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An introduction to the theoretical foundations of the phenomenological theory of

nonlinear fracture mechanics is given. Following an outline of the full range of

objectives of nonlinear fracture

mechanics, the paper focuses on the

phenomenological, or semiempirical, approach to the initiation of crack growth
and the subsequent quasi-static crack growth and loss of stability under monotonic

load histories.

1 Objectives of Nonlinear Fracture Mechanics

An individual from applied mechanics who is a newcomer
to fracture mechanics is naturally predisposed to regard the
subject as a means of analyzing flawed, or cracked, structural
components. By contrast, his colleague from materials science
is more likely to view fracture mechanics as a means of
characterizing, or ordering, the fracture resistance of
materials. Both aspects have provided, and continue to
provide, impetus for development of the subject. The success
of fracture mechanics is derived in part from the union of
these two purposes. Measured fracture parameters not only
serve to order the resistance of materials to fracture, but they
can also be employed directly in the analysis of structural
integrity in the presence of flaws. It is important for the
newcomer to the subject to bear these dual purposes in mind
since otherwise he or she might regard as undue, the emphasis
placed on either test specimens, on the one hand, or crack
solutions, on the other.

Nonlinear fracture mechanics is largely concerned with
inelastic effects. Some inelasticity is almost always present in
the vicinity of a stressed crack tip. Depending on material and
conditions, the inelasticity can take various forms, including
rate-independent plasticity, creep, and phase change. When
the zone of inelasticity is small enough, solutions from linear
elasticity can be used to analyze, or, more precisely, to
correlate, data from test specimens. This data can, in turn, be
used in conjunction with other linearly elastic crack solutions
to predict failure of cracked structural components. Linear-
elastic fracture mechanics has found extensive applications to
high-strength, relatively brittle materials such as metals used
in the aerospace industry and ceramics. For certain fracture
phenomena, such as fatigue crack growth and corrosion
cracking, the zone of inelasticity is often small enough to use
linear-elastic fracture mechanics even in more ductile
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materials. However, the more ductile a material, the more
likely that the inelastic zone will not be small enough at the
point of fracture to justify the use of solutions based on linear
elasticity. For example, components and test specimens of
practical dimensions, which are made of many of the more
common low-to-intermediate-strength structural metals,
become fully plastic before a crack starts to advance under
monotonic loadings. Under these circumstances it is essential
to use solutions to crack problems based on a theory of
plasticity.

Nonlinear fracture mechanics encompasses a semiempirical
approach, which for the most part is an extension of linear-
elastic fracture mechanics to account for large-scale inelastic
effects, and a more basic approach whose aim is to predict (as
opposed to correlate) fracture conditions by accounting for
mechanisms of separation at the microscopic level. In the
semiempirical, or phenomenological, approach crack
solutions are used to correlate fracture conditions at the tip of
a crack in a structural component to corresponding near-tip
conditions in a previously tested specimen. It is the
semiempirical approach whose foundations will be discussed
in this paper. Furthermore, attention will be directed ex-
clusively to the initiation of growth of a preexisting crack and
its subsequent quasi-static advance in bodies of rate-
independent materials subject to monotonic loading. While
this is the most fully developed topic in nonlinear fracture
mechanics, a number of other problem areas are currently
under intensive investigation. These include creep crack
growth, dynamic crack propagation and arresi, low-cycle
fatigue cracking, and high-temperature creep-fatigue
cracking. In addition, more fundamental work than that to be
described in this paper is progressing on stable crack growth.

The more basic problem of relating fracture parameters to
microstructural separation processes has received relatively
less attention than the semiempirical approach. Nevertheless,
important qualitative understanding has been gained from
models for crack initiation due to both cleavage in the brittle
range of behavior and hole growth in the ductile range. In
addition, some progress has been made in relating high-
tempcrature crack growth to rates of grain boundary
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Fig.1 Conventions for a cracked body in mode /

cavitation in polycrystalline materials. These and other
challenging problems in the same category seem ripe for new
advances.

2 Background From Linear Fracture Mechanics

The aspects of nonlinear fracture mechanics to be discussed
in this paper are largely direct generalizations of concepts and
results from linear-elastic fracture mechanics. For the purpose
of making contact with the linear theory, we start with a brief
synopsis of results from that theory which can be found in any
text on the subject.

For an isotropic, linearly elastic solid under conditions of
plane strain or plane stress the stress and strain fields at the
crack tip always have a singularity of order r~'/2. With the
conventions shown in Fig. 1, the general form of the stress
and strain singularity fields is
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where the amplitude of the singularity, K, is called the stress
intensity factor. Fields that are symmetric with respect to the
plane of the crack (x, =0) are termed mode /, while an-
tisymmetrical fields are termed mode //. For a given mode,
the ¢-variations, ¢ and e, are fixed. It is standard practice to
normalize the singular fields of the linear theory by requiring
0»(0=0)=1 in mode I and ¢,(§=0)=1 in mode //. The 6-
variations of the in-plane stress components are the same for
plane stress and plane strain, but the strains depend on which
condition is in effect. The stress intensity factor K depends
linearly on the applied load and is a function of the crack
length and other geometric parameters characterizing the
body. Catalogues of results for stress intensity factors are
available for a wide variety of geometries.

The stress intensity factor provides a measure of the level of
deformation in the vicinity of the crack tip. Its use to
characterize the onset or continuation of crack growth in a
real material, which may undergo plasticity, creep, or other
inelastic deformation in the most highly stressed region at the
tip, relies on satisfaction of a condition known as small-scale
yielding. In other words, this condition requires that the zone
of inelasticity, whatever its source, be contained well within
the region over which the singularity fields (1) provide a good
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approximation to the full linear elasticity solution. Small-
scale yielding assures that all the pertinent information related
to the geometry and loads applied to the cracked body are
communicated to the crack tip only through K for a given
mode of loading.

The critical stress intensity factor, K., associated with the
onset of crack growth under monotonic loading depends on
the material, its temperature, and possibly on its chemical
environment. It also depends on the mode of loading and on
whether plane stress or plane strain, or a set of conditions in
between, pertain. The critical value of K for any given set of
conditions must be obtained by experiment using a calibrated,
precracked test specimen which meets the restrictions of
small-scale yielding at the onset of fracture. The critical stress
intensity factor in mode /, plane-strain conditions is
designated as K. and is called the fracture toughness of the
material at the particular temperature.

A by-product of nonlinear fracture mechanics has been a
quantitative clarification of small-scale yielding, but insight
into this condition was already available through a com-
bination of test and theory prior to the development of the
nonlinear theory [1]. Rough sketches of the boundary of the
plastic zone in small-scale yielding are shown in Fig. 2 for
mode /. The material is assumed to be elastic-perfectly plastic
with a tensile yeild stress g, and a Mises yield surface. The
zone size is proportional to K. With r,, as the (approximate)
distance to the boundary ahead of the crack tip,

1 /K\? ,
<_> for plane strain

p 37 \ g

2
- e <£> for plane stress 2)
T \0g

The standards of the American Society for Testing and
Materials (ASTM) for a valid K, test [1] were arrived at by
extensive testing using several types of specimens. For a
compact tensile specimen, whose plane view is similar to the
cracked body shown in Fig. 1, the standard requires that the
uncracked ligament and the crack length itself be not less than
25r, at the point of fracture. To ensure plane-strain con-
ditions along most of the crack edge except near the faces, it is
also required that the specimen thickness be at least 25r,. As a
rule of thumb, small-scale yielding will be in force at the onset
of crack growth if the applied load is less than half the limit
load, modeling the cracked body as elastic-perfectly plastic
with yield stress g,. For high-strength, relatively brittle metal
alloys, values of r, at fracture initiation in the range 0.1 to 1
mm are typical in plane strain. Thus a specimen with crack
lengths on the order of 2.5 to 25 mm will suffice to ensure
small-scale yielding. Similarly, many applications involving
crack-like flaws in structural components of high-strength
alloys will fall within the small-scale yielding range.

The utility of linear-elastic fracture mechanics is sub-
stantially diminished for applications and testing involving
low and intermediate-strength metals with good ductility. For
an intermediate-strength steel used in pressure containment
vessels, r,, at fracture initiation under monotonic loads can be
as large as 10 mm. A valid K. test would therefore require a
test specimen the size of a filing cabinet. While such
specimens have indeed been produced and tested for some
special applications, they are generally prohibitively expensive
and too difficult to test. Fracture toughness testing on its own
had provided ample motivation for the development of
nonlinear fracture mechanics.

Depending on material properties, specimen geometry, and
loading compliance, the crack may or may not run
dynamically once the critical intensity factor is attained.
Certain specimens permit the experimental determination of
K versus crack advance Ag under stable quasi-static growth
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Fig. 2 Boundaries of the plastic zone in small-scale yielding for an
elastic-perfectly plastic solid yielding according to the Mises criterion

conditions. A highly brittle material will undergo crack ad-
vance under essentially constant K, as depicted in Fig. 3, while
a more ductile material with tearing resistance requires an
incremental increase in K for each increment of crack ad-
vance. The measured curve of Ky versus Aa is called the
resistance curve of the material. Like K, itself, the resistance
curve is a strong function of whether plane stress or plane
strain is in effect, and it only has meaning under small-scale
yielding. Given the crack has extended quasi-statically an
amount Aa to the current crack length a, the condition for
continued crack advance is K = K (Aa), where K is the applied
stress intensity factor. The crack poised for growth is stable
(i.e., will not run dynamically) if a small increment of crack
advance with the prescribed loading held fixed results in

dK <dKpg,i.e., if
6K> ( dK >
] < 3
( da /L dAa 3)

where L denotes the appropriate loading parameter. The body
of Fig. I represents a cracked component or specimen subject
to a generalized load P acting through a generalized spring
with compliance Cy,. The spring can represent the compliance
of a testing machine or the compliance of the portion of the
structure communicating the load to the cracked component.
While K at a given P does not depend on the spring com-
pliance, (0K/Aa), is a strong function of C, if A is
prescribed, thereby influencing the stability of crack advance.
Within the context of the linear theory of elasticity, there is
an important connection between the stress intensity factor
and the rate of change of the potential energy of the system
(cracked body, spring, and loading system) with respect to
crack advance. In mode / (or mode /]) the rate of decrease of
the potential energy of a system such as that in Fig. 1 per unit
crack advance per unit thickness is
R
S E K?

(plane strain)

= %Kz (plane stress) 4

where E is Young’s modulus and » is Poisson’s ratio. At a
given current load level, the energy release rate is independent
of Cy,; and is the same whether the load or the displacement is
prescribed to be fixed during the increment of crack advance.
Griffith’s original treatment of the onset of crack advance
was couched in terms of an energy balance by requiring G to
be equal to G, the energy absorbed in the process of creating
a unit area of separated surfaces. In small-scale yielding, the
energy-based approach and stress intensity approach are
mathematically equivalent for crack initiation because of the
connection (4). The energy-based interpretation is still
preferred in some quarters, particularly in the materials
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Fig.3 Small-scale yielding resistance curves

science community. In spite of the appeal of energy
arguments, Irwin and others involved in the early develop-
ment of fracture mechanics saw that for many purposes the
intensity-based approach was more flexible and permitted
application of the theory beyond what could be rationalized
by energy arguments. Examples within linear-elastic fracture
mechanics include fatigue crack propagation and creep
cracking in brittle materials. The theory of nonlinear fracture
mechancis which will be discussed in the following is strictly
based on intensity arguments.

In the introduction to the foundations of nonlinear fracture
mechanics, which follows, we have not attempted to provide a
comprehensive guide to the literature. Instead, we have tried
for the most part to give relatively recent articles which will
enable the reader to trace backward to earlier contributions.

3 The J-Integral and Crack-Tip Fields for Plastically
Deforming Solids

The unifying theoretical idea behind nonlinear fracture
mechanics for rate-independent materials under monotonic
loading is the J-integral [2]. A small-strain deformation
theory of plasticity (i.e., a small-strain, nonlinearly elastic
material) is assumed as the material model. The strain energy
density of the material is W(e) with stress given by

0;=0W/de; (5)

A cracked body such as that in Fig. 1 is considered to be in
plane stress or plane strain with the crack lying along the x, -
axis. With I' as any contour encircling the tip of the crack in a
counterclockwise direction, the path-independent line integral
expression for J is

JZSI\(WHI—OUHJZJ,-‘I)(]S (6)
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where u is the displacement vector, s is the arc length along the
contour, and n is the outward unit normal to I'. For the
fictitious nonlinearly elastic solid, J is the energy release rate.
It reduces to G for a linearly elastic material. The significance
of the energy release rate for the fictitious material will be
discussed later. From a physical point of view, the more
important role of J is as a measure of the intensity of the near-
tip deformation and this will now be addressed.

By taking I' as a circular contour centered at the tip and by
using path independence to shrink the contour down to the
tip, one concludes that if J is nonzero then the integrand in (6)
should have a r ! singularity. That is,

This relation already suggests an intimate relation between J
and the near-tip deformation. A more explicit connection is
revealed if a power-law relation between stress and strain is
assumed.

A widely used uniaxial stress-strain relation is the Ramberg-
Osgood form

®

where g, is an effective yield stress, ¢¢ = o0o/E is the
associated elastic strain with E as Young’s modulus, and
where « and n are parameters chosen to fit data. Typical n-
values range from 3 to 5 for materials with high hardening to
as large as 20 for light hardening. Asymptotically, as the

e/€q =0/ aq + alo/ ag)"

HWny —oynu; )=/(0) as r—0 (7} crack tip is approached, the contributions to the strains that
and, thus, depend linearly on stress are negligible compared to the
i power-law terms. The pure-law relation from (9) is
J= E _f{@)d() (8) e/eg = o/ ap)" (10)
If J, deformation theory is used to generalize (10) to
multiaxial states, then
€ 3 ( a, )ﬂ—l Sy ( 3 )[/2
o = gl —. Gg=\ = 85455y 11
<) 2 do agg ¢ 2 s ( )
where s is the siress deviator. For the power-law material the
r=! singularity in W implies a 7~ '/“*" singularity in the
stresses, a r~ @D singularity in the strains, and a £/ D
variation in the displacements. The near-tip singularity fields
can be written as
1
(L) " a0m (12a)
. = —_—_— b ‘n
0ij 9o OZOUE()I,,I' gy s
n
J n+l -
= " (6,n 12b
& eo<a%601nr) &6 (12b)
1
” J Lrx Tl =
w,—i, = -a(ML) L g.(8,n) (12¢)
I, 09 J
Details of these fields are given in [3-5]. The dimensionless
¢-variations a, ¢, and u depend on the mode, on n, and on
whether plane strain or plane stress is assumed, as does the
Fig.4 Crack opening for a hardening material normalizing constant /,. These variations must be normalized
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Fig.5 Schematic of near-tip behavior under J-dominance conditions
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in some manner, and in [3] and [5] the maximum value of g,
= (3§;5,/2)"/* is set at unity. The contribution u allows for a
possible translation of the crack tip itself.

Later, ways will be discussed for calculating or estimating
how J depends on the geometry and loading of the cracked
body. It is clear from (12) that J can be regarded as a measure
of the intensity of the crack-tip singularity fields. However,
before it can be assumed that J can be used to correlate the
initiation of crack growth in true elastic-plastic solids, one
must be sure that the following two conditions are met. First,
the deformation theory of plasticity must be an adequate
model of the small-strain behavior of real elastic-plastic
materials under the monotonic loads being considered.
Second, the regions in which finite strain effects are important
and in which the microscopic processes occur must each be
contained well within the region of the small-strain solution
dominated by the singularity fields. This second condition is
sometimes called J-dominance and is analogous to the small-
scale yielding requirement for linear fracture mechanics.

The first condition is at issue in any application of a
deformation theory of plasticity. Any solution based on the J,
deformation theory of plasticity coincides exactly with a
solution to the J, flow (incremental) theory of plasticity if
proportional loading (i.e., stress components changing in
fixed proportion to one another) occurs everywhere. The
singular fields (12) by themselves satisfy this condition
exactly. In other words, the crack-tip singularity fields are
also solutions to the corresponding J, flow theory equations,
and J as it appears in (12) could serve as the amplitude of the
singular fields, independent of its line integral definition in
(6). While the full solution for a body of material charac-
terized by the Ramberg-Osgood tensile relation (9) will not
generally satisfy proportional loading exactly, most problems
with a single, monotonically applied load do come sufficiently
close to meeting proportionality to justify use of deformation
theory. Many investigators have demonstrated that the line
integral defined in (6) is approximately independent of path
when finite element solutions of crack problems are obtained
using an incremental theory of plasticity, even though its strict
path independence is tied to its deformation theory definition.
Moreover, the J-values thewnselves are accurately ap-
proximated by the corresponding deformation theory
solutions. It is fair to say that the use of deformation theory
solutions to stationary crack problems for monotonic loading
is generally accepted for the purpose of evaluating J.

4 J-Dominance in Plane Strain

The requirements connected with the second condition
mentioned in the foregoing are more complicated. Most
efforts to assess J-dominance have focused on plane-strain
configurations under mode 7/ conditions since this com-
bination is generally the most critical in that it leads to the
lowest values of J. (or K.). Plane strain, mode 7 will be
considered next.

In the discussion that follows the crack-opening
displacement plays an important role. The separation of the
two crack faces, 8§ = wuy(x;, 0%)—u,(x;, 07), varies like
(—x)Y"+D as the tip is approached according to the
singularity fields (12) of the small-strain theory. An effective
crack-tip opening displacement 8, can be defined as the
separation where the 45 deg lines intercept the crack faces as
in Fig. 4. The result is [6]

6, = d(aeg,n)—
0

J
(13)
[

with values of d ranging from about 0.8 for large n to about
0.3 for n=3, with a very weak dependence on wey. The crack-
tip opening displacement provides a measure of the size of the
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zone in which finite strains are important. Finite element
studies based on finite strain incremental plasticity for-
mulations [7, 8] have been performed for the plane-sirain
small-scale yielding problem. For distances from the tip that
are greater than 2 or 3 times §,, the deviations from small-
strain theory becomes unimportant.

Let R denote the ‘‘radius’ of the zone of dominance of the
singularity fields (12), i.e., the characteristic size of the region
in which the singularity fields provide a good approximation
to the complete smali-strain deformation theory solution. As
depicted in Fig. 5, one condition for J-dominance is

R >34, (14)
A second condition is that R be greater than the fracture
process zone in which the microscopic separation processes
occur. The predominant ductile fracture mechanism is void
nucleation, growth, and coalescence. Since hole growth is
itself a finite strain process, the fracture process zone for this
mechanism is roughly comparable to the zone of finite strains,
and therefore (14) again serves to ensure J—dominance. If
failure due to shear localization intervenes, or if it actually
precipitates hole nucleation and growth, then the fracture
process zone may be somewhat larger than 38,. When the
separation process is cleavage, the size of the fracture process
zone appears to be set by the grain size in many materials with
the zone extending from 2 to 10 grain diameters from the tip.
This sets a constraint on R for J-dominance under cleavage
conditions which usually renders (14) superfluous.

The characteristic size R of the zone of dominance of the
singularity fields (12) depends strongly on geometry and
hardening. The geometry dependence is especially strong for
low-hardening materials (high n) for reasons that will now be
discussed.

The mathematical character of the equations governing
behavior near the crack tip changes in the limit n—oo
corresponding to perfect plasticity. For finite # the governing
equations are elliptic, and sufficiently near the tip the
singularity fields necessarily do provide an asymptotic
representation to the complete smail-strain solution. In the
perfect plasticity limit the equations are hyperbolic and there
no longer exists a unique near-tip solution independent of
specimen geometry [9]. The limit of the singularity fields (12)
as n— oo is just one possible near-tip solution. A unique near-
tip field tied to J, or any other single parameter, necessarily
involves the assumption of hardening. Certain problems do
appear to have approximately the same perfectly plastic near-
tip fields as those associated with the limit of (12) as n—oo.
Important examples are the small-scale yielding problem itself
and the fully plastic bend or compact tension configurations
(see Fig. 6). In each of these problems, as well as in the limit
of the singularity field (12) as n—oo, there is a significant
elevation of the normal stress ahead of the tip to a level ap-
proximately 2.5 times the tensile yield stress oq. This high
triaxiality largely accounts for the fact that the critical in-
tensity factor (K,.) associated with mode /, plane-strain
conditions is lower than that associated with other possible
combinations. The small-scale yielding problem is generally
taken as the basic reference configuration since K, is
determined under this condition. On the other hand, it has
long been recognized [9] that a very different near-tip field
occurs in a perfectly plastic plane-strain strip with a centered
crack pulled to full yield in tension (Fig. 6). In this case the
normal stress ahead of the tip is only slightly above g, and the
deformation is confined to shear bands extending from the
crack tip to the edges of the strip.

Precise estimates of R are difficult to make. Numerical
solutions in small-scale yielding indicate that the singularity
fields (12) provide a fairly good approximation out to a
distance ahead of the tip of roughly
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with relatively little dependence on hardening. Under fully
plastic conditions, when the plastic zone has reached across
the entire uncracked ligament, R for the center-cracked
configuration and for the bend configuration, is some
fraction of the uncracked ligament ». For the bend con-
figuration (and the compact tension specimen) numerical
studies [10] suggest

R=0.07) (16)

and, again, for essentially all hardening levels including
perfect plasticity. The center-cracked tensile configuration
has a much smaller zone of dominance which becomes
vanishingly small as n—oo. For light to medium hardening,
i.e., n=10) it appears that [11], very roughly,

R=0.01b 17)

Now we return to the issue of J-dominance as specified by
(14) for ductile fracture. For low to moderate strain har-
dening, é, = 0.6J/0,. For small-scale yielding, it is readily
verified using (2), (15), and J = (I =?) K*/E that (14) is
always satis{ied. For bend-type configurations the condition
for J-dominance under fully plastic conditions obtained by
combining (16) and (14) is

b>25J/0, (18)

For the center-cracked tensile configuration the condition for
light to moderate hardening from (17) and (14) is

b>175J/ a4 (19)

Further work defining J-dominance conditions remains to
be done. Moreover, analogous specifications for plane-stress
conditions have not been obtained.

5 J, Testing

Interaction among application, experiment, and theory has
long been a hallmark of fracture mechanics. No sooner was
the J-integral put forward than it was exploited in fracture
toughness testing [12], and this in turn provided more impetus
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Fig.7 Resistance curve under J-contralled grawth conditions

for theoretical developments. As already mentioned, there
was strong motivation to carry out fracture toughness tests on
small specimens of low and intermediate-strength materials
with no restriction to small-scale yielding.

Testing for J,. is an art in itself which has advanced
significantly from its beginnings [13], and we will not attempt
to go into the subtleties of the method here. In principle, the
procedure is analogous to K, testing. One chooses a plane-
strain, mode [ specimen that will meet the J-dominance
condition, and one experimentally determines the critical
value of J, J,., at which the initiation of crack growth occurs.
When the method was first being developed, it was essential to
establish the equivalence of fracture toughness determination
by any such J-test with that of valid K, test. In small-scale
yielding J = § = (1 - #*)K?/E, and thus it was essential to
verify that
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Jie=(1-*)K%/E

This basic relation has been verified for a wide variety of
metals using different specimen geometries and sizes with J,.
being determined under conditions ranging from in-
termediate-scale yielding to full yielding. The determination
of J,, and of K., involves a somewhat arbitrary decision as
to what constitutes the onset of crack growth since this is not
necessarily a dramatic event especially in tough materials, as
will be discussed further in the following.

The condition (18) for J-dominance in bend-type con-
figurations under fully plastic yielding was first verified
experimentally by noting that departures from (20) begin to
appear when (18) is violated at initiation. Note that (18) is
approximately equivalent to b>406,. Condition (19) for the
center-cracked configuration is clearly much more restrictive
and should only be regarded as a rough estimate since
relatively few fully plastic J,.-tests have been conducted using
this configuration. Tests conducted under conditions in which
(19) is violated all seem to give J. values that are larger than
J;., sometimes by as much as a factor of two. All indications
are that the mode / plane-strain, J-dominance condition is the
most critical leading to the smallest J.. Obviously, this
conclusion must he used with care.

6 J as Energy Release Rate for the Fictitious
Nonlinearly Elastic Body

Curiously, the fact that J is the deformation-theory energy
release rate is of more mathematical consequence than
physical. For this reason, we deliberately delayed discussion
of J as the energy release rate until after we had spelled out its
role as an intensity measure.

Let PE(a) denote potential energy of the sytem in Fig. 1,
i.e., the sum of the strain energy in the nonlinearly elastic
body and in the generalized spring, assuming the total
displacement A is prescribed. An alternative expression to the
line integral (6) definition of J is [2]

dPE
da
generalizing the definition of G for linear-elastic materials. It

@n
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(20)

is clear from its line integral definition that J depends only on
the current deformation state in the cracked body. In par-
ticular, it is independent of the compliance C,, of the loading
system. Counterintuitive though it may seem, the energy
release rate of the specimen itself at a given current load level
is the same whether the load (C,;— o) or the displacement
(C,;=0) is held constant during the increment of crack ad-
vance.

Tempting though it may be, to think of the criterion for
initiation of crack growth based on J as an extension of
Griffith’s energy-balance criterion, it is nevertheless incorrect
to do so. This is not to say that an energy balance does not
exist, just that it cannot be based on the deformation theory J.
Crack advance in an elastic-plastic material invariably in-
volves elastic unloading and distinctly nonproportional
loading in the vicinity of the crack tip, and neither is
adequately modeled by deformation theory. Efforts to
develop an energy-based criterion for crack initiation and
advance have been fraught with difficulty, and so far, at least,
no general theory along these lines has achieved acceptance.

The energy-based definition of J (21) has been used to
derive some very useful formulas for J which permit its
determination directly from the experimental load-deflection
record for a cracked specimen. An example is the deeply
cracked bend configuration subject to a moment per unit
thickness M. With Q as the rotation through which M works
minus the corresponding rotation in the absence of the crack,
the expression for J derived in [14] is

Q

2 &
J= i 50 Md} (22)

where b is the length of the ligament ahead of the crack. This
formula, and modifications of it, are only accurate for cracks
that extend at least halfway through the specimen. Never-
theless, the existence of such a formula means that a detailed
theoretical analysis of the specimen is not required in order to
run aJ,.-test.

7 Basic Solutions to Nonlinear Crack Problems and J-
Estimation Formulas

Applications of nonlinear fracture mechanics requires the
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availability of solutions to elastic-plastic crack problems that
relate J to load and crack geometry. Because such solutions
depend on details of the stress-strain behavior, the task of
compiling nonlinear crack solutions is inherently more in-
volved than what has been done for linear-elastic crack
problems [15-17]. Finite element methods have been used
successfully for solving certain problems, but these numerical
solutions are difficult to transfer from one configuration or
material to another.

Simple solutions are now available to some basic nonlinear
crack problems for the small-strain, deformation-theory
material with the pure power-law stress-strain behavior (10)
and (11). If P is the load parameter, the solution to any
power-law problem necessarily has the property that the
stresses and strains are everywhere proportional to P and P”",
respectively, and J is proportional to P"*!. Furthermore, the
stress components at every point increase in fixed proportion
with increasing P so that the solutions are also rigorous
solutions to J/, flow (incremental) theory. The solutions make
contact with limit analysis in that the limit load P, of the
perfectly plastic cracked body (n— ) serves as a useful
reference load. A typical solution to a pure power-law crack
problem gives
J ( P

Py
where 4 is a dimensionless function of n and of dimensionless
groups of geometric parameters. For most cases, # must be
computed numerically; but once computed it can be
catalogued, as has been done for a number of basic con-
figurations [18].

Approximate, but highly accurate, solutions have been
obtained for two of the most basic nonlinear crack problems,
.a crack in plane strain and a penny-shaped crack in an infinite
body of the power-law material. For a crack of length 2a
parallel to the x, axis and subject to the remote in-plane stress
0y = 0, the plane-strain solution is [19]

J __m5<\@o)"”

aaggenga 200

(23)

n+l
= ) h(n, geometry)
aggega

24

An estimation method has been developed for generating
approximate, but reasonably accurate, solutions to elastic-
plastic crack problems by combining the linear-elastic
solution with the power-law solution [18]. Since the power-
law solution provides an accurate estimate under fully plastic
yielding, it can be combined with the linear solution to in-
terpolate over the entire range of behavior from small-scale to
fully plastic yielding. To illustrate the method consider the
crack of length 2¢ in plane strain in an infinite block of
material characterized by the Ramberg-Osgood tensile
relation (9). The block is subject to an in-plane stress o, = ¢
remote from the crack. In its crudest form, the estimation
formula is just the linear combination of the linear and
power-law formulas for J comprised to be consistent with (9),
i.e.,

V3¢ ) n+l 25)

J=(1-/?) = aOOEOMW(

E 200
This formula is clearly asymptotically correct for large and
small o. Improvements in accuracy in the range of inter-
mediate-scale yielding are obtained by the introduction of a
crack-length adjustment in the elastic contribution as
discussed in [18].

8 J-Controlled Crack Growth

Under certain restrictions, small amounts of crack growth
can be correlated in large-scale yielding using J in a way that
generalizes the resistance curve analysis of small-scale yielding
based on K. It is now common practice to use the formula
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Fig. 9 Cracked specimen in a compliant loading system. Overall load-
deflection behavior in presence of stable or unstable crack advance

(22), or an appropriate modification of it, to generate test
data for J versus small amounts of crack advance Aa in the
form of a J-resistance curve such as that depicted in Fig. 7.
Several techniques are available for accurately measuring
crack advance, and the observed apparent crack advance
associated with crack-tip blunting has been subtracted in Fig.
7. In a typical tough, intermediate-strength steel, the amount
of crack advance associated with a doubling of J above J,.
(i.e., Aa = D in Fig. 7) may be as little as 1 or 2 mm. For
many tough materials, resistance curves have been recorded
with J-values attaining 5 to 10 times J;, with J still increasing.

Initially, the J,-curve was used only as a means of better
determining J,. by using the curve to extrapolate back to
Aa=0. But it soon became clear that the Jz-curve could be
regarded as a material-based curve, in the same sense that the
Kg-curve is in small-scale yielding, at least under certain
restrictions. Since large increases of J above J;. are possible in
materials with a high tearing resistance, there are considerable
practical consequences to design and structural flaw analysis
of allowing for small amounts of stable crack growth.
Consequently, this subject is being pursued actively in
Europe, Japan, the United Kingdom, and the United States
[20, 21].

As has already been emphasized, deformation theory on
which the J-integral is based does not model elastic unloading
or distinctly nonproportional plastic loading, and both effects
are present near the crack tip when crack advance occurs. The
argument for J-controlled growth requires that the region of
elastic unloading and distinct nonproportional loading be
contained within the J-dominance zone of the deformation-
theory solution. In other words, J will still provide a unique
measure for correlating near-tip fracture events if the region
within which deformation theory breaks down is well within
the zone of dominance. The two conditions for J-controlled
growth (in addition to condition (14)) are

Aa<R (26)
and
DEJR/( ZZ’; ) <R 1))
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The first of these ensures that the crack advance and
associated unloading all take place within the zone charac-
terized uniquely by J, as depicted in Fig. 8. The second is less
obvious. As discussed in [22], D is a rough estimate of the size
of the region at the tip within which distinctly non-
proportional plastic loading occurs. Both conditions should
only be regarded as crude statements of the actual conditions
in the sense that the numerical coefficients multiplying Aa and
D must be of order unity but not necessarily unity itself.

Under fully yielded conditions R is some fraction of the
uncracked ligament b. For the bend configuration with
R =0.07b, equation (27) can be written as

b dii

W= —
Jr dha

while (26) becomes Aa<0.07b. Tests on bend and compact
tension specimens of varying sizes and uncracked ligament
lengths suggest that (28) is too restrictive for this con-
figuration, and that perhaps w>5 to 7 is more realistic.
Furthermore, with this condition met, the J;-curves appear to
be geometry-independent for crack advance to as much as
about 0.15. A modified J-like measure has been proposed [23]
which appears promising in its ability to extend the range of
the correlation to larger amounts of crack advance. This
modified J makes use of the deformation theory J and reduces
to it for a stationary crack. Whether it will prove to have
general utility for growing cracks still remains to be seen.

> 14 (28)

9 Stability of J-Controlled Crack Growth

Substantial extra load-carrying capacity is gained if small
amounts of crack advance are permitted in materials with
high tearing resistance. If crack-growth initiation is per-
mitted, the important issue then centers on the stability of
crack growth. A large-scale yielding stability analysis based
on the experimental resistance curve, Jg(Aa), has been
proposed and developed in [24] and exploited for design in
[25]. The approach assumes J-controlled growth is in force,
uses J as the intensity measure, and is otherwise similar in
spirit to the K-based stability analysis in small-scale yielding.

To illustrate this approach consider the plane-strain,
cracked bend bar of Fig. 9 loaded in series with a linear spring
whose compliance is C,,. The total load point displacement A
is imagined to be imposed on the system. If the crack has

advanced stably by an amount Ag and is poised for further
advance, then

J=Jr(Aa) (29
where J is regarded as the ‘‘applied’’ J associated with the
current crack length and load carried by the bend bar.
Stability of the crack under prescribed A requires that

( aJ ) dJg

— <

da /a dAa
in direct analog with the corresponding small-scale yielding
condition (3). This condition ensures that any sufficiently
small accidental advance of the crack due to some disturbance
will result in a J-value that falls below that required for
continued advance. Conversely, the crack is expected to start
running dynamically when (30) is first violated.

A complete analysis of the bend bar of Fig. 9 is possible. In
the case where the material is elastic-perfectly plastic and the
bar is deeply cracked (a/b=1) and fully yielded, the defor-
mation theory analysis [22, 24] gives

aJ 4p?
(E)A = F(CHC+CM)_‘]

Here P is the limit load per unit thickness of the cracked bar
and C,. is the elastic compliance of the uncracked bar by
itself. The compliance of the loading system Cj, strongly
enters into the stability condition. Under dead load (C,; — )
the fully yielded, perfectly plastic bend bar is necessarily
unstable.

Nondimensional measures of the driving force for in-
stability, dJ/da, and the tearing resistance, dJp/dAa, were
introduced in [24] according to

(30)

€3]

E /s dJ E / dJ
T=_(~J 7:7( R) 32
o \da/a WIF s 4ot o5 \ dha =%

where ¢, is some appropriate tensile yield stress when the
material has a hardening capacity. In terms of the non-
dimensional quantities, the range of stability is

T<Tx (33)

In [26] a test series was conducted using a system like that in
Fig. 9. A sequence of identical specimens in series with springs
of differing compliance were tested, and the validity of the
stability condition was checked. The material was a

&
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i Stable a- 230°C Unstable
50 ® - 130°C Stable
Unstable o~ 130°C Unstable
°
40L ® a
[ B e s I
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. | | | | | [
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T

Fig. 10 Experimental data of Paris et al. (1979) showing stable or

unstable crack advance
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moderately high-strength steel characterized by D = 1.2 mm
and Tz = 36 just following initiation. In the tests, attention
was focused on the stability of crack advance at, or just
following, initiation so that the first condition (26) required
for J-controlled growth was certainly met. Furthermore,
crack advance did occur under fully yielded, or nearly fully
yielded, conditions, and the second condition (28) was also
met with @ = I5. The test point for each specimen is plotted in
Fig. 9 as the values (T, Ty) at initiation. The solid points
indicate specimens for which the crack advanced stably, while
the open points designate specimens that experienced dynamic
crack advance. The transition to instability occurs near 7 =
Tg = 36.

Resistance curves are now generated almost routinely and
data for a fairly wide variety of materials at temperatures of
application are beginning to accumulate. Tough steels with
high tearing resistance can have Tk-values in the range from
100 to 200 for crack advances of several millimeters or more.
To put this into some perspective, the 7T-value for a plane-
strain crack in an infinite block of fully yielded power-law
material from (24) with o = 1 is

n+l

T= M(e“/eo) 4

(39

For a strain-hardening exponent associated with a typical
intermediate strength steel (m = 5 to 10), T will not exceed 100
until the applied strain reaches about 10 times the initial yield
strain. Of course, in general, 7 is a strong function of
geometry and of loading compliance and therein lies the
potential for sound design against unstable crack advance.
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