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A study is carried out of the problem of a penny-shaped crack in an infinite body of power-
law material subject to general remote axisymmetric stressing conditions. The plane
strain version of the problem is also examined. The material is incompressible and is char-
acterized by small strain deformation theory with a pure power relation between stress
and strain. The solutions presented also apply to power-law creeping materials and to
a class of strain-rate sensitive hardening materials. Both numerical and analytical proce-
dures are employed to obtain the main results. A perturbation solution obtained by ex-
panding about the trivial state in which the stress is everywhere parallel to the crack leads
to simple formulas which are highly accurate even when the remote stress is perpendicu-
lar to the crack.
1 Statement of Problems 1 S
Within the context of small strain theory we consider an incom- X, Ts
pressible, power-law solid characterized in simple tension by "
¢/eo = ala/og)" (1 ’
where ¢y and g are a reference strain and stress and « is an extra
constant introduced for convenience of application. For J5 defor- T Fofos woT
mation theory, (1) generalizes to T
ﬂ=§a[& S @ (a) (b)
€ 2 ady, Jo T

where s;; is the stress deviator and o, is the effective stress defined

by
3 1/2
G = (‘2' Sijsij} (3)
It is also convenient to define an effective strain

9 1/2
€ = (— fijfij) (4)

Fig. 1 Conventions: (a) penny-shaped crack, (b) plane strain crack

crack of radius a subject to general remote axisymmetric stress con-
ditions (see Fig. 1(a))
o'clnl = 0'53 = T7

3 on=S (5)

which coincides with the tensile strain in uniaxial tension so that o,
and e, satisfy (1).
Two crack problems are analyzed below. The first is a penny-shaped

The second is the plane strain problem (e33 = 0) with a crack of half
length a subject to inplane remote stresses (see Fig. 1(b))

1
0’;1= T, 0'0202=S with 0';3=5(S+ T) (6)

In both problems the crack is traction-free. A number of fully plastic
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crack problems of this type have been analyzed [1-4], and an esti-
mation scheme has been proposed for using these solutions together
with linear elastic solutions to interpolate from small to large-scale
yielding behavior [4-6].

The solutions presented as follows also apply to power-law creeping
materials under steady-state creep conditions. The following pre-
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sentation will use the time-independent formulation but conversion
of the results to the steady creep interpretation is immediate. If S and
T are increased (or decreased) monotonically in fixed proportion, the
solution to the fully plastic crack problem has the property that the
stress components also increase in fixed proportion at each point in
the body. Consequently, the solutions are also exact solutions based
on the J; flow (incremental) theory of plasticity fit to the same uni-
axial relation (1), as discussed more fully in [1].

The fully plastic solutions can be used in addition to generate so-
lutions to a class of strain-rate-dependent hardening solids [7, 8] which
in simple tension satisfy

o/ao = Bleleg)*(é/eg) ™ ¥
and for multiaxial states satisfy
5i_2 ,3(55)’*-‘ [f_)”f_: ®
oo 3 \e€o €l €

where () here denotes the time rate of change. The solution to the
fuily plastic problem governed by (2) is of the form

u = Mg, & =Ngj, o5 =ANrg; 9
where A is taken as a strain-based load parameter which is directly
related to S and T. Spatial dependence is contained in the barred
quantities. The corresponding solution to the strain-rate-dependent
hardening problem governed by (8) in which the same load parameter

varies with time according to A(t) is

u; = NI, €= Nejj, €= XE,']', g = Mimaj (10)
where k + m = 1/n and 8 = (1/a)V/". The stressing is again propor-
tional at each point in the body and, as long as A varies such that o,
does not decrease, the solution from (8) is as well asolution to the J»
flow theory version of the constitutive law.

The family of power-law materials (2) includes an isotropic, in-
compressible linear elastic solid at one end of the range we will con-
sider (n = 1) and a rigid-perfectly plastic solid with the yield condition
g, = 0¢ at the other (n = ). The plane strain problem becomes hy-
perbolic with the possibility of discontinuous displacements across
certain slip lines in the rigid-perfectly plastic limit. On the other hand,
the axisymmetric problem for the penny-shaped crack is elliptic for
all n including the limit n = « so that discontinuities in strains and
displacements are not possible. The differences in the characters of
the two solutions for large n will be brought out in the following.

The outline of the paper is as follows. The theoretical background
to the numerical solution is given in Section 2. The numerical method
is described in Section 3 and results for the penny-shaped crack are
then presented. A perturbation method is employed in Section 4 to
generate solutions for remote stressing conditions departing only
slightly from the trivial state in which S = 0 and T 5 0. These rela-
tively simple results are found to give highly accurate predictions even
under remote tension conditions (S > 0, T' = 0). The paper concludes
with Section 5 in which numerical results for the plane strain problem
are given.

2 Theoretical Background

Minimum Principle for Infinite Body. The displacement-based
minimum principle for the infinite body given in [9] will be used. The
principle is the standard minimum potential energy principle modi-
fied such that volume or area integrals remain bounded when applied
to an infinite region. Let ¢, €, and u™ denote the uniform fields as-
sociated with the uncracked body subject to prescribed S and T. Let
an additional displacement field & be introduced such that the total
displacement is

u=u>+u (11)
where u;; = uj; = 4;; = 0. With
I | .
€ = E (uij+uj;) and = 5 (G ;+ aj;) 12)

the total strain is given by € = €~ + & It will be assumed that the ad-
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ditional displacement field decays faster than r—/2 as r = (x;x;)'/2
becomes large. Then, among all admissible additional displacement
fields satisfying this condition, the solution minimizes

®@) = fV[W(e)—W(e“’)—a}} &ldv - fs 0% nadS (13)

where V is the infinite region surrounding the crack, S is the crack
surface, n is the unit normal to S pointing into V, and
e n €, \n+l/n
W = oyde; = —— : ]
0 n

aooey (14)

+1

Subject to the admissibility conditions on the decay of &, the min-
imum principle holds in the limit n = = with € « s* imposed and
o, = oo. As will be discussed further, the condition on the decay of
@ is satisfied for the axisymmetric problem but not for the plane strain
problem whenn = o,

Relation Between Energy-Release Rate and ®p;,. Consider
the penny-shaped crack centered in a solid sphere of material of radius
R (which will subsequently be permitted to become unbounded) and
let tractions T{" = o7} n; be imposed on the outer surface Sg of the

Qe

- sphere. (For the plane strain problem the crack is taken to be centered

in a cylinder of radius R, but otherwise the argument which follows
applies to plane strain as well.) The potential energy of the cracked
body Vg subject to T= on Sy is .

PE(a) = fv _Wav - fs Teu; dS (15)
R

For an increase of radius of the crack from a to a + da with T held
fixed, the energy-release rate per unit length of crack edge is

J=——— (16)

Next, we show that dPE/da = d®y;,/da when R — =, By the
principle of virtual work

fSR T;”a,dS=£R azzijdv+ﬂagnjaids

where @ is the additional displacement defined in (11) and on the
surface of the crack, S, the unit normal n points into Vz. Use (17) to
rewrite (15) as

17

PE(a) = fVR [W(e) — W(e=) — o &;]dV — fs 0% n;5:dS + C

(18)

where the terms comprising C depend only on the uniform state o=
and are independent of a. Subject to the same decay conditions on
i required for the minimum principle, PE — C becomes ® i, as R
becomes unbounded and therefore

dPE/da = d®,;,/da (19)

By dimensional considerations ®;, must have the functional
form

q>min = 0o Sf(n’ S/Ty S/a0) (20)
and thus
d®Pmin/da = 3ogega?f = 3Pnin/a (21)
It follows then from (16), (19), and (21) that
3
J=~——& 22
2ma? 22)

For any admissible additional displacement field &, $(ii) = ®pin and
thus an estimate of J using

3
2wa?

is necessarily a lower bound. Equation (23) will be used to obtain our
numerical estimates of J.

J=-

® () (23)
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For the plane strain crack (16), (20), and (22) are replaced by, re-
spectively,

1dPE
o= 2
J 2 da (24)
Prin = coc0a?f(n, S/T, S/ o) (25)
J = —Pnin/a (26)

Analogous relations based on a modified complementary potential
energy functional can also be formulated. For statically admissible
stress fields, the complementary formulation generates upper bound
estimates of J. This alternative approach has not been used here. In
[3], both of the unmodified minimum principles have been used to
produce numerical estimates of J for problems involving cracks in
finite geometries. The numerical results in [3] do appear to provide
the corresponding lower and upper bounds, even though it is unlikely
that the strict bounding properties, which hold for the infinite body,
apply to finite geometries.

Crack-Tip Fields and the Relation Between oJ and the M-
Integral for the Penny-Shaped Crack. For the plane strain
problem J as defined here is equal to the line integral definition of
J [10]. The singular crack-tip fields are of the form

J 1/n+1
gij=0g|—

J )n/n+l .
acoeplnr r

G;(0,n), € =ae [aaoeoln €;(6,n)

27

where (r, 8) are planar polar coordinates centered at the crack tip and
where details of the f-variations and the normalizing constant I,, are
givenin [11, 12].

The plane strain singular fields (27) also hold at the edge of a
penny-shaped crack, where r and 8 are then local coordinates in a
plane perpendicular to the edge of the crack. Because the circum-
ferential strain is bounded at the crack edge, the singular field is
necessarily a plane strain field with the same functional dependence
on r and 8 as in (27). The easiest way to see that J, which has been
defined here as the energy-release rate in (16), is the amplitude of the
singular fields in (27) is to invoke a surface-independent integral [13]
called the M-integral in [14]. For the power-law material (2),

M=J‘ 2n —1
s

—1 O'ijnjui
where S is any closed surface which encloses the crack and n is the unit
outward normal to S at each point. In [14] it is shown that M/a is the
total energy-release rate with respect to a. Thus, for our definition
of J in (16), it follows that

J = M/(2ma?)

Wx;n; — aijnju;pxk — ds (28)

(29)

Now deform the surface S in (28) to a torus-like surface ringing the
edge of the penny-shaped crack. (The integrand vanishes on the faces
of the crack.) As the torus is shrunk down to the edge of the crack, only
the singular terms in the integrand of (28) contribute to M, and it is
readily seen that M/(2ma?) is just the line-integral definition of J for
plane strain. This establishes that J as defined in (16) for the
penny-shaped crack is indeed the amplitude of the singular crack-tip
fields as it appears in (27).

3 Numerical Solution for Penny-Shaped Crack

A numerical procedure based on the approximate minimization of
@ in (13) as developed in [9, 15] will be employed. A stream function
¥(x, ¥) is used to generate the additional axisymmetric displacements
according to

and iy = —x"lY, (30)

iy =x7lY,

where.x and y are radial and axial cylindrical coordinates (which
coincide with x; and xo, respectively, in the trace plane x3 = 0) and
i, and ii, are the associated additional displacements.

To expedite numerical integration the region outside the crack in
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Physical plane Mapping plane

?Ig. 2 Mappling of physical trace plane onto Interlo: of the unit circle In the
-plane

the trace plane x3 = 0 is mapped onto the interior of the unit circle
in the {-plane (see Fig. 2) using
. a .
zEx+zy=w(§')=5(§'+§"l) G=v-1 (31)
With p and ¢ as planar-polar coordinates in the mapping plane as

shown in Fig. 2 and with ¢ regarded as a function of these coordi-
nates,

1 ou o4y 1( op M)
==Y —+¥o— =——|Yu—+¥e—| (32
R (w'" dy Ve by]’ t x Y ox Voo ox (32)
where, with @ = {(dw/d{),
ou  .ou Q 2 .09 Q
—Hi—=p—, o= 33
ox lby 1917 oy Fox |22 (83)

Expressions for the additional strain components from {(u, ¢) are
given in the Appendix.

An approximate representation of the stream function is taken
as

N M .
Vg, 6) = F(p, ¢) [Ao+ T T Arjpiun(9)

k=1 j=0

(34)

where

F{u, ¢) = (1 — pf sin? ¢) cos ¢ (35)

The A’s and 8 are treated as variables in the minimization of ®. In
terms of the polar mapping coordinates, 1 = 1 corresponds to the crack
surface while ¢ — 0 corresponds to x2 + y2 — =, The range of ¢ is
from 0 to w with y being symmetric in ¢ about ¢ = 7/2. The choice of
F in (34) and (35) insures a uniform representation leading to ad-
missible behavior at the poles and a smooth opening of the crack, as
will be discussed later. The terms in the square brackets in (34) are
derived from a complete double series which has been truncated
consistent with admissibility conditions. These require that uy is
symmetric about ¢ = 7/2 and that u,(0) = ©;(0) = 0. The set of or-
thogonal eigenfunctions used for the ¢-variation in (34) is

U () = cos M (¢ - ’—2’] + by cosh Ay [¢ - g) (36)
where the A, satisfy
A A
cos {ﬂ] sinh ﬂ] + sin M] cosh [)\k—w =0 37
2 2 2 2
and
A
by = sin ["—”]/sinh ("—""—] (38)
2 2
The first four A, and b, are
A = 15056187 b, = 0.1328565
A2 = 3.5000107 by = —5.792274 X 10-3
Az = 5.5000000 b3 = 2.503110 X 10~4 39)

A4 = 7.5000000 by = —1.08169 X 10~°

With ¢ = AgF(u, ¢), the crack opening displacement é(x) = u, (x,
0+) —uy(x,07) is
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Table 1  hy, hy, and hg for penny-shaped crack

hl(n, S/T)
S/o S/T n=1 n=1.,5 n=2 n=3 n=5 n=10 n=e
1 © 0.9549 1.094 1.194 1.331 1.484 1.639 1.841
2 2.0 3.819 4,372 4,758 5.248 5.734 6.141 6.669
3 1.50 8.594 10.05 11.12 12.55 14,12 15.75 18.24
4 1.33 15.28 18.59 21,23 25.30 31.03 39.13 55.65
5 1.25 23.87 30.45 36.35 47.09 65.42
0.5 -1.0 0.2387 0.2736 0.2978 0.3297 0.3641 0.3983 0.4448
0.2 -0.25 0.03819 0.04386 0.04774 0.05279 0.05815 0.06338 0.07030
0.1 -0.111 0.009549 0.01097 0.01195 0.01320 0.01453 0.01581 0.01748
h,(n, S/T)
S/c S/T n=1 n=1.5 n=2 n=3 n=5 n=10 n=o
1 © 4.000 4.575 4,992 5.554 6.159 6.709 7.270
2 2.0 8.000 9.232 10.08 11.17 12.41 12,83 14.90
3 1.5 12.00 14,74 16.92 19.99 23.78 28.83 38.96
4 1.33 16.00 21.19 25.94 34,83 50.29 75.96 130.6
S 1.25 20.00 28.64 37.87 57.77 97.52
0.5 -1.0 2.000 2.289 2.492 2.761 3.053 3.347 3.749
0.2 -0.25 0.8000 0.9179 0.9992 1.105 1.219 1.330 1.480
0.1 -0.111 0.4000 0.4594 0.5002 0.5529 0.6087 0.6631 0.7342

&(x) =%Ao\/a§—x2
a

Contributions from the other terms in (34) result in an opening dis-
placement of the form f(x) v/a% — x2 where f is bounded at x = a.
Thus (34) only contains the correct behavior for & as x — a for the case
n =1.For n > 1, (34) can only approximate the correct behavior (i.e.,
8 « (a ~ x)!/n*1), In the neighborhood of the crack edge (u = 1, ¢ ~
7/2)

(40)

M

B8 N
()Akj(l + bi)

S EN
3= - ¢] o
2
By allowing 8 to be a free variable in the minimization process, we
remove the constraint between i, and u, implied by (41) when 8 is
fixed. (For n = 1, 8 turns out to be essentially zero and is always less
in magnitude than 0.3.)

The surface integral contribution to ® in (13) when evaluated using
the representation (34) is just

£
)

R

(41)

=1j=

- j; o nyil; dS = 4T Ao (42)

In terms of the coordinate variables u and ¢, the volume integral in
(13) becomes an iterated double integral with the ranges 0 < u <1
and 0 < ¢ < /2, For given numerical values of 8 and the A’s, this
integral is evaluated using an iterated application of a 10-point
Gaussian integration formula. Minimization of ¢ with respect to a
given set of the free variables, 8 and the A’s, is achieved using a nu-
merically implemented Newton-Raphson method, which is described
in more detail in [9]. For given numerical values of the free variables
the volume integral in (13) is accurate to at least four significant fig-
ures. Thus the lower bound character of our estimates of J is preserved
to this level of accuracy.
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The functional form of the solution is

J S
=h y =
o; €ca ! (n T]
AV S
=hgln,— 43
cmad 2(" T] (43)
é S
—=h =
€a 3(n'T]

where AV is the volume of the opened crack and é = u,(0,0%) -
uy(0,07) is opening of the crack at its center. For the axisymmetric
problem

o =1S-T| 44

and ¢; is related to o7 by (1). Numerical results for k), hs, and hj for
various S/T and n are given in Table 1.

An indication of the convergence of the lower bound estimates of
h, as dependent on the number of free parameters in (34) can be seen
in Table 2 for the case of remote uniaxial tension (S > 0, T = 0). For
the linear problem (n = 1) only 5 free parameters are required to give
h1 exactly to four significant figures. For the rigid-perfectly plastic
problem (n = «) the convergence is slower with a 5 percent difference
between the calculation with (N = 2, M = 3) and that with (N =3, M
= 3). The results in Table 1 for the case of remote uniaxial tension
were determined with (N = 3, M = 3) for a total of 11 free parameters.
The other results were obtained with (N = 2, M = 3) for a total of 8
free parameters.

Plots of the normalized  and AV as functions of the ratio S/o; are
given in Figs. 3 and 4. With o}, = (S + 2T)/3 as the remote mean
stress, remote triaxiality is measured by

o;

for 8 — T > 0. The very strong dependence of AV on triaxiality for
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L X

Table 1 (Continued)

h:,’(n, S/T)

s/o. | s
/oe /T

.5 n

=2.0

n=3.0

.909
.818
.727
.637
.546
.9546
.3824
1.910

2

1
1.333
1.250
1

QO W g U W -

-0.25
-0.111

= NN el

o O O

.093
.069
.496

.395

.79
.091

0.442
0.222

2

8 0
4 0

4.
7.
10.
16.
1.

.218
226
059
92

23

183
.4852
. 2445

n

.375
4.415

0.5405
0.2734

.525
.671
.595
13.85 19.
23.92 40.
.426

07

0.5996
0.3045

28.27

1.545
0.6570
0.3348

.690
.358
.30
.75

.698

0.7329
0.3746

Table 2 h, for different numbers of free parameters (S > 0, T = 0)

03

N=1, M=3 | N=2, M=2 | N=2, M=3 | N=3, M=3

J L

n=1.0
n=1.5
n=5 1.423
n=o© 1.680

0.9549
1.090
1.432
1.716

0.9549
1.092
1.453
1.756

0.9549
1.094
1.484
1.841

om/as above unity when n is 3 or greater is similar to the dependence
of the dilatation of a spherical void on triaxiality [9, 16).

The profile of the opened crack is shown in Fig. 5 for several n-
values for the case of remote uniaxial tension (S >0, T = 0; or S/a
= 1). Contours on which the effective strain is a constant are shown
in Fig. 6 for n = 5 and in Fig. 7 for n = «, both for the case of remote
uniaxial tension and both with ¢; = 1.

4 Perturbation Solution

Penny-Shaped Crack. The uniform state 699 =0,01; =033=T
is a trivial solution to the penny-shaped crack problem. In this section
we develop an exact perturbation solution about this state. For the
linear problem (n = 1) nothing new will be learned from this solution.
However, for the nonlinear problems (n = 1) we will obtain relatively
simple results which not only hold for remote stressing conditions
slightly perturbed from the trivial state but also for remote uniaxial
tension with a fairly high degree of accuracy.

In the uniform trivial state (S = 0, T < 0) the crack remains closed,
J is zero and the nonzero strain components from (2) are

€22 = —2€11 = —2€33 = € = aee(|T|/a0)™ (45)

Onto this trivial state we superimpose an increment of remote tensile
stress o= parallel to the x2-axis and perpendicular to the traction-free

crack so that
65=S=¢" and oj=o0p=T (46)

From (2), the increments in deviatoric stress and strain throughout

the body satisfy
$ij = Lijniéns  (€r = 0) 47

where the incremental moduli are

1 1 2(1-
Lijnt = 2u l‘(aik 01+ 8udjn) — = 80 + = a-n €ij€ri€e '2}
2 3 3
(48)
with
peg (49)
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Fig. 3 Normalized J for penny-shaped crack

The incremental problem is a standard linear elastic crack problem
for an incompressible material with uniform moduli (48) which are
transversely isotropic with respect to the xo-axis. The solution to this
problem has been given in the literature but we have had some diffi-
culty in gleaning the information desired here from published studies.
In what follows, we sketch out the details for obtaining JJ, AV, and
8 for the present incremental problem following for the most part a
solution procedure used in [17] for the more general problem of an
elliptical crack in a linear anisotropic solid. In this section it is im-
portant not to lose sight of the fact that it is the linear incremental
problem which is being analyzed. When S # 0 it is always possible
to find a zone sufficiently near the tip where the perturbation breaks
down regardless of how small S is. Nevertheless, the perturbation
solution does provide a rigorous expansion of J and AV for small S.
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Fig. 4 Normalized volume of opened penny-shaped crack

I
a/2 o x

Fig. 5 Crack opening displacements for penny-shaped crack subject to
remote unlaxlal tension

In addition, the expansion of the crack opening displacement at any
fixed point away from the tip is asymptotically correct as S ap-
proaches zero.

From the fundamental work on the general ellipsoidal inclusion
problems [18] it is known that an elliptical crack in a homogeneous
linear elastic solid opens into an ellipsoid. In the present incremental
problem for the penny-shaped crack, both the moduli and the loading
preserve axial symmetry about the xs-axis and thus the opening of
the crack is necessarily given by

3(R) = c(6=/u) (a2 — R (50)

where R is the distance from the center of the crack in its plane and
¢ is an unknown dimensionless factor which, by dimensional analysis,
depends only on n. The volume of the opened crack is
a 2r
AV =2r f B(R)RAR = = c(5™/w)a® 1)
0
Next, consider the total energy released by creating a crack of radius

a in a linear solid subject to a remote stress 6> for which the opening
displacement is (50); it is

Journal of Applied Mechanics

®
Ee =
[o):]

@y
S
o

/

Fig. 8 Contours of constant effective strain ¢, for penny-shaped crack
subject to remote unlaxlal tension whth €, = 1forn =5

Fig. 7 Contours of constant effective strain €, for penny-shaped crack
subject to remote unlaxlal tenslon with €5 = 1for n =

1 1
E=-2r f * 8(R)6RdR = - 6=AV 2)
2 0 2
With J as the energy-release rate per unit length of crack edge, as
defined earlier, it follows from (51) and (52) that

(53)

Another independent expression for J can be obtained by calcu-
lating the work done by the singular stresses at the crack edge through
the crack opening for an incremental advance of the crack with ¢= held
constant, i.e.,

J=lim — {* 5,04, a)o(t.0 + Aa)dt

Ac—0 2AadJo 4)

where £ = R — a. Here d22(£,a) denotes the stress actingat R = a +
£ on the plane of the crack x2 = 0 when the crack has radius a, and
0(¢,a + Aa) is the crack opening at the same point associated with a
crack of radius a + Aa. The singularity of &2 at the crack edge nec-
essarily has the form

ki~ a
V2rE

for the incremental problem where k can only depend on n. Per-
forming the calculation in (54) using (50) and (55), we find

o922 = (55)
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Fig. 8 Comparison between analytical results (84) and numerical results
for penny-shaped crack

J= ﬁﬁ (6°)%a (56)
4
By comparing (56) with (53) we see immediately that k = 2/+/7, giving
the classical result for a penny-shaped crack in an isotropic material.
Thus the stress singularity on the plane of the crack is independent
of n, i.e., independent of the degree of transverse anisotropy for this
class of incremental, incompressible problems.

It remains to determine ¢. This is achieved by carrying out a local
singularity analysis at the edge of the crack and then reconciling the
result with (50) and (55). The singularity field at the edge of the
penny-shaped crack is a plane strain field. Let £ and 5 be local Car-
tesian coordinates in the plane x3 = 0 with origin at the crack edge and
parallel to the x; and x; axes, respectively. For the singularity field
in the local coordinates, ¢33 = 0 and é;; + é25 = 0. The latter constraint
implies the existence of a stream function ¥(¢,n) such that i, = ¥,
and u2 = —{ ;. Incremental equilibrium requires

3
Veere + (; - 1}\#,55»11 Y =0 (57

where (48) has been used to express the stresses in terms of { in the
equilibrium equations. Traction-free conditions on the crack flanks
require
Ve — Ym =0
W ien + Py = 0

Only the pertinent details of the singularity field solution of (57)
and (58) will be given here. These are

] (£ <0,n = 10) (58)

b= AEV2 (E>0,7=0) (59)

and
4 5\-1/2

5 = tglt, 0%) — al, 07) = = (1 + ;] A=BHY2 (E<0)  (60)
n

where A is an amplitude factor which is undetermined by the singu-
larity analysis. Equations (59) and (55) (with & = 2/+/7) imply

A = 5°(22)12/7 (61)

Near the edge of the crack (50) becomes § = ¢(6=/u)(—2a£)/2; thus
from (60) and (61) we find
4

c==

™

To further reduce the expressions for AV in (51) and J in (53) note
that by (46) and (49)

(62)

3]—1/2
n
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for penny-shaped crack

s . S
Tse T =32 = 63)
b Oe Oe
Equations (51) and (53) can therefore be written as
AV 3\-1/2 8
— =8 (1 —) = (64)
ca n a;
and
6 -1/2{ S \2
A w
alesa 0w n ¢

In applying these formulas we will take o5 as |S — T'| rather than | T|
since the difference in doing so involves terms of order (¢=)3 which
have already been neglected. With ¢ = |S — T| and €; obtained from
o7 by (1), (64) and (65) are exact for all S and T whenn = 1. Forn =
1, the error in (64) is of order (S/0)3 since AV/eZ isodd in S/o¢; and,
similarly, the error in J given by (65) is of order (S/a )4

The prediction of (64) is compared with the numerical results for
hs from Table 1 in Fig. 8 for S/ ranging from 0 to 2. A comparison
of (65) with the numerical results for h, is shown in Fig. 9. For remote
uniaxial tension (64) and (65) become

AV

3\-1/2
- 3=8(1+—] (66)
ca n
and
J 6 -1/2
=21+ ®7)
gle€la W n

and these are compared with the most accurate set of numerical re-
sults (with N = 3 and M = 3) in Fig. 10. Equation (67) exceeds the
numerical results by less than 5 percent, with the greatest difference
occurring for the rigid-perfectly plastic limit. Furthermore, it is
conceivable that (67) is even more accurate than Fig. 10 suggests since
the numerical results give a lower bound curve.

Plane Strain Crack. The perturbation solution of the plane
strain problem proceeds along similar lines so only the main results
will be given. There is, however, an important mathematical difference
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Fig. 10 Comparison of analytical results (66) and (67) with numerical results
for penny-shaped crack under remote uniaxial tenslon (§ > 0, T = 0)

between the two problems which is brought out very nicely by the
perturbation solutions and this will be discussed.

The trivial state is now o011 = T <0, 092 = 0, and o33 = T/2 with
o = /3| T|/2and

€22 = —€11 = v/3€/2, €33=0 (68)

where ¢, is given in terms of ¢, by (1). An increment of remote plane
strain tension 023 = S = ¢ is superimposed onto the trivial state. The
results for this incremental problem are listed in the order developed
for the penny-shaped crack in the following.

Equations (50), (51), and (53) are replaced by

3(x1) = c(6=/u)(a2 — xP1/2 (69)
AA = ’E'c(&w/#)az (70)
J =25 (") )

4p

where AA is the area of the opened crack and u is again given by (49).
Equations (55) and (56) still hold in plane strain; and, by comparing
(71) and (56), we see that k = /7 for all n.

In terms of the stream function Y(x}, xo) with &y = Y 2 and ug =
—y,1, equation (57) is replaced by

4
Y+ [; - 2] Y22 + Y2200 =0 (72)
with boundary conditions
Yii—V¥2=0 }
’ ’ (|x1| < a, x2 = £0) (73)
4-n)2+nYae=0 =l :
With £ = x1 — a, the singularity analysis gives
G2 = AETV2 (£>0,x2=0) (74)
and
2
d==vVnA=H2 (£<0) (75)
m
Comparing (74) and (75) with (38) and (69), we find
c=vn (76)
By (63), (70), and (71) become
A4 _snvn S )
e;a 2 o
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- Evn(Sp )

greza 4 \o,
These formulas are again exact for all S and T when n = 1if o¢ is
taken as 1/3|S — T|/2 and €] is obtained from (1).

The solutions to the axisymmetric incremental problem are well
behaved as n — =, The governing equations (e.g., (57)) remain elliptic
in this limit. In contrast, the normalized results for AA and J in plane
strain, (77) and (78), are unbounded as n - « and this is associated
with the loss of ellipticity of (72) in this limit. These behaviors mirror
the corresponding behaviors in the rigid-perfectly plastic limit of the
fully nonlinear problems. That is, the axisymmetric problem for
n — « remains elliptic and well behaved, while the plane strain
problem becomes hyperbolic admitting the possibility of discontin-
uous displacements and/or displacement gradients.

5 Numerical Solution for Plane Strain Crack
The numerical solution for the plane strain problem parallels that
given in Section 3 for the penny-shaped crack. In fact, it is simpler to

* choose a representation for the stream function in the plane problem.

On the other hand, the plane strain problem is ill-behaved asn — «,
as already discussed, and this makes it more difficult to generate ac-
curate results for large n. In the axisymmetric problem it was possible
to carry out calculations using the minimum principle with n = . The
plane strain solution does not obey the admissibility conditions as-
sociated with the minimum principle whenn = =,

The geometry of the problem is shown in Fig. 1(b) and the mapping
function (31) is again employed to map the slit plane onto the interior
of the unit circle in the {-plane as in Fig. 2. Incompressibility implies
the existence of a stream function ¥ such that the additional dis-
placements are given by

(79)

In terms of the coordinates p and ¢ in the mapping plane (see Fig. 2),
¥ is taken as

1=y and do=—y,

N M
Yy, ) = kil '21 Agj[/ =" sin 2k — (—1)*2k(¢ — 7/2)] (80)
-1j=
where the A’s are free parameters chosen to minimize ®. This choice
meets the required symmetry of the solution with respect to the two
Cartesian coordinate axes. The crack opening from (80) is of the form
f(x) vVaZ— x7 where f(a) is bounded, and therefore (80) can only
approximate the solution when n > 1.
The second term in (13) is

N M
- f oTnildS = 478 T 5 k(-1)*Ax 81)
s k=1 j=1
The effective strain is computed using
2 4 1
€= 3 =3 (W2 = en)? + Z(¢,11 - ¥,207] (82)

and otherwise the numerical procedure is similar to that described

Table 3  h4, ha, and hs for plane strain crack

S/a: S/T| nal n=1.5| n=2.0 | n=3.0 | n=5.0

2//3 = 3.142 3.851 4.448 | 5.422 | 6.754

ny = | 1//3| -1.0| o.7853 | o0.9s01 | 1.100 | 1.333| 1.639
2% | a3 | 2.0 | 12.57 15.44 17.73 | 2212 | 27.16
2//3 @ 5.441 6.686 7.757 | 9.523 | 11.86

n=f | 1A | clo| 272 | s32s | ss19 | 4.es7 | s.s2
ate 4//3| 2.0 | 10.88 13.62 15.81 | 19.68 | 24.56
UB| = 3.463 | 6,116 | 4.650 | 5.491 | 6.610

h3=—61, 43| -1.0 | 1.732 2.095 2.391 | 2.854 | 3.340
aty 43| 20| 6.926 | 8.124 9.002 | 10.63 | 12.87
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for the axisymmetric problem. It can be shown that the decay of the
additional displacements for large r satisfies the conditions required
for application of the minimum principle as long as n is finite.

On the basis of numerical experimentation with different N and
M, it is felt that the calculations with N = 3 and M = 3 give results
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Fig. 13 Comparison between numerical results and analytical resulis (85)
for plane strain crack in plane strain tenslon

for J in Table 3 which are low by not more than about 5 percent for
n < 3. With N = 3 and M = 4, the same level of accuracy appears to
be achieved for n = 3 and 5. For n larger than 5 the strain concentrates
in rather narrow bands emanating from the tips, and it is not expected
that our numerical method can accurately represent the solution
unless many more terms are included in (82). The numerical results
in Table 3 are for hy, hy, and h3 which are defined by

Lo

go€ed T

AA S

—=hy|n,— 83
czat 2[ T (83)

where 6 = u2(0, 0%), — u2(0,07), 67 = +/3|S — T|/2, and € is related
to ¢ by (1). In plane strain ¢33 = (o} + 0%)/2, 6% = 65,/3 = (S + T)/2
and, forS—T >0,

5 + 1] (84)

og 3oy 2

Curves of h; and hy as functions of S/o} are shown in Figs. 11 and 12
where the dashed curves are obtained from formulas (77) and (78) and
the solid curves are from Table 3. For n < 5 at least, it appears that
the formulas will be sufficiently accurate for many purposes for on/o¢
as large as 3. Fig. 13 displays the results as plots against 1/n for plane
strain tension (S > 0, T = 0) for which (77) and (78) become
simply

2 (o3

eAz =7+/3n and =7vn
ea
The relationship between (85) and those of [4] for a crack of length
2a in an infinite strip of width 2b subject to remote plane strain ten-
sion (S > 0, T = 0) is displayed in Fig. 14. In the present notation, the
function k1 of [4] is defined as

(85)

@ o
ete
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Fig. 14 Normalized J for plane strain center-cracked strip subject to plane
strain tenslon; values for &/b = 0 from (85) and for &/b > 0 from [4]

)=
= n|= 1—--—
geega b

hy (86)

b
which coincides with the present definition of h; in plane strain ten-
sion when a/b = 0. It is seen that h(a/b, n) is a strong function of a/b
when a/b is small and n > 1. Some care should be exercised in using
the results for the infinite geometry to model the finite geometry and
vice versa.

Finally, contours of constant effective strain are shown in Fig. 15
for plane strain tension with €g = 1 for n = 5. A comparison of this
figure with the corresponding plot for the penny-shaped crack in Fig.
6 reveals the substantially larger strain concentration in the plane
strain problem at a given distance from the crack tip. In addition, it
is noted that there is a large dead zone directly above and below the
center of the plane strain crack in which the effective strain is almost
zero.
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APPENDIX S T [
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ox ox
Additional Strains for Axisymmetric Problem with similar expressions for the other partial derivatives of {. The
With (x, 8, ) as radial, circumferential, and axial coordinates, the  derivatives du/dx and d¢/dx are given in (33), while
additional strains are related to y by o . o op @ o 2uf a0
& =2 Wy —x "W, =", € =—¢— ¢, ox2 bxby_alﬂl"’ K 2% |94 l?
26y = x 22y = Yoaz) + Vi) % . d% _op Q . p 2.0 [i6Q
e ot~ T T a1 o

By change of variables to x and ¢

_, du d¢ o% _d%¢_ & | 20 [@

Vi _‘l/,ua"' ll/,dba_x 2xdy lbx2 |22’ 2] e o
dp d¢] dp 2% . d% i 20 iQQ

Yoz = [V S -t Yo T - e P ART R I
ox x| ox dy xoy  |Q%  |Q| w
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