modes with
nearly equal buckling loads, and local buckling deformations in various parts of the overall
structure may be nearly decoupled from each other. The consequence is that the first
approach may, after all, be more nearly correct, since the more formal second method
erbodies only a single local buckling mode. This dilemma has been resolved by Koiter et
al{14, 18, 19, 22] in a series of papers that presents the third approach, containing the
technique of amplitude modulation. Here the apparatus of the general theory is invoked, but
now the amplitude of the local buckling mode is permitted to vary from point to point in
the overall structure. This is not rigorous, but provides an effective recognition of the
existence of many local modes having nearly the same critical loads. Not only does the
approach recapture the results of the ecarlier localeffective-stiffness methods, it pointts the
way toward useful extensions to other problems.

In recent work Koiter and van der Neut {23] come to grips with mode interaction
problems wherein several local modes that do not share nearly equal critical loads play an
essential role. This occurs, for example, in the intriguing problem of the interactive buckling
of a Jong square tube of uniform thickness. An elementary explanation of the mode-coupling
involved can be seen with the help of Fig. 6. Plate hending w produces longitudinal strains
proportional to w?. Accordingly, combining the strains due to overall bending {proportional
to z) with those due to plate buckling leads to a strain energy contribution per unit column
length given approximately by

$lerz +(cawi +eawy) 12 ds (3.3)

where the coefficients ¢y, ¢;, ¢3 are proportional to the amplitudes of the modes in overalt
(Euler) buckling and the two plate modes shown in Fig. 6(a) and 6(b). The consequence is
that the only overalldocal coupling term that survives the symmetry of the cross-section is

4¢;eq 039 {zwy wy)ds (34)

and so the mode interaction phenomenon would be completely missed if the mode types in
cither Fig. 6(a) or Fig. 6(b) were omitted from the analysis.

What of the future? While the studies of the last ten years have produced much under-
standing, and clever approximate analyses have swept away some seemingly complictated
computational barriers, our feeling (shared with Tvergaard [1]) is that the subject of mode
interaction in practical structures may be ripe for brutal computerization. Given the nearly
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Wy Wo

{a) {b)

Fig. 6. Plate modes in square tube,

routine but sophisticated computer capabilities that now exist for the calculation of bifurca-
tion loads and modes (e.g. [24-26]) and the theoretical foundations provided by the general
theory of post-buckling behavior, it does not seem too optimistic to expect that a concerted
effort would produce powerful, multi-mode computer procedures for the assessment of
mode interaction in column, plate, and shell assemblies,

4. Plastic Buckling

Compared to elastic buckling, plastic buckling is an underdeveloped subject. Conditions
for bifurcation are well established, and some fairly general results characterizing behavior
immediately following bifurcation are known. But a general understanding of post-bifurca-
tion behavior and imperfection-sensitivity in the plastic range does not yet exist. Here an
attempt will be made to survey broadly various pieces of the subject which are understood
and to point to aspects on which progress may be possible. We recognize that numerical
methods are indispensable for solving practical plastic buckling problems, even more so than
for elastic buckling. Nevertheless, the absence of a theory of plastic buckling and post-buck-
ling behavior leaves the subject at the present as little more than a collection of rather
unrelated example problems.

4.1. Bifurcation in the plastic range

Shanley’s [27] rationalization of the tangent modulus load for compressed columns has
been generalized for elastic-plastic continua by Hill [28]. Some of the unresolved issues
. related to choice of constitutive law will be touched upon below. Irrespective of these issues,
Hill’s formulation embraces most plasticity laws of conceivable interest in buckling. It is fair
to say that the mathematical aspects of the bifurcation problem for the lowest bifurcation
load are well founded, apart from a difficulty analogous to that in elastic buckling related to
sufficiency conditions for stability. Hill's theory has now gained wide-spread acceptance.
Sewell {29] has reviewed Hill’s theory and has related it to earlier buckling work. Sewell’s
article contains an organized kst of over 600 references on plastic buckling. More recent
survey reports of fimited circulation have been prepared by Sewell [30] and Storikers [31].
Tvergaard’s survey [1] covers aspects of plastic buckling and post-buckling.

As in the elastic case the fundamental solution whose uniqueness is in question, 1y (), is
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assumed to be a function of a single load or deformation parameter A which increases from
zero. Bifurcation from the fundamental solution is assumed to occur prior to the occurrence
of a limit point in X. On the bifurcated branch we consider monotonic growth of the
bifurcation mode.

Hill {28] introduces a quadratic functional of the displacement-rate for testing for bifur-
cation. The instantaneous moduli which enter into this functional are called comparison
moduli. Loosely speaking, at each point in the body the comparison moduli are the sofiest
branch of available moduli at that state. With a smooth yield surface, the comparison moduli
are simply the plastic loading moduli wherever the stress is at yield, and the instantaneous
elastic moduli elsewhere. The situation is more complicated when the stress is at the corner
of a yield surface. If a total loading regime exists (i.e., a range of stress-rates in which all
potential active yield systems are actually activated), then the comparison moduli are the
total loading moduli. Bifurcation is first possible at the load A, where the quadratic func-
tional vanishes for a non-zero admissible displacement-rate.

4.2 Post-bifurcation behavior

The search for the lowest bifurcation load has been reduced to a standard eigenvalue prob-
lem subject to the constraint that bifurcation does occur in such a way that the-comparison
moduli gre activated by the bifurcation mode. It is this constraint which gives rise to
bifurcation under increasing load and which determines the linear combination of the eigen-
mode and the fundamental solution increment comprising the bifurcation mode. We will use
an axially compressed, simply supported column to illusirate initial post-bifurcation be-
havior,

The slender, solid cylindrical column shown in Fig. 7 has been analyzed within the
framework of the approximations of simple column theory (Hutchinson {32]) wherein
strain-rates are assumed to be linearly distributed through the thickness and the stress is
taken to be uniaxial at each point. Later we will comment on the relation of these results to
a more accurate 3-dimensional analysis.

The lowest bifurcation load (Shanley’s tangent modulus load) is

_ g2 gC 2z
A =7 ESI/L 4.1
I |
T 5 (T INSTANTANEOUS
« BOUNDARY OF
b ELASTIC UNLOADING
: (1 REGION
]
{ Ae
L . Lfems ~ 2
2R
pi—y
%

Fig. 7. Simply supported column with solid circular cross-section.
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where [ is the moment of inertia of the cross-section and F ¢ is the tangent modulus of the
uniaxial stress-strain curve at the bifurcation stress. The lateral deflection component of the
eigenmode is

w, =R cos (EE) . ' | (4.2)

The amplitude of the eigenmodal contribution to the total lateral deflection w is denoted by
£ so that, by definition, .

Ww=Ew; +w (4.3)

where W is orthogonal to w;,

Before discussing the behavior of the elastic-plastic column, it is revealing to discuss the
behavior of a fictional comparison column with elastic unfoading suppressed. This makes the
column, effectively, nontinearly elastic, and it can then be analyzed by the methods dis-
cussed earlier. The lowest bifurcation load is still given by (4.1) with the same eigenmode

(4.2). The initial post-bifurcation response is necessarily symmetric in £, and the expansion
(2.5) has the form

A=), +258 +. .. (4.4)

where the superscript e labels quantities limited to the comparison nonlinear elastic cotumn.
The post-bifurcation coefficient A depends on the first and second derivatives of the tan-
gent modulus at A ; it may be positive or negative. Regardless of the sign of A, strain-rate
reversal occurs over the entire half of the nonlinear elastic column towards which the lateral
deflection takes place. As is well known, a nonlinear elastic column ceases to behave like an
elastic-plastic column as soon as bifurcation occurs.

Bifurcation of the actual elastic-plastic column must take place under increasing load in
such a way that the tangent modulus £, governs the response everywhere in the colemn,
With

?\=hc +7\1$+- N
the stress immediately following bifurcation is
o=0§ +EX, 0, +0,) +... (4.5)

where &c =(do,/dN), and o, is the eigenmodal contribution. The constraint that plastic
loading occurs everywhere in the column as £ increases from zero requires

M, 2 4. (4.6)

On the other hand, if X, /X, >4 then, by coatinuity, no elastic unloading occurs in some
finite neighborhood of A,. But this is not possible since then, for sufficiently small £, 44)
would hold giving rise to immediate unloading over half the column. Elasiic unloading must
start at bifurcation with A/A,=4. In other words, the bifurcation mode, which is the
combination of the fundamental solution-rate and the eigenmode of order £ in (4.5), must
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satisfy neutral loading somewhere in the body. For the columnn problem this translaies into
max(A, 6, +0;)=0 (4.7)

which leads to A;/A,=4. For the column with the solid circular cross-section there is
exactly one point x, = (R, 0, 0) where (4.7) is attained, assuming without loss in generality,
£ > 0. This point is indicated in Fig. 7. Elastic unloading spreads from x_ as ¥ increases. The
next term in the initial post-bifurcation expansion reflects the growth of the elastic unload-
ing region. The general form of the initial post-bifurcation expansion, for the column and
more general situations, is [32, 33]

CAEN HNEFNEP (4.8)

where § depends on the geometry in the neighborhood of X,. The general formula for A,
depends only on the bifurcation mode. For the column of Fig. 7,

2
1 Aq { 3nE] (wR) (dE:) }
g= 3 and Tc =-3 EuE? 1+ 3L do e . {49)

The lowest order equation for the surface separating the spreading lens-shaped zome of
elastic unloading from the plastically loading region is

R-2)/R + 3 (/L = T (D). @.10)

The above results were also obtained from an approximate 3-dimensional analysis [33],
except that A, is then a weak function of Poisson’s ratio which agrees with (27) in the limit
of incompressibility. In the 3-limensional treatment a boundary layer analysis is used to
obtain the lowest order equation (4.10) governing the growth of the unloading region.
Because of the presence of the negative term A,£%/3 in (4.8), the rate of increase of the load
following bifurcation is rapidly eroded. This explains why the maximum support load is
often only slightly above A, in spite of a large initial rate of load increase. From {4.10) it can
be seen that the unloading region rapidly encroaches on the column. In the general case the
rate at which elastic unloading makes its presence felt in the expansion (4.8) through the
term A, %! +P depends on the geometry in the neighborhood of the point, or set of points, at
which elastic unloading starts. Several other examples are shown in Fig. 8.

Tvergaard and Needleman [34, 35] have studied several examples where structural asym-
metry results in post-buckling behavior in the plastic range which is entirely different from
that in the elastic range. A good example is the simply supported column with a solid,
equilateral triangular cross-section shown in Fig. 8 and again in Fig. 9.

Within the framework of column theory a linearly elastic column has a symmetric buck-
ling behavior even though the crosssection is asymmetric. This is not the case for a com-
parison nonlinearly elastic column [34]. For buckling about the y-axis,

A=A +ATEH. .. {4.11)
where \

X dE

M_o3V2 a4 oL (ﬂ) (_f) “.12)

h, 157 l4q 18 \ L. do

[

104




Nt
A (ELASTIC UNLOADING
8%
X
te} e (d} A%

Fig. 8. Onset and spread of elastic unloeding region.

PERFECT

IMPERFECT

NONLINEARLY ) p
ELASTIC COLUMN ]

£

+Z-DIRECTION -

PERFECT

veerrecT ”\|f (S5t PLASTICY

4

Fig. 9. Buckling of a simply-supported column with solid triangular cross-section about
YV-axis.

Here A, is given by (4.1) and, instead of (4.2), wy = (£/24/3) cos(mx/L) with ¢ defined by
(4.3). For a typical stress-strain curve, with E, decreasing as |o|increases, dE,/dg is positive
for compression. Then (4.11) implies that the load falls for buckling deflections towards the
flat side of the cross section (£ < 0} and increases when buckling occurs towards the point of
the triangle (& > 0) as depicted in Fig. 9. '
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For the elastic-plastic column

NA =1+ 22 + QM )E% 7 +. ., £>0 (4.13)

MA=14+v2(-8) + Qa5 +..., £<0 (4.14)

where expressions for A, are given in {34]. The initial rate of increase of load is larger by a
factor of 2 for buckling towards the point of the triangular cross-section (£ > 0). Thus the
initial post-bifurcation behaviors of both the nonlinearly elastic and the elastic-plastic col-
umn indicate a greater reserve of post-buckling strength for buckling with £ > 0. A numerical
analysis of the column (including effecis of initial imperfections) was also carried out by
Tvergaard and Needleman. The greater posi-buckling resistance for £ > 0 was indeed verified
with findings such as those depicted in Fig. 9.

Using the same set of techniques, Tvergaard and Needleman [35] also investigated the
important problem of the buckling of an eccentrically stiffened wide-column such as that
shown in Fig. 5(c). The post-buckling strength of the wide column in the plastic range was
found to be the greatest for buckling towards the side of the column on which the stiffeners
are atfached. The column is significantly less sensitive to imperfections which promote
buckling towards the stiffeners compared to those which cause deflections in the opposite
direction,

While the initial post-bifurcation expansion (4.8) gives insight into how the rate of load
increase diminishes so rapidly following bifurcation, it does not usuaily provide a means of
accurately predicting the maximum lcad and the associated buckling deflection. Van der
Heijden [36] has proposed an alternative approximate analysis aimed at predicting the maxi-
mum load of a structure with or without imperfections. The simple contmuous spring model
of Fig., 8 was used to try out the approach.

With reference to Fig. 10, let A, denote the lowest bifurcation load and let A,,, denote
the reduced modulus load of von Karman [37] where bifurcation takes place under ¢ constant
load to lowest order in £. Using perturbation methods it is possibie to determine the expan-
sion of the solution bifurcating at A, le.

A=A, FNER L (4.15)

Central to van der Heijden’s method is the determination of the locus of maxima A* (§*)
associated with solutions bifurcating in the range A, <A <},,,. An expansion about A,
gives

ANE=Q,,, +AE*+BE*? 4. T (4.16)
Van der Heijden approximates the solution associated with bifurcation at the lowest load by
A=A, + 0§ +5E2 48 ' 4.17)
where A, is the known initial slope. The coefficients » and ¢ are chosen such that M£) in
(4.17) crosses the locus of maxima (4.16) with zero slope and with the same curvature as in

(4.15) at maximum load. That is,

a o an
dg dg?

=2N"  where A=N\* at E=§*, (4.18)
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Fig. 10. Bifurcation responses.

In principle, an expansion of the curvature of the solutions, where they cross the locus of
maxima, could be developed about A, and used to improve the estimate of d?A/dt? in
(4.18). But this expansion is quite complicated and, by comparison with numerical solu-
tions, van der Heijden found that the curvature at A,,, served as a reasonable approximation.
The method was also extended to estimate the effects of small imperfections on the maxi-
mum support load.

There is clearly nothing rigorously asymptotic about this method. Indeed, it is unlikely
that any purely analytical method can be found to predict the maximum load since it occurs
at a finite deflection beyond bifurcation. The method does make use of information which
can be determined from expansions about A, and ,,,

Given the history of column buckling, 1t is mterestmg that van der Heijden’s method
brings in Shanley’s tangent modulus load and von Karman’s reduced modulus load on
soughly an equal footing.

4.3. Ymperfection-sensitivity

For linearly elastic bodies instability and imperfection-sensitivity derive from geometric
nonlinearity. In the plastic range, material nonlinearity in the form of decreasing moduli
with increasing deformation is an additional destabilizing influence. In addition, under cer-
tain conditions there is an anomalous material-based sensitivity to extremely small 1mperfec-
tions associated with the assumption of a smooth yield surface.

Very few general results are available for the effect of imperfections on the maximum
support load in the plastic range. Here we will confine ourselves to the effects of small
geometric imperfections of the form %, . In many problems of interest the fundamental
solution of the perfect structure undergoes no elastic unloading as A is increased. Elastic
unloading starts at bifurcation at A in the manner discussed above. One general result which
then holds asymptotically for sufﬁmenﬂy small imperfections is that elastic unloading starts

- when the slope of the relation between A and £ is reduced to

da

a4z =N . {4.19)
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where, as in (4.4}, A, is the initial slope for the perfect structure [38]. The onset of elastic
unloading is a pivotal point in any buckling analysis; it is the beginming of inherently
irreversible behavior whose effects seem to persist for all larger £.

For problems such as that of the column or the continuous spring model, where the stress
history at each point is uniaxial, the value of A and of £ at which elastic unloading starts in
the imperfect structure is given by the asymptotic formula for small £

A=N-CVIEL E=C V. (4.20)

These formulas also hold, in general, for other problems if it is assumed that, prior to elastic
unloading, the material is characterized by a deformation theory of plasticity. Formulas for
C; and C;, which depend on the sign of £, are given in [32] and {38].

Studies of discrete spring models and of the continuous spring model indicate that the
maximum Joad is also reduced by an amount proportional to the square root of the imper-
fection for sufficiently small £, i.e.

Apax =20, — G VIEL. 4.21)

The strong sensitivity to small imperfections implied by (4.21) is closely connected to the

- pivotal role of A. Model studies and numerical studies of more complicated examples show
that the maximum load is often attained shortly after the onset of elastic unioading. It has
not been shown that (4.21) is precisely valid for other than column-like problems but it
seems likely that the asymptotic dependence on the square root of £ may be a general
feature, assuming a smooth yield surface is not used. As will be discussed below, a much
stronger asymptotic imperfection-sensitivity occurs if bifurcation involves non-proportional
plastic loading and if a plasticity theory based on a smooth yield surface is used., We discuss
this next. The well-known example of the cruciform column shown in Fig. 11 will be used to
illustrate what is involved [39, 40]. For simplicity an incompressible material characterized
by J, flow (incremental) theory is assumed. The uniaxial stress-strain curve is assumed to be
monotonically increasing. The compressive buckling stress of the perfect cruciform asso-
ciated with torsional buckling is

o =G(by. (4.22)

Fig, 11. Cruciform column.
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The elastic shear modulus G govems the incremental shear response in the state of uniaxial
compression and consequently controls bifurcation.

The cruciform column is unusual in that bifurcation occurs at constant load, with A, = 0.
From (4.19) it follows that elastic unloading in the slightly imperfect column will occur at
essentially the maximum load. This observation was exploited in {40] where imperfection-
sensitivity was studied with clastic unloading suppressed. The J, flow theory with elastic
unloading suppressed is an inherently path-dependent hypo-elastic constitutive law. It was
found that elastic unloading started just after attainment of the maximum load in the
slightly impesfect column if the tangent modulus at bifurcation satisfied E{ <Ef3.Thusin
this range the maximum load could be calculated using the hypo-elastic characterization.

An asymptotically exact analysis of the equations governing the cruciform was carried
out and the asymptotic expression for the maximum load was found to be

Amax/As = 1 — WE. ‘ (4.23)

Here g is a positive number of order unity which depends on details of the stress-strain curve -
and
Ey

§= ——,

E+E{[2
In the unloaded state the initial imperfection is a twist per unit length ; the nondimensional
imperfection amplitude is £ =52 8/r.

Values of 5 less than 1/10 are rather typical for buckling in the plastic range. Therefore,
from (4.23) one concludes that an imperfection as small as £ = 107'° will have a non-neg-
ligible influence on the buckling load. This extraordinary sensitivity is due to the hypo-elas-
tic character of the loading branch of J; flow theory. It is not restricted to the cruciform
column, but can be expected in any problem where bifurcation involves a strongly non-pro-
portional plastic response [28, 41]. The bifurcation load predicted using a flow theory with a
smooth yield surface has little meaning when the presence of truly unavoidable imperfec-
tions renders it unattainable.

There has been some progress in recent years in developing phenomenological flow
theories of plasticity which model incremental behavior at the corner of a yield surface and
which are sufficiently simple that they can be used in numerical calculations [42, 43]. These
theories can accommodate a description of a nearly-proportional loading response which is
the same as that from the J, deformation theory of plasticity. Thirty years ago, Batdorf [44]
rationalized the use of J, deformation theory in bifurcation analyses by appealing to a
comered yield surface. Thus the bifurcation load from one of these theories is the same as
that from J, deformation theory, which is generally accepted as giving reasonably good .
estimates of buckling loads when compared with experimental loads. Furthermore, the
comer theories will not give rise to a huge sensitivity to unavoidably small imperfections but
are likely to display a dependence such as that in (4.21).

Even if sharp corners do not develop at the loading point on a yield surface, a corner
theory may be a better model of behavior at a region of high curvature on the yield surface
for the purposes of buckling analysis than one of the conventional smooth yield surface
theories. [f the conventional theory underestimates the local curvature of the yield surface,
- then it will overestimate the stiffness of the material response for non-proportional loading
increments. A corner theory will tend to underestimate this stiffness. Judging from the
success of J, deformation theory in predicting buckling loads, the comer theory should not
be unduly conservative in its buckling predictions.

(4.24)
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5. Optimum Design

We limit ourselves to three observations:

(1) The alarm was sounded early [45] with respect to the dangers of imperfection-sensi-
tivity in structures having nearly-coincident local and overall buckling loads, with the further
speculation that this might vitiate the requirement of critical load coincidence for opti-
mality. Current overviews of the situation tend to confirm the first warning, but not neces-
sarily the second. Optima tend to be smooth, and even if the best design, in the presence of
imperfections, is not right at the equal-critical-load configuration, the consequent weight-
saving may often be small. But when nearly-coincident critical loads are permitted, adequate
knockdown factors must be invoked, and it should be well understood, for whatever infer-
ence one might wish to draw concerning the design, that should failure occur at such a
design, it is likely to be catastrophic.

(2) An unusually thorough and rigorous optimization study was recently executed by
Libai [46], in which an optimum design against elastic buckling (but not failure) was sought
for the configuration shown in Fig. 12(2), consisting of a simply-supported square plate
containing a central, one-sided, blade stiffener. For a given total end thrust P and plate
dimension L, the dimensions #, ¢,,, and ¢, for minimum weight under the constraint of no
buckling were sought. Libai found a local minimum (in configuration space) at the design for
which (a) symmetrical plate-stiffener buckling, (b) uncoupled torsional stiffener buckling,
and (c) uncoupled, transversely antisymmetrical plate buckling have very nearly (but not
exactly!) the same critical loads. In the practical range of structural index P/L?, the stiffener
is “thin’ at this configuration, with# /f usually less than 1/10. But a different local rnini-
mum, requiring a ‘thick’ stiffener having ¢,,/h =~ 1/2, was also found, providing a design with
a very slightly lower weight. The results for (0, /E) at the two design minima, shown in Fig_
12(b) as one curve, are indistinguishable on the scale used. The stiffener-to-plate area ratios
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Fig. 12. Centrally-stiffened-plate optima.
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are also shown in Fig. 12(b), with very different values at the two optima. At both the thick
and thin minima the symmetric mode and the coupled transversely antisymmetric mode had
equal buckling Ioads, but in the case of the thick minimum the stiffener was nowhere near
its own torsional instability load. It therefore seems likely that the thick minimum is not
imperfection sensitive, but that the thin minimum is. The possibility of finding similar
results in the optimum design of other, more realistic configurations should not be over-
looked. :

(3) It has to be acknowledged that, despite theoretical progress, fow practical design
optimization problems have, as yet, been ‘solved’ analytically. In this respect, theory lags
experiment, and a glance at a remarkable series of tests conducted over thirty years ago may
be instructive [47, 48]. Over 150 2024-ST aluminum alloy zee- and hat-stiffened panels
having systematically varied configurations were tested for ultimate compressive strength,
with the global results summarized in Fig. 13. Here the appropriate structural index is
P,/L+Jc, where P; is the load-per-unit-width of panel, L is the panel length, and ¢ is an
effective end-fixity coefficient (¢ = 1 for simple support; ¢ = 4 for clamped ends). The curves
show the compressive strengths of minimum weight designs. (The actual configurations
providing these designs are obtainable from auxiliary curves not shown here.} The most
striking feature of these old results is that (at least for equal sheet and stiffener thicknesses)
they announce the superiority of zees over hats as stiffeners. These experimental results
automatically incorporate the effects of certain representative initial imperfections, not to
mention plasticity, discrete rivet attachments, finite corner radii — and they stand as a
challenge to theoreticians to confirm or refute them, and deduce analogous results for other
configurations and materials.

50 T T

Z-stiffeners

40—

Hat stiffeners
30

) I ]
Q 2 4 K3

Pi
— [ksi}

L/T
Fig. 13. Optimization of zee- and hat-stiffened panels.
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6. Stochastic Buckling Problems

Given the importance of small imperfections in imperfection-sensitive structures, and the
uncertainty of their magnitudes and shapes, it has long been believed that a rational ap-
proach to the design of such structures should relate failure probability under a given loading
to appropriafe statistical information concerning imperfections. Such correlations are
straightforward, in principle, when single-mode buckling is pertinent, for then the proba-
bility of failure may be related directly to the probability distribution function of the
amplitude of the relevant imperfection. This procedure may be extended when a few modes
interact, but becomes cumbersome for many modes. On the other hand, if interacting modes
can be idealized into a continuous spectrum, the techniques of generalized harmonic analysis
become useful. Examples of the two approaches are contrasted m [49].

The intermediate situation, in which not a few but also not very many modes must be
considered to have stochastic imperfections, has been addressed in {50], where the problem
of a lattice column with random imperfections in the individual members is tackled.
Through the use of effective approximations results for the means and variances of buckling
loads are estimated, with accuracies confirmed by Monte Carlo calculations.

7. Stability

For some years Koiter has been concerned with a fundamental dilemma in the theory of
elastic stability, and has tried to provoke interest in its resolution {51]. Briefly, the situation
is this:

Stability is guaranteed at an equilibrium state u, if, for some constant c,

Ag £lug +8u] — ¢luo]

= 2> e>0 (7.1
TE Heull® ¢ )

for sufficiently small |[|§u||. This implies that with tespect to the assumed .norm,ghasa
strong minimum at #,. Subsequent to an initial displacement §240) at time # =0 (with
velocity 6u(0) = 0) energy comsiderations dictate that with or without damping Ad(?) <
AM0) for all > 0. Therefore {{52(2) 1} will never exceed a sufficiently smal! assigned e if the
initial restrictions j|52(0)]| < € and A(0) < ce? are imposed. If the choice of norm does not
viglate our engineering sensibilities, the definition of stability implicit in these facts is
acceptable. Trouble arises, however, when, like all good engineers, we propose to replace the
sufficient condition (7.1) by the requirement of a positive-definite second variation of the
potential energy:

5%¢
>0 7.2
H8zeft? (7.2)
where
52 = & [teo +78u] (7.3)
- an? T n=0 .

(Here the same norm used in (7.1) and (7.2) is invoked in the limit operation involved in the
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second derivative). The existence of a continuous second Fréchet derivative ¢'' (which was
blithely assumed in [3] and in the first part of this paper) implies the identity

82¢=¢" (5u)? (74

and then, as Como and Grimaldi[51] have indicated, all is well. For with ¢ =0,
A =50"(8u)? +R, where R/||8u|[2 >0 for||8ull -0, and then (7.4) and (7.2) imply (7.1),
which implies stability. Indeed, by establishing the existence of Fréchet derivatives with
respect to suitable norms Como and Grimaldi [53] verify Koiter’s proof [54] that (7.2) is
acceptable as a sufficient stability condition for shallow shells. But it tums out [55] that in
non-linear 3-D elasticity theory the required Fréchet derivatives generally do not exist for
reasonable choices of norm and strain energy.

This means that A¢ and §°¢ need not share the same sign, no matter how small |52 is
made. A striking example given by Koiter [56] displays a very simple regular functional
$lu(x)] for which 6%¢ is positive in the sense of (7.2), but for which A¢ can be made

1
negative for arbitrarily small norml|u || = [f* (® +22)dx]"/2.

What is to be done about this? Koeiter’s counterexample involved very tortured deformation
states with huge second derivatives, and this evidently gave him the successful idea of
salvaging the second-variation criterion by introducing a modified strain-energy functional
that depends on strain gradients as well as strains [56]. Despite Koiter’s later [2] lack of
enthusiasm for this device, it remains fairly persuasive as an argument for the practical
reliability of the second-variation criterion. Another pragmatic viewpoint that one might
adopt is to note that regular potentials of finite-dimensional systems have Fréchet derivatives
of all order, and invoke a presumption of the accuracy of finite-element approximations.

But there is no doubt that at least an esthetic problem remains, and that a new, congenial
definition of stability is desirable. Perhaps some statistical concepts may be fruitful. When
the second-variation method fails, it appears that the minimumin ¢ is destroyed only by the
presence of obscure secret passages in function space into which no self-respecting structure
would venture except by wildly improbable accident. Accordingly, an appropriately defined
probability of failure should, under these_ circumstances, be absurdly low. But we do not
have any helpful suggestions concerning such a definition, which, in order to be useful in the
assessment of the practical stability of a structure, should permit easy evaluation of the
desired probability. : '

8. Concluding Remarks

Many very interesting recent buckling papers simply could not be mentioned in this
survey, and we regret this; the subject is just too big. In particular, we have not mentioned
curreni progress in experimentation, dynamic buckling, creep buckling, and numerical
methods. Some wise comments concerning catastrophe theory might have been appropriate.
But we happily leave these, and other topics, to the next surveyors, who, if past experience
is any guide, are already preparing their reviews.
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