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SELF~SIMILAR SHAPES AND ASYHPTOTIC DILATATION-RATES FOR VOIDS IN VISCOUS SOLIDS
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The growth-rate and shape are determined for an isolated void growing in a self-
similar way in an infinite block of incompressible power-law, viscous material. The
remote stress state is chosen to be axisymmetric, and the effects on void shape and
growth-rate of various combinations of remote mean and deviatoric stress are studied.
It is found that, with the superposition of a sufficiently high remote mean tensile
stress, remote tensile stretching can produce oblate asymptotic voids which expand
more slowly in the direction of stretching than in directions perpendicular to the

stretching axis.

1. INTRODUCTION

This paper continues a study initiated in a
previous paper [1] 1in which aspects of the
growth or collapse of an initially spherical
void in an infinite block of linearly or non-
linearly viscous solid were studied. Under
axisymmetric remote stressing conditions which
cause the void to enlarge, the void approaches
an asywptotic dilatation-rate and an asymptotic,
or self-similar, shape which can be character-
ized as a pseudo-spheroid, a cylinder or a
needle. In [1] the ranges of stress conditioms
which give rise to the three types of
asymptotic shapes were determined, as were the
dilatation-rates for the cylindrical and
needle-like asymptotic void shapes. For the
linearly viscous solid the asymptotic
spheroidal shapes and their dilatation-rates
vere determined as well. They were not cal-
culated for the nonlinearly viscous solid,
however, and this is the objective of the
present paper. We begin with a specification
of the problem and a brief recapitulation of
the relevant results from [1].

The material is an incompressible, isotropic
viscous s0lid characterized in simple tension
by
¢ =¢ (a/0 )" (1.1)
0 0 )

where € anq 0 are the tensile strain-rate
and stress, eo and co are corresponding

reference values, and the exponent n varies
between unity (for a linearly viscous solid)
and infinity (for a rigid-perfectly plastic
solid). Under multi-axial stress states oij R
(1.1) is generalized to
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ig the strain-rate, sij is the
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wvhere eij

stress deviator, 0 = (3s /2) the
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effective stress, and n 1s a viscosity-like
parameter defined by

n, ...
ne 00/(350) (1.3)

As shown in Fig. 1, the void and the remote
stresses are axisymmetric with respect to the
x3-nxis. The remote stresses are specified by

S and T where
a0 a0
n » 933

It is also convenient to introduce the remote
mean stress

=g, =T s 1
9, (1.4)

o =107 «isem) (1.5)
m 3 ii 3 :
and the quantity
0=S§-T (1.6)

8o that the remote effective stress is
0:- lo| . The remote strain-rate in the xq-
direction 1is

. c0 - . - .L n-1
€445 € 3nlo| 0 .n
and the transverse strain-rates are
*00 o0 1 .
€1 "€y =-FE (1.8)

Evolution of the void under a fixed remote
stress ratio S/T 1s considered. In this
paper we will restrict consideration to cases
in which both S and T are non-negative.
Then, an initially spherical void grows in
volume and, depending on S/T and n , becomes
oblate or prolate and asymptotes to a shape
which has either a finite or infinite aspect
ratio a/b , wvhere 2a 1s the length of the
void along the axis of symmetry and b 1is its
equatorial radius. With the current shape of
the void specified by the polar-coordinate
function R(8) (see Pig. 1), the condition
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Fig. 1 Void geometry.

for an asymptotic, or self-similar, shape is
R(G) = TR(B) , 0 <8 <™ .9

A shape satisfying (1.9) is preserved under
fixed S/T . The corresponding dilatation-
rate of the asymptotic void is

VIV = 31 (1.10)

where V 1s the volume of the void and V 1s
its time-rate of change.

An initially spherical void in a linearly
viscous solid (n=1) deforms into an
ellipsoid of revolution, i.e. a spheroid, and
in [1] it was shown that the void evolves
towards the following asymptotic shapes. For
0 <T/S <1/4 with S > 0 , the length 2a
of the void grows without bound while the
equatorial radius b diminishes to zero in
such a way that the void volume is unbounded,
except for T=0 where the final to initial
volume ratio is 1.26 . This asymptotic shape
is accordingly designated a needle. For

1/4 <T/S <1/2 with S >0 , both a end b
are unbounded but a grows faster than b
such that a/b + » as the void grows. For
T/S=1/4 b remains finite. In the range
1/4 < T/S < 1/2 , the asymptotic shapes are
called cylinders. For both needles and
cylinders the associated asymptotic dilatation-
rate of the void is

V/v=1T/n for 0<T/S<1/2 (1.11)

When %—<T/S<1 with S >0 and n=1

void evolves towards a prolate spheroid with an
aspect ratio A=a/b > 1 which satisfies

2s 1/2
S+2T

For 1 < T/S <o with S >0 , the asymptotic

, the
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void is an oblate spheroid whose aspect ratio
A satisfies

28
S+2T

For T/S=1 the vcid remains spherical. A
plot of the asymptotic aspect ratios from
(1.12) and (1.13) is given in Fig. 2. The
dilatation-rate of these asymptotic voids was
found in [1] to be identical to the
corresponding initial dilatation-rate for a
spherical void subject to the same S and T ,
i.e.

¥_.3, 164 1.1
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As the void deforms from the starting spherical
shape the dilatation-rate first drops slightly
below (1.14) and then increases slowly back to
the asymptote (1.14), as was illustrated in
[1].
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(1.14)

S/T

Fig. 2 Aspect ratio of asymptotic spheroidal

void in linearly viscous solid.

Whether the material is linearly viscous

(n=1) or nonlinearly viscous (n>1) the
asymptotic shape will be a needle when the
ratio of dilatation-rate to remote strain-rate
¢ 4n (1.7) asymptotes to a value which is less
than unity, i.e.

Lo

EV
It was shown in [1] that when this inequality
is satisfied the void elongates with decreasing
equatorial radius, consistent with the
definition of a needle-like asymptotic shape.
For cylinders, the asymptotic limit of this
ratio falls in the range

(for needles) (1.15)

(for cylinders) (1.16)

while for
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the asymptotic shapes are spheroids for n=1
and pseudo-spheroids for n > 1 .

For cylinders or needles, the relation between
S/T and V/(EV) is (1]

¥/ (/3ev) 1-n

-1
S2a1s {L I (4?12 & } 1.18)
/3
(V]
which gives
v 31
— -2 (1.19)
ov s-T
for n=1 and McClintock's [2] result
Y < /3 sim "5 ] (1.20)

eV

for the rigid—perfectly lastic material
(n=®) , for which TT . The value of

S/T corresponding to the trnnsition between
asymptotic shapes which are needles and
cylinders is obtained from (1.18) with

V/(eV) 1 and is shown as a function of n in
Pig. 3. Similarly, the transition from
cylinders to seudo-spheroids is given by
(1.18) with V/(évV) =3 and is also shown in

Fig. 3.
NEEDLES
4 f— e
. CYLINDERS
3 V.
s &V
T fo
2
PSEUDO-SPHEROIDS
v,
i~ ave3
c i ] 1 ] l__L M | Y |
3 5 7 9’ ©
n

Fig. 3 Ranges of S/T for three types of
asymptotic void shapes.

As mentioned above, the asymptotic pseudo-
spheroids and their dilatation-rates were not
determined in [1] for n > 1 . We did, however,
use a numerical method to determine the
dilatation-rate of a spherical void in the non-
linearly viscous solid, and these aphere
results will be of use in the sequel. Under
high triaxiality conditioms in which both ¢
and o, are positive with 0./0 >1, the

normalized dilatation-rate is well approximated
by the formula (1]

¥.3 {_2. Jn, (n-1)(n+.432)}“
)

~ - (1.21)
v 2 2no a

This formula is exact for n=1 and under-
estimates the large-n results by less than 102
for Om/c > 2 and by less than 202 for

1¢< Om/c €2, For n+=, (1.21) gives the

result of Rice and Tracey [3] for a spherical
void in a rigid-perfectly plastic solid under
high triaxiality, i.e.

3 o]
Y . es0 exp[% ?"'] 1.22)
eV

where c-oo .

2. NUMERICAL PROCEDURE FOR DETERMINATION OF
SELF-SIMILAR VOIDS

We first describe the procedure for calculating
the velocity field and dilatation-rate of a
void of specified shape and then go on to
discuss the method used to seek the shape which
satisfies the self-similarity condition (1.9).

A miniwmum principle for the velocity field
suitable for the infinite region surrounding
the traction-free void was given in [1]. Let

gu and éw denote the remote stresses and

strain-rates given in (1.4), (1.7) and (1.8)
and let !n be the associated velocity field
according to
. l, @ @
eij (vi J+v:| 1
An additional velocity field v is introduced
such that the total velocity is given by

) (2.1)

veyv + \:I (2.2)
Ld -~
where "1.1"’1,1"’1.1'0 . Then with
1 3 1,- ~
1j'f(vi,j+vj,i) and eij z(vi.j+vj,i)
(2.3)
the strain-rate is given by
- (1.4 2
E=€ +E (2.4)
If the additional velocity field decays faster
than r-l/z for large r= (xi 1 1/2 , it
minimizes
W w e O..E,, ]dv= Io n, v ds
¢ = [ - - L ev- o n s, s

v

where V is the region surrounding the void,
S 1is the void surface, n is the unit normal
to S pointing into V , and




tMe

Comtl
2 o 2n

1
° nln
o,.de.. = (3n) ['nﬂ-_l][ieijeij

W = [ o et
0

(2.6)
In the limit n + = corresponding to rigid-
perfect plasticity, the minimum principle based

on (2.5) continues to hold but gm must satisfy

o o 2 (] @«
lijs“ 200/3 and e“(ﬂl“) must be
prescribed. In this limit the principle 1is the

same as that used by Rice and Tracey [3] in
their analysis of a spherical void.

With reference to Fig. 4, let ysmsx,6 be a

3
coordinate aligned with the axis of symmetry
of the void and let x be a radial coordinate
coinciding with x, in the plane xl-O . Let

z=x+ 1y be a complex varisble defined in the
physical trace plane shown, and let [=§+1in
be a complex variable defined in terms of
coordinates (§,n) 4in a mapping plane. Let

1 3
z = w(f) z + 8 o8t . 2.7
map the region exterior to the void in the
plane of x- 0 onto the interior of the unit

circle in the L-plane. The coefficients c

i
of the mapping function are real since the void
trace is gymmetric with respect to the y-axis
and the search for a self-similar shape was
restricted to voids which are symmetric with
respect to the plane 13-0 .
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Pig. &4 Mapping geometry.

As shown in Pig. 4, let (r,6) be planar-polar
coordinates in the physical trace plane and
(u,$) be the corresponding coordinates in the
mapping plane, where both 6 and ¢ are
measured from the vertical in the clockwise
sense. The additional velocity components can
be derived from a stream function x(r,6)

according to

<t

r r “(8in 8) “(x sin e),e » Vo= 1 X,r
(2.8)

or

s oL _o-3 - -1 2-1-3

v, r)(.y er.Vy l'X.x)'x)'X
(2.9)

The circumferential velocity component vanishes.
Near the pole =0 , it can be shown that ¥
must be of the form

x(r,0) = a7 +0e(r) + 0% (M +...  (2.10)
Purthermore, the velocity field is symmetric
with respect to 13-0 and thus X must be

antisymmetric in © with respect to 8=7/2 .
A truncated complete representation for ¥
was employed. It was taken in the form

N M
X=Acot8+ ) }

d
[P, (cos ¢)]T, (2u-1)
AL Yir T 1

(2.11)

where P () 1s the Legendre polynomial of

degree j and Ti( ) 1s the Chebyshev poly-

nomial of degree 1 . The amplitudes A and
Ak:l are free parameters which were chosen to

minimize ¢ . The lead term in (2.11) could
equally well have been taken to be A cot ¢ ;
the choice made has numerical advantages, as
will be discussed below.

The lead term in (2.11) gives a spherically
symnetric velocity and strain-rate contribution
with nonzero components

~ -2 2 1z 12 -3
Vr = Ar N Er - iee - -iEu -2Ar (2.12)
where éa is the circumferential component of

the additional strain-rate. The contributions
from the remaining terms in (2.11) to the
velocities and strain-rates were computed using
the change of variables from (x,y) to (u,9)
specified by the mapping function (2.7). The
expressions for the additional velocity and
strain-rate components in the cylindrical
coordinate system (x,a,y) dinvolve X , X x*

*
x.y N X,xx . x,xy and X,yy . By the change
of variables,

- 3 3
X,x x.u ax + X,O ax

- 3 .31]_3.1‘_
X xx [X.uu ax " X,up Bx)ox * X

(2.13)

azu

o 312

EX)

ﬂ]'@i" X0 52
X

P (2.14)

du
+ [X.w ax X, 06

with similar expressions for the other partial
derivatives of X . Using the mapping function




(2.7), one can show that

du du
+ 1 - - 2
.&- 3)’ |Q| 51 5% |Q|2
(2.15)
LTI TR VR SOV L " el 2]
O L TETY
(2.16)
a2 2
Lo fypoty,, 0 i)
Yoowt et alfer o
(2.17)
L *C T |n|“
and (2.18)
2 % . _w 2]
ay2 3x3y |Q|2W' IQIA

(2.19)

where Q=w'l , ( )'=d( )/df and () denotes
the complex conjugate.

The partial derivatives of the terms in the
double sum in (2.11) for ¥ with respect to u
and ¢ are easily determined. Thus, with the
aid of the above equations, the additional
velocities and strain-rates associated with any
point L could be computed if values of the
amplitudes (A, Aki) were specified. The con-

tribution from the spherically symmetric field
with amplitude A was included by using (2.12)
directly rather than through the change of
variables. This avoided numerical difficulties
assoclated with computing differences between
large, nearly equal numbers near the pole
(0=0) , which are particularly severe for this
term because of its 1/€ variation for small
9. ¢ in (2.5) was evaluated using numerical
integration. The second term in (2.5) 1is
readily expressed as an integral with respect
to ¢ (with u=1), and this was evaluated
using a ten point Gaussian quadrature formula
for 0 < ¢ <m/2 . The first integral in (2.5)
is a double integral in u and ¢ . At each
of ten Gaussian integration stations of u ,
the integration with respect to ¢ was carried
out with a ten point Gaussian quadrature
formula. These values were then used in the
ten point formula for the integration with
respect to U , Evaluation of ¢ for spherical

voids for several cases in which the integrations

can be carried out in closed form gave 5 or 6
significant figure accuracy [1].

For a given shape specified by z=uw(y) ,
minimization of ¢ with respect to the ampli-
tude factors was achieved by a numerically
implemented Newton-Raphson method. With the
K=1+N(M+l) amplitudes denoted collectively
by {Aj} , the minimum condition is

30/3Aj =0 , j=1,kK (2.20)

With {Aj} as an estimate of the solution to
(2.20). the improved estimate, {Aji-AAj} y in
the next iteration is obtained from

K
2
-Zlmma ®/3A_3A 5 -3¢/3A 5 (2.21)

where the partial derivatives are evaluated at
{Aj} . All partial derivatives in (2.20) and

(2.21) were evaluated numerically using finite
difference formulas [1].

The search for a shape satisfying the self-
similarity condition (1.9) was formulated as
follows. A shape is specified by the mapping
coefficients CH in (2.7). Given the velocity

field for any such shape, it can be shown that
R(B) = [v, 81n(68-8) +v_ cos(8-8)]/cos B (2.22)

where B 1is the angle between normal to the
trace of the void surface at 6 and the radial
vector, taken positive in the counterclockwise
sense, and given by

B=0-¢+y-T (2.23)
where eiY-m'llm'| . Let
™ bl
= I R(8)do = J R(8)d8 (2.24)
0 0
and, for i>1, let
hid
F (c;scp,ee0) = J [i(e)-rn(e)]pu(cos 8)de
0 (2.25)

The self-similarity condition may be restated
as

Pi(cl.cz....) =0 , im=m]l,® (2.26)

An approximately self-similar shape is obtained
by restricting the mapping function to J

unknown coefficients ¢y and by truncating

(2.26) to the first J equations. Given an
estimate {ci} to the solution to the trun-

cated set of equations, an improved estimate,
{cii-Aci} , 1s obtained from

3P (c)
Ac, = -F,(c) (2.27)

j-l acj j
As in the minimization process, all partial
derivatives in (2.27) were evaluated numerically.
Repeated application of (2.27) led to a solution
to the truncated equations (2.26), assuming a
reasonable starting guess was made and given
that S/T fell in the range in which a solution
exists. Integrations in (2.24) and (2.25) were
performed using ten point Gaussian quadrature




formulas with ¢ as the integration variable.

The calculations entailed by the procedures
described above are lengthy and judicious
choices for the set of amplitude factors and
the number of mapping coefficiénts had to be
made. The experience gained in the calcu-
lations for the spherical void in [1] were
relevant to the choice of N and M in (2.11).
All calculations reported below were carried out
with N=2 and M=3 for a total of 7 free
amplitudes. With this choice (2.11) contains
the exact solution for the linear problem for
the sphere and, by numerical experimentation
with different N and M , was found to give
the dilatation~rate to within about 1% for
large n . Convergence of the Newton-Raphson
iterations was extremely rapid for n <5,
vhile for n=10 and <« convergence was some-
what slover.

Calculations of the self-similar shapes were
performed using either one (cl) or two (c1 and

cz) free mapping coefficients in (2.7). The

difference in the results for the dilatation-
rate and the aspect ratio A=a/b for the
calculation based on just € and that based

on ¢, and c, was small in all cases checked,

except for A>1 when n 1is large. Of course,
for the linear material (n=1) the solution
involves only Y since the asymptotic void

shape 1s a spheroid with aspect ratio (1.12) or
(1.13). For n=1 , the method described above
gave the aspect ratio A for a given S/T to

- within a few percent as long as the aspect ratio
was not greater than about 2% . FPor larger A
the accuracy began to deteriorate and more terms
in the truncated representation for X would
have been necessary to improve the accuracy.
Comparison of the computed dilatation-rate with
the exact result (1.14) was even more favorable.
For all the n-values, the dilatation-rate was
less sensitive to the choice of N and M and
the number of mapping coefficients than was the
aspect ratio.

3. NRUMERICAL RESULTS

Computed values of the normalized dilatation-
rate, V/(éV) , and aspect ratio, A=a/b , of the
asymptotic voids are presented in Table I. Also
included in the table is the value of V/(&V)
from the high-triaxiality formula (1.21) for a
spherical void. For n < 5 the computed values
of V/(8vV) for the asymptotic void are never
more than 12% greater than the values from
(1.21) for the sphere. A comparison of the
results for the asymptotic voids with the more
accurate results for the sphere in [1] reveals
an even closer correspondence between the
dilatation-rete of the asymptotic void and the
sphere vhen n < 5 . Thus, the exact coincidence
of these two dilatation-rates for the linear
solid (n=1) mentioned in the Introduction
applies reasonably well to the moderately

nonlinear materials as well. For the rigid-
perfectly plastic material (n=«) the high-
triaxiality formula for the sphere under-
estimates the dilatation-rate for the asymptotic
void by as much as 402 when S/T=2 .

Table 1

n S/T U/év A @ren™
2 1.15 52.1 1.01 51.5
2 1.25 22.7 1.10 22.3
2 1.30 17.3 1.17 16.9
2 1.35 13.8 1.25 13.5
2 1.40 11.5 1.34 11.2
2 1.50 8.50 1.56 8.34
2 1.60 6.72 1.91 6.67
3 1.15 118.3 .92 116.2
3 1.25 39.0 .93 37.7
3 1.35 20.5 .99 19.7
3 1.45 13.4 1.11 12.7
3 1.55 9.82 1.28 9.32
3 1.65 7.68 1.53 7.34
3 1.75 6.25 1.85 6.09
5 1.15 345.7 .88 346.1
5 1.25 7%.4 .80 72.0
5 1.35 32.8 .79 30.5
5 1.55 13.4 .92 12.0
5 1.75 7.99 1.29 7.21
5 1.85 6.53 1.57 6.06
10 1.15 1591. .87 1453.

10 1.25 165. .75 154.

10 1.35 53.1 .64 49,1
10 1.45 28.5 .64 24.5
10 1.65 13.5 .75 10.9
10 1.85 8.40 1.11 6.92
10 1.95 6.93 1.34 5.90
® 1.25 560. .70 555.

o 1.45 47.4 47 39.1
® 1.65 19.3 .54 14.0
® 1.85 11.8 .76 8.16
« 2.05 8.23 1.02 5.84
® 2.25 6.21 1.38 4.64

*from Equation (1.21)

The asymptotic dilatation-rate is plotted as

("I/(-':v)-1 as a function of S/T in Pig. 5. For
V/(éV) >3 the asymptotic shapes are pseudo-
spheroids, as already emphasized, and in this
range the curves in Fig. 5 are plotted from the
values in Table I, except for the curve for
n=1 which derives from (1.14). For

1 < V/éV < 3 the asymptotic void shape 1s a
cylinder and in this range the curves in Fig. 5
are obtained from (1.18). The numerical
results in Table I for the pseudo-spheroids are
limited to values of V/EV which are greater
than about 6 . In Fig. 5 we have filled in
the intermediate range 3 < V/eV < 6 by
smoothly extrapolating the sections of the
curves obtained from Table I so that they are
continuous with the curves for the cylindrical
voids. The estimate of the curves inm Fig. 5
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which were presented previously in (1] are quite at the tip of a plane strain crack is 0 fo s 2.
good, especially for the moderately nonlinear m
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Fig. 5 Normalized dilatation-rates for the
self-similar voids.

The aspect ratios of the asymptotic voids are
displayed in Fig. 6. Based on the velocity
fields for the sphere we anticipated in [1]
that the asymptotic void in the nonlinear
material would be oblate (A<1l) under

Fig. 6 Aspect ratios for the self-similar
volds.

sufficiently high triaxiality. This speculation
is indeed borne out. Oblateness is largest

for the rigid-perfectly plastic material with

a minimum value of A of about .43 when
S/T=1.5 or, equivalently, when om/o-2.3 .

In thig connection, it it interesting to note
that the triaxiality level in the plastic zomne




