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ABSTRACT
A finite strain version of the J, deformation theory of plasticity is given. The
material model is an isotropic, nonlinearly elastic solid. The range of states is
investigated for which the equations governing incremental responses are
elliptic.

1. Introduction

A particular finite-elasticity constitutive law which can be considered as a
prototype model for certain limited classes of time-independent deformations
of plastic solids is the subject of this paper. This law was first formulated by
Hutchinson and Neale [1] in connection with an investigation of localized
necking failures in thin sheet metals. It has subsequently been employed in a
number of other studies of finite-strain and bifurcation phenomena in plastic
solids (e.g. [24]).

In small-strain plasticity the most commonly employed constitutive laws are
the “J, flow theory” and “J, deformation theory” relations. In both of these
constitutive theories the plastic strain increments satisfy incompressibility,
and they are connected to a general multiaxial stress state through J, — the
second invariant of the deviatoric stress tensor. J; flow theory involves
relations between stress increments and strain increments, which lead to
path-dependence of total stress and total strain for arbitrary stress histories,
In contrast, J, deformation theory is a smail-strain nonlinear elasticity
constitutive law. Although deformation theory is clearly inadequate for
characterizing the most general path-dependent features of plastic behavior,
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there arc nonetheless some restricted classes of plastic behavior for which its
use can be rigorously justified. For example, small-strain J, deformation
theory is simply the integrated result of the corresponding J, flow theory if the
loading history is “proportional”, i.e., if all stress components are increased
monotonically in fixed proportion to one anoth¢r. An example involving
non-proportional loading increments arises in classical bifurcation analyses,
where the use of deformation theory can be justified by showing it to be
equivalent to a flow theory which permits the development of yield surface
vertices [5]. The wide-spread use of the small strain deformation theory
suggests a corresponding role for a finite strain version.

2. Finite strain J, deformation theory

The finite strain J; deformation theory developed in [1] is a nonlinear
elastic law, where the solid is assumed to be isotropic and incompressible. Its
development makes extensive use of Hill’s theory [6] for finitely deformed
isotropic elastic solids.

For an isotropic nonlinear elastic solid, the principal directions of Cauchy
stress o must coincide with the axes of the Eulerian strain ellipsoid. Also, to
fully specify the state of strain in a material element we need only know the
three principal stretches A, relative to some reference configuration and the
principal directions of strain. Thus, the constitutive law is completely deter-
mined once the relations between the principal components of Cauchy stress
o: and principal stretches A, are known. The incremental form of the
constitutive law can be obtained using Hill’s “principal-axes techniques™ [6].

The strain measure adopted is the loganthmic strain tensor € which, by
definition, is coaxial with the Lagrangian strain ellipsoid and has principal
values

2.1 & =InA.

The logarithmic strain rates' £, = A/A,, etc. are then the Eulerian strain-rate
components é,—,'on the axes of the Eulerian strain ellipsoid. For incompressi-
ble deformations, the constraint A,A2A; =1 with the choice (2.1} implies the
simple condition £, + £+ &5 = 0 as well as £, = 0. Inherent advantages of the
logarithmic-strain measure in setting up constitutive inequalifies for both
élastic and ¢lastic-plastic solids have been discussed by Hill [6,7]. This strain
measure (“naturat strain™) has conventlonally been used over the years by
metallurglsts ‘to'report (true) stress-strain data for metals.

- By- analogy..with small-strain J,. deformatlon theory ‘we . introduce. {he
following stress invariant e T LTI 7 - CR R




239

2.2) o= (31" = (Bsis: 12)7,

where s, = o, — (o + o, + 02)/3 are the principal components of the Cauchy
stress deviator. We commoonly refer to &, as the “effectwe stress”. An
“effective strain™ ¢, is defined as follows

2.3 £.=(2&&: {3)".

For simple tension in the I-direction o, and . correspond to the axial stress
o and strain ¢, respectively. The strain energy and complementary strain
energy functions, W(s.) and W<(o.), are assumed to be functions of only &.
and o, respectively. The constitutive faw has the following form

LW 3e 31
Y doy 20}5""2 W
-
eh o = W_ -2 E. g —
> 3 ETR

where E, = o.f/¢. denotes the secant modulus, obtainable from the uniaxial
tension curve, and p is an arbitrary hydrostatic pressure. Note that W =
U E. = S = OE;.

For certain applications {c.g., bifurcation analyses) it is convenient to
express the constitutive law in incremental or rate form. Using the definitions
for effective stress o, effective strain £, and secant modulus E., we obtain the
following from (2.4)

.S.'; = d'j -+ p
{2.5)
=§ E = s(E.- E,) 35 Siy
where E, = do./de,. is the tangent modulus. For the shear components of
stress-rate and Eulerian strain-rate £; on thé principal (Eulerian elhpsond)

axes, Hill’s method of principal axes [6] gives
(2.6) i Cr[}': (U] - 0':1_) Coth (81 - EZ)E 125 etc.

where the asterisk denbtes the Jaumann or co-rotational stress-rate and coth
is the hyperbolic cotangent. Thus, with reference to Cartesian base vectors
coaxial with the principal stress axes, we can express the above as

(2-7) 3’:‘} = L€ + [56.1,
where

(2.8) Lifkt = 2 E. [%(3.1: it + ajkall

3 8.,8u] (E E )"‘L—' + qur

)73




240

The tensor Q is symmetric under { ¢, k ¢, and if < ki; and its only
non-zero components in principal axes are the “shearing™ terms

(2.9) O|312=%Es[(€|_€z)coth(€|_€1)“ 1], etc.

These quantities are inherently non-negative. Note that the instantaneous
moduli L in (2.8) and components of Q share the same indicial symmetries.

Recently, the above faw has been extended somewhat to account for a
slight degree of compressibility {8, 9]. Again, by analogy with the corre-
sponding small-strain J, deformation theory, the total strain is written as the
sum of an “‘elastic™ part-

(10) =1t Lo,
plus a “plastic™ part
3/1 1
P== e A
2.11) &l Z(Es E)I“

where the 7, are the principal values of Kirchhoff stress, m =+, + 7.+ 73 and
=T T /3. Thus, 7

AW 14w, w

£ = o, = E, T:'“E Tkt
(212) _Eﬁ“_{.ﬁ Es [ + v, ]
Tj_ag‘-_l'f-lls E; 1—21’5 Erk | 5
where
v Lo Es
(2.13) F=3 [1 (1-2v) E] )

and eu. = €, + £, + £1. In the above, Poisson’s ratio » and Young’s modulus E
are assumed to be fixed constants. The secant modulus is now E, = r./¢.
where 7. = (31 /2)'” denotes. the effective Kirchhoff stress. The total effective
strain is £, =1./FE + &% where

(2.14) s el = (2e7£73)"

For simple tension in the 1-direction, 7. = 7; and z. = ¢,. Note that the finite
“plastic” strains (2.11) satisfy incompressibility, as do the total finite strains
when v =1/2.

The rate form of the above constitutive law can be obtained as described
previously. With reference to the Eulerian ellipsoid axes we have

(2.15) ‘?q = Liiklékly
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with
E,
Lifkt = 1 + v, l: (ankaﬂ + 6;].:81:) + 805kf]
S _py Sl
2(1 + Vs) l:hs(E\ Et) Ti Oiikn':l k]
(2.16)
h,= E.

E.—(1-2v)E/3 "

The tangent modulus is now defined as E, = dr./de..

Both the incompressible and compressible versions of J, finite-strain
deformation theory assume identical effective stress—effective strain relations
in tension and compression. Furthermore, the only stress invariant affecting
plastic response is J,. These assumptions are generally considered to be good
first-order approximations in metal plasticity. For the special case where the
principal axes remain fixed relative to the material and proportional loading
(i.e., when the principal stress components increase monotonically and in
fixed proportion to one another), the finite-strain J, deformation theory is
exactly the integrated result of finite-strain J, flow theory. As in the small
strain theory, applicability of the theory to polycrystalline metals must be
suspect when significant deviations from proportional plastic straining arise.
A path-dependent version of finite strain J, deformation theory has been
proposed by Stéren and Rice [10] with the primary purpose of modeling
nearly proportional responses of a material which develops a yield surface
vertex. That theory has the form (2.16) but with Q deleted. For histories in
which the principal stress axes remain fixed relative to the material the two
versions of the theory coincide. :

An alternative approach for incorporating the logarithmic strain measure €
in finite elasticity constitutive laws has recentiy been developed by Fitzgerald
[11], who has presented a general tensorial formulation for the logarithmic
strain components in arbitrary axes. A strain energy function depending on
the invariants of £.can.then be assumed to give a hyperelastic law in arbitrary
axes, thus ellmmatmg the need for principal axes methods. Fitzgerald’s
formulation is completely general and includes our J; law as a special case.

3. Loss of ellipticity for incompressible J, deformation theory

Conditions for ellipticity of the equations governing incremental deforma-
tions superimposed on finite homogeneous deformations have been given by
a number of authors. Recent studies include those by Hill [12, 13}, Hill and
Hutchinson [14}, Knowles and Sternberg [15], Rice [16], and Sawyers and
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Rivlin {17-19}. Here we quickly rederive a set of necessary conditions for
strong ellipticity of incompressible, isotropic hyperelastic solids which was
originaliy obtained by Sawyers and Rivlin {17, 18). These conditions are then
specialized to the J; deformation theory material. With the aid of numerical
calculations for a specific family of materials, it is noted that the necessary
conditions may also be sufficient to guarantee strong ellipticity for 7,
deformation theory, although this has not been shown.

In the sequel, Cartesian axes x; are chosen to coincide with the axes of the
principal stresses and strains of the underlying homogeneous state. Strong
cllipticity of the equations governing quasi-static, superimposed incremental
deformations requires

(3.1) CiitdVivicT = 0

for all mutually orthogonal unit vectors » and 5. The so-called acoustic
tensor of moduli ¢ is related to the moduli tensor L in (2.7) by

(3-2) Cijid = Li,-'kl +% Ufksti _% 0'.13&; _% U';kaﬂ _% O'ﬂlsjk.,
and both tensors share the indicial symmetries ¢ = ¢y for hyperelastic
solids. Condition (3.1) excludes quasi-static shearing discontinuities charac-
teristic of a planar shear band with normal » and shearing direction i in the
plane of the band. It also ensures that all plane waves with propagation
direction » and particle velocity parallel to 5 have real wave speeds.
Following Sawyers and Rivlin [17, 18], we can obtain necessary conditions
for strong ellipticity by restricting » to lie in one of the planes of the principal
stress axes. Let » lie in the x,x;-plane at angle ¢ from the x;-axis so that

(3.3) v={cosy,siny,0) and m={(—asing,acosy,b)
where a’+ b= 1. The shearing directien 5 does not lie in the x,x,-plane

uniess b =0. With (3.3), condition (3.1) becomes

a Z{Culz(‘lo.sidl + [Cnur'i' Caz2 — 2C122 — 261221] cos’ ¥ sin® Y + 6213|Si!‘l4 '1’}

(34) + bz{cljlli cos® ¥+ o sin’ li’} >0

for all ¢ and all a such that |a[=1 with 5> =1~ a”. In arriving at (3.4) we

have used the fact that components such as ¢y;; vanish in the principal axes.
With b =0, (3.4) is satisfied for al}  if and only if

(3.5) 22> 0 and ¢y >0,

and

(3.6) Citn+ €22 — 2€12: 2 2€122 — 2 V €1212€2121 -
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Conditions (3.5) and (3.6) are necessary and sufficient for strong ellipticity of
incremental plane strain deformation in the x,x.-plane — i.e., for restricted
displacement increments of the form v,(x,, X2}, vx:,x2) and vs=0. The
choice a =0 in (3.4) requires

(37) | cx:> 0 and Casz > 0.

Conditions (3.5)(3.7) are equivalent to (3.4). One notes immediately that
satisfaction of (3.5) and (3.6) and their equivalents for each of the other two
principal planes renders the third set of conditions (3.7) extraneous. In other
words, strong ellipticity for incremental plane strain deformations paratlel to
each of the principal planes ensures that (3.1) is satisfied for any » which lies
in a principal plane whether or not n lies in one of the principal planes. This
was established by Sawyers and Rivlin [17, 18]. As they noted [18], these
conditions are sufficient for strong ellipticity when the underlying state has
two equal principal strains since then any » necessarily lies in a principal
plane.

At this point it is convenient to introduce two shearing moduli g and u *,
used by Hill and Hutchinson [14], governing incremental plane strain
deformations in the x,x,-plane. For such deformations (2.7) can be written as

(38) ;'ll_;zz:z#*(éu_ézz), 3’12=2.U«é12, (éll+é32=0)y

where

(3-9) 4#-* =L+ Lypn—2L12 and n= L.

With the aid of (3.2), conditions (3.5) and (3.6) can be expressed as
(3.10) n >[A0'[,"2,

and

(3.11) . 2#*>IL—(,U.2—A0'2/4>”2,

where Ao = o, — .. This is the form of the ellipticity conditions given by Hill
and Hutchinson [14} for incrementa! plane strain deformations of a broad
class of incrementally lin€ar materials satisfying (3.8).

The six conditions of the form (3.5) or, equivalently, the three conditions
(3.10) are always satisfied by J; deformation theory as long as the secant
modulus E, is positiire. For example, one can show that

' _ 1 1 Age "
(3.12) Cayy = M 2 AU - 3 E.\ Sinh(AE) T
and
(3.13) Cm::,u"‘lﬁ\cr:l £ Aee®

2 3 T sinh(Ag)
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where Ao =0, — 0. and Ae =g, — &-.
- We have not yet succeeded in showing that the three remaining conditions
of the form (3.11) are sufficient for strong ellipticity for J: deformation theory.
Sawyers and Rivlin [18] have shown that their conditions, which are equival-
ent to those of the form (3.10) and (3.11), are both necessary and sufficient for
strong ellipticity for two special classes of solids, each of which has a strain
energy function which depends on only one strain invariant. The energy
density of J, deformation theory depends on only one strain invariant, ¢, but
it is not included in ecither of the special classes of solids for which Sawyers
and Rivlin have established sufficiency. It is known [19] that incompressible,
isotropic hyperelastic materials do exist for which conditions (3.10) and (3.11)
are not sufficient for strong ellipticity.

A limited numerical study of the sufficiency of the three conditions of the
form (3.11) has been carried out for J; deformation theory with a power-law
relation between true stress and natural strain of the form

(3.14) _ o.=Kel,

where the hardening index N is restricted to the range 0 << N = 1. The secant
and tangent moduli diminish with increasing strain according to

(3.15) E.=Ke)' and E,=NE..

Using (2.8) and (3.9), one can show that the three conditions of the form (3.11)
become
2l
£, !

where As is identified with the principal strain differences £, — £,, £, — £, and
£;— £;. The conditions (3.16) are first violated by the maximum principal
strain difference corresponding to a shear band with normal and shearing
direction lying in the plane of the maximum principal strain difference.
The boundary of the region of principal strains states within which the three
conditions (3.16) are satisfied is shown in Figure 1 for N =0.1,0.5 and 1. Since
£3=:— €, — £, the region is fully depicted by its trace in the &.e,-plane. The
region is symmetric with respect to the 45° lines in Figure 1 and only one
quarter of the region is shown. The line on which ¢, = g, = —1g; marks the
swztch in the maximum principal strain difference from £, — &, to &:~ ;. For
=1, (3.16) reduces to

(3.17) Age® < 4(Ae cothAe — 1),

(3.16)  Ae*<4 [1 -% (N-1) (‘ie)z] {(Ae coth Ag — 1)+%(N— 1)(

which is equivalent to
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Figure 1. Boundary of the elliptic region for power-law material for three values of the exponent
N. The efliptic region is symmetric with respect to the lines £, = ¢, and &, = — ¢,

(3.18) A [Ae[<2.399,

and which leads to the boundary with straight line segments in Figure I.

Numerical calculations have been carried out to ascertain whether (3.1) is
satisfied for all mutually orthogonal » and 5 when the strain states lie within
the boundaries of Figure 1. Orientations of » and 71 with respect to the
principal axes were specified by three Euler angles and these angular
coordinates were taken to range over their full range consistent with the
symmetry of the underlymg state. For each strain state considered, (3.1) was
checked at more than 10° orientations. For each of N =0.1 0.5 and 1, the
strain states considered were those at 5° intervals measured from the 45° line
in Figure [ at strains which were 0.999 times the corresponding values at the
boundary as ascertained by (3.16). In no case was (3.1) violated. Although
strain states further within the boundaries of Figure I were not considered, no
violation of (3.1) is expected since the incremental moduli L increase with
decreasing strain when N <.1.
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Our numerical checks of (3.1) for the example of the power-law solid
suggest that the three conditions (3.16) may be both necessary and sufficient
for strong ellipticity for this material. It is an open question as to whether this
actually is the case and whether, more generally, the three conditions of the
form (3.11) are sufficient for gauging strong ellipticity of any J, deformation
theory solid.

ACKNOWLEDGEMENT

The work of J.W.H. was supported in part by the National Science
Foundation under Grant ENG78-10756, and by the Division of Applied
Sciences, Harvard University. The work was conducted while K.W.N. was on
sabbatical leave at Harvard University, and was supported in part by the
Faculty of Applied Sciences at the University of Sherbrooke, and by the
Division of Applied Sciences, Harvard University.

REFERENCES

1. J. W. Hutchinson and K. W. Neale, Sheet necking — II. Time-independent behavior, in
Mechanics of Sheet Metal Forming (D. P. Koistinen and N-M. Wang, eds.), Plenum, 1978, p. 127,

2. J. W. Hutchinson and V. Tvergaard, Surface instabilities on statically strained plastic
solids, International Journal of Mechanical Sciences 22 (1980), 339.

3. I. L. Bassani, D. Durban and J. W. Hutchinson, Bifurcations at a spherical hole in an
infinite elastoplastic medium, Mathematical Proceedings of the Cambridge Philosophical Society
87 (1980), 339.

4, N. Triantafyllidis, Bifurcation phenomena in pure bending, J. Mech. Phys. Solids. 28
(1980), 221.

5. B. Budiansky, A reassessment of deformation theories of plasticity, Journal of Applied
Mechanics 26 (1959), 259,

6. R. Hill, Constitutive inequalities for isotropic elastic solids under finite strain, Proceedings of
the Royal Society of London A314 (1970), 457.

7. R. Hill, On constitutive inequalities for simple materials, Journal of the Mechanics and
Physics of Solids 16 (1968}, 229, 315. '

8. K. W. Ncale, Phenomenological constifutive laws in finite plasticity, Solid Mechanics
Archives 6 (1981), 79. o

9. V. Tvergaard, A. Needleman and K. K. Lo, Flow localization in the plane strain tensile
test, Journal of the Mechanics and Physics of Solids 29 (1981), [15.

~10. 5. Stéren-and J. R. Rice, Localized necking in thin sheets, Journal of the Mechanics and
Physics of Solids 23 (1975), 421.

1t. J. E. Fitzgerald, A tensorial Hencky measure of strain and strain rate for finite
deformations, in Developments in Theoretical and Applied Mechanics (J. E. Stoneking, ed.j, Vol
10, 1980, p. 635. '

12. R. Hill, Acceleration waves in solids, Journal of the Mechanics and Physics of Solids 10
(1962), 1.

[3. R. Hili, On the theory of plane strain in finitely deformed compressible materials,
Mathematical Proceedings of the Cambridge Philosophical Society 86 (1979}, 161. )

14. R. Hill and J. W. Hutchinson, Bifurcation phenomena in the plane tension test, Journal of
the Mechanics and Physics of Solids 23 {1975), 239.




247

15. J. K. Knowles and E. Sternberg, On the ellipticity of the equations of nonlinear
elastostatics for a special marterial, Journal of Efasticity 5 (1975), 341.

16. J. R. Rice, The localization of plastic deformations, in Theoretical and A pplied Mechanics
(W. T. Koiter, ¢d.}, North-Holland, 1976, p. 207.

17. K. N. Sawyers and R. S. Rivlin, Instability of an elastic matferial, International Journal of
Solids and Structures 9 (1973), 607,

18. K. N. Sawyers and R. S. Rivlin, On the speed of propagation of waues in a deformed
elastic material, Iournal of Applied Mathematics and Physics (ZAMP) 28 (1977), 1045,

19. K. N. Sawyers and R. S. Rivlin, A note on the Hadamard criterion for an incompressible
isotropic elastic material, Mechanics Research Communications § (1978), 211.

A




