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ABSTRACT

A ciass of phenomenological flow theories of plasticity is proposed which models time-independent
incremental behavior at a corner of the vield surface of a polyerystalline metal. The proposal is consistent
with the physical theories of plasticity based on single crystal slip. Condilions for convexity, ensuring
invertibility of the incremental relations, are derived. The simplest candidate, called J, eorner theory,
coiucides with the f, deformation theory of plasticity for nearly proportional stress increments and
incorporates a smooth transition to elastic unloading for increasingly noo-proportional increments. The
theory is applied to the bilurcation and imperfection-sensitivity analysis ol necking in a thin sheel. For this
example, like many others involving bilurcation in the plastic range, the corner theory appears to
circumvent some of the difficulties associated with use of the standard phenomenological plasticity laws.

1. INTRODUCTION

To moTivate the introduction of a corner theory of plasticity, we begin by reviewing
the unsatisfactory state of affairs which has existed for some years with respect to
bilurcation-related phenomena in the plastic range, such as buckling and necking.

Since the late 1940°s evidence has been accumulating related (o the inadequacy of
buckling predictions from bifurcation analyses using the classical fAow theory of
plasticity with a smooth yield surface. Whenever buckling involves an abrupt change
in the relative proportions of the components of the stress increments, the bifurcation
load or deformation from any of the classical flow thcories overcstimates findings
from buckling experiments, in some instances by a considerable amount. Bifurcation
predictions based on delormation theories of plasticity are generally in much better
agreement with tests. In engineering applications it is almost always formulas based
on J, deformation theory which are used to estimate buckling loads or deformations,
with due recognition of the effect ol initial imperfections especially in the case of
shell-type structures.
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Studies of some simple examples, such as the cruciform column under axial
compression, indicate that accounting for very small initial imperfections reduces the
discrepancies between the two theories. Imperfections, so small that they must be
considered to be unavoidable, reduce the flow theory buckling load to a level which is
close to the bifurcation load of deformation theory. Tests on cruciform columns reveal
relatively little scatter and are consistently in accord with the bifurcation results from
deformation theory. It follows, then, that use of a flow theory with a smooth yield
surface seems to result in an unobservable material-based sensitivity to extremely
small imperfections which renders the bifurcation load from this theory to be of
essentially no significance.

The situation with respect to necking in thin metal sheets subject to biaxial tensile
stretching has been less thoroughly explored but recent work suggests a close paraliel
to that for buckling just described, except for one important point. Calculations based
on a flow theory with a smooth yield surface give necking-type bifurcations at strain
lcvels which far exceed realistic values, while bilurcation strains [rom delormation
theory are at least in qualitative agreement with observation. Inclusion of realistic
levels of initial imperfections does not appear to reduce the classical flow theory
results by a sufficient amount to produce agreement with test data. Necking takes
place much deeper into the plastic range than is generally the case in buckling, and
this may be why unavoidably small imperfections reduce the discrepancy between the
predictions based on flow and deformation theories in one case and not in the other.

Use of instantaneous moduli from deformation theory in bilurcation calculations
was first justified by BatporF (1949) and later by SANpERrs (1954) by appealing to a
flow theory with a corner at the loading-point on the yield surface. For nearly
proportional loading increments there exists such a flow theory whose instantaneous
moduli coincide with those of the corresponding deformation theory. Furthermore,
arguments similar to those of SHANLEY (1947), as later generalized by Hie (1961),
provide the theoretical rationale for bifurcation taking place under conditions
mecting the requirement of nearly proportional loading.

The use ol deformation theory is limited to the bifurcation problem. A post-
bifurcation response atmost always involves strongly non-proportional loading, as
does the fully nonlinear response of an initially imperfect realization of the structure
near the critical point. Of course, one of the more sophisticated flow theories which
permit corner [ormation, such as the slip theory of BATporF and Bubiansky (1949),
could in principle be used to explore both bifurcation and post-bifurcation behavior
as well as imperfection-sensitivity. However, slip theory, which is the simplest of the
physical theories, is alrecady too complicated to serve as a constitutive law in
calculations of this sort, even when computers are employed.

SEwELL {1974) used the theory of multiple yield systems, introduced by Koiter
(1953), MANDEL {1965) and HiLL (1966), as the basis for constructing a representation
at the corner of a yield surface. He restricted consideration to base states of uniaxial
stress. For total loading increments from the base state in which all yield systems are
active, Sewell was able to choose the parameters characterizing the systems such that
their combined incremental behavior coincides with J, deformation theory. With this
choice, bifurcation from a state of uniaxial stress would necessarily coincide with the
predictions of J, deformation theory. As the theory stands, it cannot be used in post-
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bifurcation calculations since it is restricted to uniaxial base states. Furthermore, a
computationally practical extension of Sewell’s represcntation to general stress states
is not obvious.

The purpose of this paper is to present a relatively simple phenomenological
corner theory of plasticity suitable for use in numerical calculations of the type
described above. The proposal embodies the essential features shared by the physical
theories for time-independent plastic deformation of polycrystalline metals based on
single crystal slip. Physical theorics all imply the formation of a corner at the loading-
point on the yield surface. On the other hand, the most recent survey of yield surface
experimentation (Hecker, 1976) suggests that, while a surface with relatively high
curvature at the loading-point is often observed, sharp corners are seldom seen. With
the issue of corners aside, it is generally agreed that the simplest flow theory built
upon the assumption of isotropic hardening using the Mises yield surface
underestimates certain crucial plastic strain components in a non-proportional stress
history such as those encountered in buckling or necking. It is no surprise, therefore,
that as a plasticity model it leads to unconservative estimates in buckling or necking
applications. A kinematic hardening description of the yield surface will sometimes
give a better representation of the local curvature at the loading-point. Its use in sheet
necking calculations does lead to more sensible predictions at realistic imperfection
levels (TvErGaarD, 1978), even though the bifurcation strains for the perfect sheet are
the same unrealistic values as from isotropic hardening.

In contrast to a smooth yield surface characterization, a corner theory will most
likely overestimate certain components of the plastic strain increments in the vicinity
of an abrupt change [rom proportional loading. The error in buckling and necking
applications will tend to be conservative, although experience with necking and
buckling, particularly, suggests this error may not be very large.

Thus, without taking a position on the debate eternal on the experimental
existence of corners, we propose the following corner theory as an alternative to the
standard theories in the spirit described above. As has already been mentioned, the
bifurcation point retains a significant role in the analysis of buckling or necking when
a corner theory is used, which is not the case when a smooth yield surface description
is employed. This virtue of corner theory should not be discarded lightly.

The general phenomenological corner theory presented in Section 2 differs
somewhat from an earlier version of CHRISTOFFERSEN (1978), which is discussed in
relation to the present version in the Appendix. The simplest corner theory, J, corner
theory, 1s given in Section 3. To illustrate use of the theory it is applied to the analysis
of necking in a thin sheet under biaxial stretching. The corner theory yields the
bifurcation results of StoreN and Rice (1975) together with an assessment of post-
bifurcation behavior and imperfection-sensitivity.

For the most part a standard compact tensor notation is employed. Bold-face
lower case letters designate symmetric second-order tensers. In this paper, all fourth-
order tensors share the following indicial symmetries in their Cartesian components:

A = Ajikl = A = Aknj;

they are represented by upper case bold-face letters. The following standard notation
for contracted products 1s used: Aa (A, ¢y in Cartesian components); ab (a;;b;;); and
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current stress &
g ‘ stress path

i current y. s.

A ~ _ AL nitial y. s,

FiG. 1. Typical stress history in a bifurcation-relaled problem.

Aab = Aba (A4;ya;by). The tensor product with Cartesian components a;d,, 15
denoted by a @ a. If desired, the notation can be converted to a matrix—vector
representation.

2. INCREMENTAL RELATIONS FOR CORNER THEORY

2.1 Preliminaries

As discussed in the Introduction, we are primarily concerned with stress histories,
such as that depicted in Fig. 1, which involve continuing plastic deformation on paths
which may undergo abrupt changes in direction, and even elastic unloading, but not
reversed plastic flow. The corner forms at the loading-point as the virgin yield surface
is penetrated, and it is pushed along by the loading-point until elastic unloading
occurs. Hiie (1967) has given a general treatment of the essential structure to be
expected of time-independent elastic—plastic constitutive laws for polycrystalline
metals assuming the mechanism of stngle crystal slip at the microscopic level. The
properties invoked below are shared by all the physical theortes, including slip theory
and the more elaborate self-consistent models of polycrystals.

Denote the strain-rate by € and the stress-rate by . For the moment we will
concentrate on “‘small strain” plasticity, but at a later stage in the discussion of an
extension into the finite strain range, ¢ will be identified with the Jaumann rigid-body
rate of the Cauchy stress. The instantaneous elastic compliances are assumed to be
positive definite and are denoted by .#. The elastic and plastic parts of the strain-rate
are defined in the usual way as

t°=.#& and & =¢—¢" (2.1)
Below, the potential for the strain-rate will be introduced ; the elastic part is
We = L#é6. (2.2)

At the microscopic level the material is assumed to strain-harden and to be
characterized by standard slip relations (see ManpEL {1965) or Hirr (1966)). Minimal
restrictions ensure that these relations admit a convex potential function for the
plastic strain-rate which is homogeneous of degree two in the stress-rate. From this
starting point it can be shown (HiL, 1967) that there exists a convex potential
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function of the macroscopic stress-rate, W, which is also homogeneous of degree
two, such that the macroscopic plastic strain-rate is given by

£ = 3WP/06. (2.3)

I &, and &, are any two different stress-rates with associated plastic strain-rates £f
and &5 [rom (2.3), then convexity requires

WP(6,)—Wr6,)—(6,-6,)e1 20 (2.4)

for all such pairs. The function WF is assumed to be independent of a superimposed
hydrostatic pressure-rate and consequently £° is volume-preserving. The equality in
{2.4) holds il and only il both plastic strain-rates vanish, assuming the deviatoric parts
of the stress-rates to differ. Convexity guarantees the invertibility of the relation
between the strain-rate and stress-rate given below.

Drucker’s postulated condition for a stable matenal is contained in (2.4) and is
retrieved immediately by taking 6, = 0 and using WP(¢,) = 16§, i.e.

587 2 0. (2.5)

Other known conditions holding at a corner which follow from (2.4) will be seen
below. The total potential, W = W4+ WP is strictly convex and provides the total
strain-rate as

£ = OW/d6. (2.6)

2.2 The plastic potential W*(g)

The corner of the vield surface will be specified by taking the boundary of the
elastic unloading region to be a generalized cone in deviatoric stress-rate space as
depicted in Fig. 2(a). Let & be the symmetric deviator tensor directed along the axis of
this cone and let 8, to be defined precisely below, be the inherently positive measure of
the direction of the stress-rate [rom the cone axis. The conical surface separating
elastic unloading and plastic flow is taken as ¢ = @_.

elastic
unicading -~

{al A (b)
F1G. 2. (a) Stress-rate space; (b) strain-rate space.



470 J. CHRISTOFFERSEN and J. W. HUTCHINSON

For stress-rates falling within the range 6 < 8,, the relation between the stress-rate
and plastic strain-rate is linear and is written as

g = Cg. (2.7)

This is the total loading range in the terminology of Sanpers (1954) and BuDiansky
{1959), while HiLy (1967) calls it the fuily active range. It corresponds to that range of
& [or which all potentially active slip systems in the polycrystal remain active. For
0y < 8 < 8, the relation between the plastic strain-rate and stress-rate is nonlinear,
although homogeneous of degree one, in a way which must provide a continuous
transition from (2.7) to € =0 for 6 = 0. The possibility of thoroughly nonlinear
behavior, in Hill's terminology, with no linear range (i.e. 0, =) wili also be
considered as a limiting case. The plastic strain-rate always falls within the forward
cone of normals. as elaborated on betow ; and it will be seen that 84 cannot be chosen
in excess of 8. — 1n.

The plastic total loading compliances C possess the indicial symmetries noted in
the Introduction. In addition, if €° is to be deviatoric with no dependence on the
dewviatoric part of 6, it is required that {in Cartesian components)

Craif{ =C i) = 0. (2.8)

The plastic total loading compliances are required to be positive definite in the
restricted sense that Caa > 0 for all symmetric tensors a with nonzero deviatoric part.
Of course, C and X will depend on the current state of stress and possibly on the entire
stress history. In the simplest specialization of the theory given in Section 3, . will be
taken to be proportional to the stress deviator and C will be identified with the
instantaneous ‘‘plastic” compliances from J, deformation theory.

[n the total loading range, W? = $Céé. To bridge the gap between total loading
and elastic unjoading we take

We(g) = 4 f(B)YCee, {2.9)
where
1,

B,
2.
o 80} (2.10)

In the transition range, 6, < 0 < 8_, fwill be chosen such that the convexity condilion
{2.4} is satisfied and such that e° varies continuously with ¢ at / = 8, and at 8 = 4.
It will be convenient to introduce the deviatoric tensor

o
6

WA

f(9)={

= Ck {2.11)
and to normalize L such that
Clhb=1 or ph=17% (2.12)
The direction of the stress-rate measured from the cone axis is defined to be

Ché né

0= =..—
€os (Coa)  (Cad)

(2.13)

T Without 1his normalization, 3. and u need only be replaced by A/(ud.) and p/{ud.), respectively, in the
subsequent formulas.
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Other definitions of @ are possible and might appear simpler. However, the choice
(2.13), in which C plays the role of a metric, leads to an exceptionally attractive
interpretation of the convexity condition, as was noted in the different formulation of
CHRISTOFFERSEN {1978} discussed in Sectton 3 and in the Appendix. The definition
(2.13), together with ¢ = 8., specifies the local form of the corner in stress space. The
link-up between the yield surface in stress space and the cone in stress-rate space will
be made for a special case in Section 3. From (2.13), # is obviously homogeneous of
degree zero in & so that WP in {2.9) is homogencous of degree two in 6, as required.
Singe 2W" = &¢°, (2.5) requires f to be non-negative.

The plastie strain-rate can be determined using (2.3) with the result

e” = IO (1 —k(8) cot NC 4+ k()(sin 0 cos 0) 'n @ ple, (2.14)
where
k()= —4//f = [ln (/YT (2.15)

and where the prime denotes differentiation with respect to the function argument.
For ¢ co-directional to & so that & = 0, (2.14) gives €° co-directional with p. Thus, p is
directed along the corresponding cone axis in plastic strain-rate space. This statement
also holds true for thoroughly nonlinear behavior il f{(0} = land /" = [ = Qat 8 = 0.

2.3 Convexity and the transition function f{(8)

[t will now be shown that the convexily condition (2.4) can be reduced to an
equivalent conditon for the convexily of a certain planar curve specificd by f(8),
together with one side condition.

Since W' is homogeneous of degree two in the deviatoric stress-rate, it is easy to
show that the investigation of convexity can be restricted to the consideration of all
deviatoric stress-rates satisfying

We(g) = (2.16)

=

Any deviatoric stress-rate can be written as & = g + by where x is a “unit” deviatoric
tensor orthogonal to k., viz.

Crx=1 and Ciy =0 (2.17}

The definition (2.13), together with (2.16) and (2.9), implies that any such stress-rate
is

& = (cos O A +sin 0 4)//49). (2.1%)

Let 6* be any other deviatoric stress-rate satisfying (2.16); ¢* can be found satsfying
(2.17) such that

&* = (cos 0% h+sin 0% x*)//4{0%). (2.19)

Using 2WP = g€ = | in (2.4) (with 6, = &, &, = ¢* and £ = €). the convexity
condition becomes

[ —&%% 2 0. (2.20)
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Next, 6*eP is evaluated using the representations {2.18) and (2.19) together with
{2.14). With the use ol standard trigonometric identities one can arrange the
inequality (2.20) into the following lorm:

1—a*%e? = 1 = (f/f*)cos (8* — @) — k sin (0* — 6)]
+{(f/f*)}1 —k cot @) sin 8 sin 0*(1 —Cxx*) = 0, (2.21)

where [= fi(#), /* = f(#*) and k = k(8).
For any &* and & such that 8% = 0 with y* 3 %, (2.21) requires that

1 —k(@)cot§ =0 (2.22)

since Cyyx* < Lily # y*. Next consider stress-rate pairs such that ¥ = ¢ but 6% £ 8.
Then, (2.21) becomes

1= (f//* M cos (8% — 0)—k sin (0* - 6)] = O, (2.23)

Conversely, il (2.22) and (2.23) are satisfied for all 8 and 0%, then (2.21) is always
satisfied. Equations (2.22) and (2.23) are necessary and sufficient conditions for
convexity of Wr.

Condition (2.22) is easily met in choosing f(8); its implications will be seen later.
The second condition (2.23) 1s the convexity condition for the [ollowing planar curve.
Let i and j be orthogonal unit vectors in the two-dimensional plane, and let 4 be
measured from i as shown in Fig. 3(a). Define a curve ¥(0}, where v is a vector from
the origin to the curve, according to

¥(8) = (cos @ 1+sin 8 j)//4(9). (2.24)

{tis readily verified that the convexity condition for this curve reduces to (2.23) where
k is again defined by (2.15). The planar curve (2.24) can be thought of as the
projection of (2.18) into a two-dimensional plane with i aligned along the cone axis.
The condition (2.23) can be converted to a local convexity condition by taking
@* — 0 to be small, by making a Taylor series expansion of fabout 8, and by retaining
only the terms of order (6* — @)% in (2.23). The result, expressed in three ways, is

U A = AP Y 4 ) = 4+ kK] 2 0. (2.25)

Satisfaction of (2.25) for all 8 is necessary and sufficient for satisfaction of (2.23)1if f
and f* are continuous at any point where [ is discontinuous.

Fia. 3. (a) Projection ol surface WP = 4 in stress-rate space; {b) projection of surface W® = § in strain-rate
space.



Corner theories of plaslicity 473

A simptle choice for f(8) which satisfies {2.22) and (2.25) 1s

i, < 0<8,,
= [T (0=0, 8. <0<

f cos l:z (86_90)} o288, (2.26)

0, g.€£0<m,
with
0, 0<0<a,
1 f— 8,

ked T anls o <0< :
(OC_go)tanl}n(gc_Oo):l, g, <8<8, (2.27)
0, f.<0<n

and with 8, < 8, — 7. Both fand /" are continuous at &, and at 8_. From ({2.14} it can
be seen that continuity of £P at 8, and &, is insured by continuity of fand f”. The curve
determined by (2.26) is that depicted in Fig. 3(a). In the total loading range the curve
coincides with a unit circle. Since ["{0,) # 0 as 8, = 0, (2.26) does not provide a
thoroughly nonlinear relation with plastic compliances C for 8 = (.

2.4 Instantaneous compliances

The instantaneous compliance tensor M relates the strain-rate and the stress-rate
by

£ = M, (2.28)

The compliance tensor is not unique since, for example, any fourth-order tensor of the
form a ® a, where a is a symmetric deviator tensor orthogonal to &, can be added to
M without altering £. Nevertheless, sinee W = W+ WP is strictly convex, we are
assured that the choice

[E=1}

2 GZW"

M = ek
3606

i 2.29
a6 (2.29)

¥

a

1s always positive definite. The calculation in {2.29) using (2.9) is somewhat lengthy
but the details need not be given here. The result is

M= #+/C+ifTcot@(C—pRp-q®q+H]+31/"q¢Dq, {2.30)
where
p= Cé/(Cé6)t and q=(tanB) 'p—(sin §) 'p {2.31)
and the Cartesian components of H are
H iy = Py + Pudiye

In the total [oading range, M = .# + C, as expected, and in the elastic unloading
range, M = .#. A discontinuity in /" implies a discontinuity in M, but the strain-rate
is necessarily a continuous [unction of & as long as f and f° are continuous, as
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previously shown, If 8, = 0, corresponding to thoroughly nonlinear behavior, M will
approach .# +C in the neighborhood of 8 =0 if f“(0)=0 with f(0)=1 and
S =0

2.5 Inversion of relation between €° and &

An nverted relation expressing the stress-rate in terms of the plastic strain-rate is
not useful in itsell unless the elastic strain-rate is neglected. Nevertheless, the material
in this sub-section adds to the understanding of several notions, including the precise
mearning of the “forward cone of normals™ in the present context. An alternative way
of specifying the transition function also emerges.

Let D be the inverse of C in the sense that D shares the same indicial syminetries
as C and also satisfies DC = CD =1, where T is the special identity tensor whose
Cartesian components are

Tijkl = %(5‘&5;1+5ft5jk)“135u5u- (2.32)

Recall that p = Ck is the direction of the plastic strain-rate corresponding to a
stress-rate directed along the axis of the cone in stress-rate space. Define a positive
angle ¢ of the direction of €” measured from p according to the dual of {2.13) as

cos ¢ = Dpe? _ Le? (2.33)
Se= (Ds"ap)i o (DE"E")*I ’
where L = Dp. A direct calculation using (2.14) gives
Defe? = (201 +k2]Cao. (2.34)

Further reduction of (2.33) using (2.14) and the definition of cos @ provides the
following expression for ¢ in terms of 6 alone

_1+k(@)tand .
[L+K30)]
This expression can be reduced still further to the simple connection
tan (8 —¢) = k(). (2.36)
From (2.36) it can be seen that ¢ = @ in the total foading range and, in particular,
¢ =0, for @ = 0,. From (2.36) it can also readily be shown that
dp 1+k*—K
dd — 14k?

cos ¢ as 0, (2.35)

=0, (2.37)

where the inequality is a consequence of convexity from (2.25). Thus, ¢ increases
monotonically with §. Since k— + o as 88, it folows [rom (2.36) that
¢ — 0. —in as 0 — 0. The so-called forward cone of normals which contains the
plastic strain-rate is therefore specified by ¢ < §, where

8, =0 —1in (2.38)

These features are depicted in Fig. 2(b).
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We now regard WP = LaeP as a function of £°. As a result of (2.34) and the lact
that ¢ is a function ol & alone, (2.9) can be written as

WP = Lo{¢$DefeP, (2.39)
where
f(B)g(d) = [1+k¥0)] ™" (2.40)
The inverted expression for the deviatoric part of &, § = JWP/0eP, is
§ = g(@){1 +1{¢) cot ¢)D — (¢ )sin ¢ cos ¢} '% @ 1]e", (2.410)
where
l($) = 1g'/g = (In gY. (2.42)
Furthermore, it i1s a straightlorward matter to show that
() = k(0). (2.43)

The duality between the two sets of equations enables one to assert immediately
that convexity of WP with respect to &P reduces to the condition for the convexity of
the ptanar curve

u(¢h) = (cos ¢ i+ sin ¢ j)/gH() (2.44)
together with the side condition | + (¢} cot & = 0. Convexily ol (2.44) is ensured by
299" +4g% - g'* = 4g7g" 4+ ¢') = 4g’[1 412 4+1] 2 0 (2.45)

together with the continuity of g and ¢'. Satisfaction of either one of (2.25) or (2.45)
ensures satisfaction of the other when fand g are linked by (2.40) It can also be shown
that v(f) is the outward normal to the curve u{¢b), and vice versa, with arctan k as the
angle between u and v.

An alternative transition [unction to {2.26) which satisfies (2.45) and the side

condition is
1, 0<¢<0,,
_ 2.46
Q(d)) {(1){'")"2, 00€¢‘<~8n} ( )
with
0, 0< ¢ <0,
py=9  mc! o

_— g, <P <8,
(0, — B )1 —x"), ° ¢

where x = (p—8,)/(0,—0,) and m = 2. Il m > 2, ¢" =0 continuously at & = d,.
Thus, (2.46) supplies a thoroughly nonlinear relation with 0, = 0 if m > 2. A typical
member of (2.46) is depicted as u(¢h) in Fig. 3(b).

3. J, CORNER THEORY
The general framewortk of Section 2 will now be specialized to what is probably

the simplest meaningful version ol the theory. Attention will continue to be directed
to the small strain regime, but possible “finite strain™ extensions will be mentioned.

31
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The specialization follows almost immediately from the previous development. It is
constructed to coincide with J, deformation theory for total loading histories for
which 0 1s always less than 8,. This means that the relation is integrable with limited
path-independence for such histories. Of course, for strictly proportional loading
histories, the present theory, J, deformation theory and J, flow theory all coincide.
The theory can be regarded as an extension of Bupiansky's {1959) treatment of total
loading based on J, deformation theory.

3.1 Small strain version
Using Cartesian components, let
- 1
Sy = Gr‘j_3ckkéij

be the stress deviator and introduce the effective stress

ol =3, = 3sysy (3.1)
In incremental form, J, deformation theory has the form
iy = MGt Cijkzd'kh (3.2)
where
| - 1-2v
M iy = %G T + 3E 30 (3.3)
and

3(/71 1y~ 371 1Y 550
Cum=§[(E:*E) Lt Q(E_E-) ;; J (3.4)

Here, E 1s Young’s modulus, G = Ef2(1+v) is the elastic shear modulus, v is
Poisson’s ratio and E, and E, are, respectively, the secant and tangent moduli of the
uniaxial stress—strain curve at the current value of ¢,. The inverse of C as defined in

Section 2 1s
E - E(E.—F)) 55
Dijru = ETE l:%EJ;ju_ V(E—Ell) ;3 : (3-5)

The plastic total loading compliances in J, corner theory are taken to be Cin (3.4)
with elastic compliances as (3.3). The axis of the cone in stress-rate space is taken
parallel to 5;. From (2.11) and (2.12) it follows therefore that

1 1\ tsy 371 Iy

= <

Using the definition (2.13} gives

- (3.7)

COSU=ETT N, 1 LT
NE, E)T\E TE )
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where 6,6, = (3/2)s;;5; A similar expression for cos ¢ in terms of the plastic strain-
rates can be derived. Written out, the potential of the stress-rate becomes

. Ly 371 l -
Wig) = 5 [E + E(E_s - E) f(B)] 5§84

1L/ ! [ =2v
= - = [0+ — 6} 3.8
+2(El E)f( Jor+ 6E Tk {3.8)
The expression for the plastic strain-ratle (2.14) specializes directly.

We now introduce another angular measure of the stress-rate. Following
Bupiansky (1959), let
5595 a,

e TIT G 1 (3.9)
[(Suskf)(ququ)P [%s,-js,)-]’

Using (3.7) and (3.9) one can show that § and § are simply related by

cos fi =

tan @ = a' tan f, where a = E £ i B (3.10)

=ua , ere a = E E . .
Furthermore, (3.8) can be re-expressed by eliminating 4, using {3.9), with the result

. { . 1—2v |
Wis)= i QNS5+ E Tl (3.11)
where

QB)=1+3G L1 sP B+ : L) sin? g1/ (3.12)

= EE co EE sin [ .

This form (3.11) for W, together with (3.9), is the specialization of CHRISTOFFERSEN'S
{(1978) formulation for the case of isotropic elastic moduli.

The duality properties holding for this latter formulation involves the total strain-
rate and its deviator, &; = e;—3¢,,5;. With

Sifbij

coso = AL (3.13)
[(Sklski)(qugpq)]!
one can show (CHRISTOFFERSEN, 1978), analogous to {2.36), that
114
tan (ﬂ—a)zfié‘d% =tany (3.14)
and
Wie) = GPa);é,+ m) Erk- (3.15)
where
P(a)Q(p) = cos? y. (3.16)

The counterpart to (2.43) is Q™ 'dQ/dfi = — P~ 'dP/da.
The advantage of {3.15) is that it provides an explicit inverted relation between the
stress-rate and the total strain-rate. The rate-equations from

e =0W/0d and ¢ =0W/oe {3.17)
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Vi,

S [(‘511‘\/5612}

d
(a) (b

F1G. 4. {a) Yield surface in stress space; (b) projection of yield surface inlo planc of (o . \/Ga, ;) following
uniaxial stressing 10 a,, = a.

can be obtained, giving expressions similar to (2.14) and (2.41), but with ¢ replacing
£”. Positive-definite compliances and moduli can be obtained as in Section 2.4,
Further comments on the relation between the two formulations are given in the
Appendix.

To compiete the specification of J, corner theory it remains to specify the
dependence of 8, and 8, on ¢, and to sclect a transition function. The cone angle 8, in
stress-rate space can be related to the local conical yield surface in stress space. The
simplest choice for a yield surface in stress space is that depicted in Fig. 4. It
comprises an initial spherical surface ¢, = o, and a conical surface of revolution
about the axis between the origin and s such that the two surfaces meet with
continuous tangents. Let s* be any stress state on the conical surface in Fig. 4. That
surface is specificd by taking § oc §* —sin (3.9) with § = i, where from the condition
of continuous tangents,

tan . = —aq/(al —ad)t. (3.18)
By (3.10),
tan §. = af tan §_. (3.19)

For total loading histories to s, this yield surface is qualitattvely in accord with
yteld surfaces from slip theory or from self-consistent models of polycrystals. The
chaoice for 8, [rom (3.19) and (3.10) also seems reasonable for more excursive stress
histories such as those discussed in connection with Fig. . Other choices for §, in
terms of o, may be prescribed. For example, in the sheet-nccking problem treated in
Section 4, elastic strains are neglected and 0, is taken to be constant over the history.

To obtain some insight inte the transition functions suppose that the matenal is
stressed in uniaxtal tension to g, = ¢ and that the only non-zero stress-rate
components from this state are ¢,, and 4,, as shown in Fig. 4(b). The angle 8 from
(3.7} is given by

08 8 = d,/(6%, +3ad1,) or tan 8 = (3a)id,.l/d .. (3.20)

Define an instantaneous effective shear modulus as G, = &,,/(2¢,;). Using (2.14) and

the associated equations (3.4) and (3.6) to calculate ¢, for arbitrary §,, and 4 ,, we
find

G 3 E
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{al

) ar %
[ i
V3 18,
f = arctan [ —_—
1
Fi1G. 5. knstantaneous effective shear modulus, G, = ,,/(2¢,,). following uniaxial stressing. See text for
specification of parameters. Curve (a) is based on f(6) with 8, = 4d,; curve (b) is based on g{¢) with
8, = $0,; the curve (c) is a thoroughly nonlinear characterization using g(¢) with 8, = 0.

y”rgr
2

The convexity condition (2.22) ensures that G, < Gif E, < E. Alternatively, G, can be
expressed in terms of g{¢) using (2.41) instead of (2.14) with the result

G .3 (E_l) S (3.22)
G, 201+ v) \E, (1 +1(¢) cot p)glo) :

The dependence of G./G on B = arctan (\/ilc'rlll/c'r“) is shown in Fig. 5 for the
two candidate transition functions, fin (2.26) and g in (2.46). To generate realistic
values for a and E/E, the Ramberg-Osgood uniaxial curve was assumed where

e = (6/E)+ (3/T)a/EXalas) ™" (3.23)
For this curve, a = I/n. For the plots in Fig. 5, v = 1/3,n = 5 and ¢ = [.5¢,;. From

(3.9) and (3.10), this gives §, = 138°, 8, = 158°, and 8, = 68°. In the specification of f

for curve (a), #, was taken to be 46,. In the specification of g, we took m = 3 with
8y = 18, for curve (b) and &, = 0 for curve (c). (Recall that & and ¢ are related by
{2.36), and 0 is related to § by (3.10).)

Curves similar to those in Fig. 5 were calculated using a self-consistent model of a
polycrystal by HutchHinson (1970). Of the three curves in Fig. 5, (¢) for the
thoroughly nonlinear relation most closely duplicates the self-consistent results.
Curve (a), based on f, is least like the self-consistent results because of the slow
approach of G, to G as f— ..

3.2 Extensions into the finite strain range

Two possible extensions into the range when the stress levels become comparable
in magnitude to the instantaneous moduli will be mentioned. The most
straightforward one uses the above formulas unaltered with ¢ taken to be the Cauchy
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stress and ¢ as its Jaumann rate. Cartesian components in the above equations may
be converted to components referred to base vectors deforming with the material.
Now, E; and E, are the secant and tangent moduli of the uniaxial true-stress—
logarithmic-strain curve at g,. With this interpretation, the plastic total loading
compliances (3.4) coincide with the proposal made by Storen and Rice (1975} in their
theory for total loading increments.

In the finite strain range, the above proposal gives an integrable relation for total
loading histories only when the principal axes of stress do not rotate relative to the
material. Total loading is usually associated with the existence of limited path-
independence, as in slip theory. Assuming that to be the case, a total loading history
of an initially isotropic elastic—plastic solid should coincide with a corresponding
history in an isotropic nonlinear elastic solid, in the same manner as elucidated by
SanDers (1954) for the small strain range. An alternative proposal is to employ a
finite strain J, deformation theory (i.¢. a true nonlinear elastic relation such as that
suggested by HutcainsoN and NEALE (1978)) to generate the instantaneous total
Ioading compliances. In principal stress axes, the normal components of C, e.g.
Cyi11 Cri22, etc., are the same as those in (3.4) but the shearing components, e.g.
C\312, are not given by (3.4) in the finite-strain range. General expressions for these
latter components have been given by Bior (1965) and Hir (1970) for nonlinear
isotropic elastic solids.

When the material is elastically compressible the above two proposals cannot be
used in the standard variational principle for the incrementai boundary-value
problem (Hmr, 1961). A simple remedy 1s to replace the Cauchy stress by the
Kirchhoff stress in the above formulas, similar to what has been discussed elsewhere,
This interchange makes little difference as long as the elastic volume change is small.

4. APPLICATION OF J; CORNER THEORY TO SHEET NECKING

The approach of Marciniak and Kuczyfski (1967) will be applied to calculate the
development of a necking band in a thin shect subject to biaxial stretching in its plane.
This approach neglects 3-dimensional aspects of the stress and strain fields which
become especially important in the final stages of necking. Plane stress conditions are

F1G. 6. Sheet geometry.
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assumed. This permits the behavior at the minimum point of the infinitely long band
(see Fig. 6) to be related directly to the delormation imposed on the uniform sections
of the sheet outside the band. With &, and é, as the principal logarithmic strains in the
uniform sections, a proportional straining history is imposed such that

élzpél, (41)

where p is fixed and &, is monotonically increased. Attention will be restricted to the
range 0 < p < 1 for which a band aligned with the 2-axis is most critical.

The two nonzero, true stress components are ¢, and ¢,. No rotation of the
principal stress axes occurs and thus the two finite strain versions of J, corner theory
discussed in Section 3 coincide.t Elastic strains are neglected. The material is
incompressible and 1s assumed to be characterized by J, corner theory with E —c0 in
the appropriate formulas. When specialized to plane stress with o, = d,, = 0, the
inverted relation (2.41) can be reduced to

d; = Ly +L12(¢')32} (4.2)
Gy = L@y +Lis(les,
wherein the third equation expressing g, = 0 has been used. Here,
L,y = g[(1 +1cot ¢)L ;—I(sin ¢ cos ¢) 'E,g,050. %] (4.3)

for a=1,2 and § = 1,2. The plane stress total loading moduli (the plane stress
spectalization of D) are

I—So)z [ %(l + (saﬂ)Es - (ES _El)a‘loﬂge_z’ (4-4)

where d,; = 1 for @« = § and zero otherwise.
The expression for cos ¢ in (2.33) reduces to

E?(0151+0282)
cos = 4o , 45
= BE Xt 41+ 5,65)—(E— E)o16, + 0,55 7] #3)

The functions g(¢) and [(¢ } will be taken as (2.46} and (2.47). A pure powcr relation is
assumed between the true stress and natural strain in uniaxial tension according to

¢ = Ke" (4.6)
50 that
E, = NE, = NK(o /K)' ~1'¥, 4.7
where
g, = (Jf+a§—al02)*. (4.3)

In the uniform sections of the sheet, and everywhere in the perfect sheet prior to
bifurcation, the straining 1s proportional (¢ =0). Then the stresses from (4.2) in
terims of €, are the same as in the analysis of Marciviak and Kucz ynNsk1(1967) who

1 The bifurcation strain (4.5} given below holds for all N < | for moduli D derived from Lhe true finite
strain deformation theory. For moduli D given by (3.5), out-of-plane shear band modes intercede prior Lo
the plane stress bifurcation mode associaled with (4.15) in the upper range of N-values (e.g. for N > /3
when p = 1), as discussed by HutcHinson (1979).
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used flow theory. With bars denoting quantities in the uniform sections, these stresses
are

(G /K™ = 2L+ p+p*Ne /3,
a, = Q+p) 31 +p+p*] Y4, (4.9)
Gy ={1+20)3(L+p+p*)]" 14,

Logarithmic strains at the minimum section of the neck are denoted by ¢, and ¢,,
true stresses by ¢, and g,, strain-rates by ¢, = &, and ¢, = &,, and the thickness by h.
In the uniform sections the thickness is h. The initial thickness imperfection is
specified in terms of the thicknesses prior to any straining, k; and f,, by

& = (h;—h)/h; = 0. (4.10)
Equilibrium in the I-direction requires ¢, h = @, h or
6 hta h=3dF+ah. (4.11)

In the 2-direction, the geometric constraint e, = &, holds so that

£7 = &3 = pE;. (4.12)

To obtain the relation between ¢, in the neck and £, imposed on the uniform sections,
use the constitutive law {4.2) to eliminate ¢, in (4.11), noting ¢, = ha,/h and
hih = &, = — (g, +&;). In addition, use the total loading moduli (4.4) together with
{4.9) to eliminate &,. The result is

[Li(@)—0,]e, = [A—pL; ()i, (4.13)
where

A= (/)22 +p)NE/3—G,]. {4.14)

Equation (4.13) is supplemented by (4.2), (4.5) and (4.12). The initial condition is
(4.10).

Bifurcation can first occur in the initially perfect sheet (£ = Q) at the lowest value
of &, for which {4.13) admits a solution different [rom g, = &, . Bifurcation occurs
when d, = L,(¢) (or, equivalently, A = pL, ,(¢)). The lowest bifurcation mode must
satisly the total loading condition ¢ < 0, so that L,, =I5 ,.7 Solving for the
bifurcation strain & from &, = % |, using (4.4), (4.8) and (4.9), gives STOREN and
Rice’s (1975} formula

B IpP N2+ pY
¢ i 4.15
T 22t o+0Y) ®1)

Below some detailed numerical results for imperfect sheets will be shown [or the case
p = 1; then,

& = (14+3N)6. (4.16)

t This is the generalized Shanley condition. HiLL’s (1961} sufficiency condition for uniqueness requires
the introduction of a set of comparison moduli in a quadratic bilurcation functional. We mcalion in
passing that, with D taken as the comparison moduli, application of the condilion using corner theory with
clastic strains neglected requires that (g — 1)Dee be convex. For the g given by (2.46), this can be
established directly simply by replacing g by g —1 in (2.45).
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In order to understand the behavior immediately following bifurcation consider
first a sheet of nonlinear elastic material specified by the instantaneous moduli L, ; in
{4.4). If it turns out that this material everywhere satisfies ¢ < 8, in some fnite
neighborhood of the bifurcation point, then its behavior will necessarily coincide with
that of the plastic sheet. But, vsually, the bilurcation mode of the nonlinear elastic
sheet violates ¢ < 8, in portions ol the sheet, and this is the case in the examples
studied here. Then, the bifurcation mode for the plastic sheet must satisfy ¢ = 8, at at
Jeast one point with ¢ < 8, elsewhere. That is, the stiffening effect associated with
plastic increments falling outside of the total loading range must start at bifureation.
Otherwise, by continuity, the behavior would coincide initially with that of the
nonlinear elastic sheet in contradiction to our assumption,

The bilurcation mode is the linear combination of the fundamental uniform
solution plus the eigenmode. Let R = ¢,/&, in the bifurcation mede. Enforcing the
condition ¢ = G, in the neck using (4.5) gives, after some algebraic simplification,

R= 3p cos® 0 — Np(l +2p)* sin’ O,
" 3pcos? O+ NQ2+p)1+2p)sin? B — BN (1 +p 4 p?) sin 260,

(4.17)

The initial slope of e,/e, lollowing bilurcation, which will be displayed below in a

figurc, 1s
—1
i_(?‘) ] @.18)
dé, \é, és .

Numerical calculations have been carried out to obtain the relation between e,
and &, in the imperfect sheet. These are inherently incremental calculations using
{4.13} and the associated equations. Small increments in g, = &, were specified and
the increment in £, = ¢, and other quantities were computed. Equations (4.5) and
{(4.13), with (4.12), can be regarded as a pair of simultaneous equations for ¢ and
£,/8,. The results shown in the figures to follow were obtained by solving this pair of
equations numerically at cach incremental step. A much simpler scheme was also
tried which used the ¢-value from the previous step in (4.13) in the current step. This
method required no iteration to obtain ¢ and was successful as long as the step-size
was very small where ¢ was changing rapidly. A scheme such as this would be the
simplest to implement in large numerical calculations using, for example, a finite
element method. The efficiency and stability of various solution methods will require
further study.

The development of the strain in the neck e, relative to the strain outside the neck
2, is illustrated for several cases in Fig. 7. In all four plots, p = 1 and N = 0.2. For
reference, curves for the nonlinear elastic sheet, with L, = L7 , for all ¢, are shown in
Fig. 7(a). Three different choices of parameters in the specification of g(¢) in (2.46)
have been made for the results in Fig. 7(b—d). In each case, m = 3 and 6, is taken to be
constant. By (3.19), B, is also constant since a = N. Fig. 7(b) displays the response
when the corner is rather sharp with a substantial total loading range (6, = 135°,
g, = 45°, 0, = 18,), while in Fig. 7(c), by contrast, the corner is not nearly so sharp
{f.=115°, 8,=25", 8, =146,). The sheet material in Fig. 7(d) is thoroughly
nonlinear (6, = 135°, 8, = 45°, 8, = 0).
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FiG. 7. Ratio of strain in neck to strain outside of neck, ¢ /&, ; as a [unction of strain oulside of neck. In all

cases, ¥ = 0.2 and p = 1. {a) Nonlinear elastic sheet; (b) 8, = 45", (0, = 22.57: (¢) 8, = 25°; 85 = 12,57,

and (d) 8, = 45°, 8, =0°. Only the initial slope is shown for the perlect sheet (¢ = (). Curves for the
imperfect plastic sheets are terminaled whea (&, )., is attained.

The solid dots on the curves in Fig. 7(b, ¢) mark the first point in the history where
the matenal response in the neck passes out of the total loading range, that is, where
¢ = 6,. The full response of the perfect sheet (¢ = 0) has not been computed, but the
initial slope from (4.18) is shown. In the case of the thoroughly nonlinear sheet
material in Fig. 7(d}, this initial slope is necessarily zero since R — | as 6, — 0.

Curves of ¢ for the neck material as a function of e, are shown in Fig. 8 for the
sheet of Fig. 7. At low e, the response is essentially proportional with ¢ = 0. As the
neck develops, ¢ grows rapidly. The material in the neck must make the transition
from essentially equal biaxial stretching at low e, (¢, = ¢, = — ;) to a state of in-
plane plane strain (e, = —&,, &; = 0} in the fully developed neck. The curves for the
plastic sheets have been terminated at the limit strain outside the neck, (¢,),.,,. Had
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FiG. 8. History of ¢ in neck as a function of strain in neck, ¢,. Plots are terminated at attainment of limit
strain outside neck. {a) Case (b) of Fig. 7; 8, = 45°, 8, = 22.5°. (b) Case (d) of Fig. 7, 0, = 45°, §, = 0°.

they been continued further, ¢ would attain a2 maximum and then approach zero as
the limiting state of in-plane plane strain 1s approached.

Some dependence of the limit strains on the form of the transition functian g{¢) is
to be expected. It must be remembered that the bifurcation strain predicted on the
basis of the corresponding flow theory (J, flow theory) is infinite with an associated
unrealistic imperfection-sensitivity. Yiewed from this perspective, the differences in
the responses in Fig. 7(b—d) are not large, considcring the significant differences
between the choices for g{¢).
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APPENDIX

A COMPARISON OF THE TWO FORMS OF THE THEQRY

With .# as the instantancous clastic compliances and K = (.#88) ' as the bulk modulus, let
M= M -K'k®@x and A =K 'k®k, (AL

where « has unit trace and is proportional to the elastic strain-rate produced by a hydrostatic
stress-rate, — pd. CHRISTOFFERSEN's (1978) formulation of corner theory takes as the starting
definitions,

W(o) = 1Q(B)H a6 +4.M"55 (A2)

_ war
(MO (A ee )

and

cos 8 (A3)
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where for an isotropic elastic compliance tensor these equations reduce to (3.9) and (3.£1)
introduced carlier.

One can show that the formulation based on (A.2) and {A.3) is completely equivalént to
that given in the body ol the present paper based on (2.9) and (2.13) if the instantaneous.plastic
total loading compliances C can be expressed as a linear combination of 4" and @ @ @, whare
@ = .#'). This is the case for the small strain version of J, corner theory as has already been
noted in Section 3. It also holds for the finite strain version when the toral loading compliances
(3.4) are used. However, the form (A.2) and (A 3) cannot accommodate the alicriative
proposal for the finite strain range wherein the total loading compliances are those from a
nonlinear efastic solid. In general, there is no rcason why C should be a linear combindtion,of
A and o ® w, and thus the formulation based on {2.9) and (2.13} must be rcgarded as the
fundamental one.

When the equivatence does hold, (A.2) and (A .3) have the advantage that they give rise o
an explicit inversion of the rate law, as noted in conjunction with (3.15) for J, corner.theory.
For a general .#, CHRISTOFFERSEN (E978) has shown that

Wi(e)=LP(a) ¥ ee +1¥ ee (A.d)
and
X' e
- - AS
oS (.9”0)(1)) (¥'ee) (A.5)
along with (3.14), (3.16) and the dual equations for convexity. Here, ¥ = .# ' and
¥ =S HF =¥ Ko®b and ¥" =¥ H'F=K®84. (A.6)

The orthogonality of the decomposed clastic moduli and compliances, i.e. ¥ .#” =0 and
¥ H ={,are necessary prerequisites [or the duality properties involving the stress- ra{e and
the total strain-rate in this formulation.





