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ABSTRACT

AT HIGH crack velocities in metallic materials nearly all plastic strain accumulates at very high strain-rates,
typically in the range 10°s ™' to 10° s ', At these rates, dislocation motion is limited by dynamic lattice effects
and the plastic strain-rate increases approximately linearly with stress. The problem for a crack growing at
high velocity is posed for steady-state, small scale yielding in elastic/rate-dependent plastic solids. A general
expression is derived for the near-tip stress intensity factor in terms of the remote intensity factor, or
equivalently for the near-tip energy release-rate in terms of the overall release-rate. An approximate
calculation of the plastic strain-rates provides this relation in analytical form. Imposition of the condition
that the near-tip energy release-rate be maintained at a critical value provides a propagation equation for the
growing crack. A single, nondimensional combination of material constants emerges as the controlling
parameter. Implications for dynamic crack propagation are discussed.

1. INTRODUCTION

THE RESISTANCE of metals to plastic flow increases dramatically at very high strain-
rates. The essence of cleavage in such materials is the ability of a crack to outrun almost
all plastic deformation by virtue of the high strain-rates occurring near the rapidly
advancing crack tip. Conditions for a crack to run at high velocity depend on the
constitutive properties of the material, on the starting velocity of the nucleated crack,
and on the overall crack driving force. The study of this paper is directed towards
gaining understanding of these conditions by accounting for the rate-dependence of
plastic flow in the analysis of high velocity crack growth. The results of the study are
most obviously applicable to the propagation of cleavage cracks, but the theory also
has implications for high velocity crack growth under other modes of fracture such as
void growth and coalescence.

Rough estimates of the plastic strain-rates to be expected near the tip of a running
crack are easily obtained. For crack velocities v which are less than about 40 or 50%; of
the elastic Rayleigh wave speed, the maximum extent of the active plastic zone can be
estimated using quasi-static results. For small scale yielding crack growth in plane
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strain under mode I conditions, the maximum extent of the plastic zone from the crack
tip is approximately

R = 0.06(K/z,)? = 0.14uG/2, (1.1)

where K is the stress intensity factor, G is the elastic energy release-rate, u is the elastic
shear modulus and t, is the quasi-static yield stress in shear. For a crack running at
velocity v, the maximum time any material element is subject to a stress above the yield
stress is therefore no larger than R/v.

In quasi-static crack growth plastic strains develop near the tip which are many
times the elastic strain at yield, y, = 7,/u. If a material element, which is engulfed by the
outer portion of the active plastic zone of the running crack, experiences a plastic strain
on the order of y,, then its average plastic strain-rate J is on the order of

7 = y,/(Rfv) = Tor /(W G). (1.2)

For a cleavage micro-crack in an iron single crystal, G is usually taken to be about 14
J/m?. Using typical values of 7, and taking v as one tenth of the Rayleigh wave speed,
one finds that the estimate of ¥7 from (1.2) is between 10%/s and 107/s. Dynamic growth
of a macroscopic cleavage crack in polycrystalline metals, such as steels at low
temperatures, requires G-values which are more than 100 times greater than 14 J/m?
Nevertheless, (1.2) still indicates very high plastic strain-rates in the range 10*/s to 10%/s
for a rapidly running crack, and estimates based on material elements passing nearer to
the tip will be even higher. Comparable values are also found for dynamic growth of a
macro-crack in some of the less ductile metals which fail by hole growth and
coalescence. The above estimates do not account for rate effects but they serve to set the
stage for the present study.

Aspects of high strain-rate plasticity relevant to the present problem are discussed in
Section 2, and some useful results from the elastic theory of dynamic crack growth are
summarized in Section 3. The basic problem addressed in this paper is posed in Section
4, namely the high velocity steady-state growth of a crack in an elastic/rate-dependent
plastic solid under conditions of small scale yielding. The constitutive relation of the
solid is such that the near-tip stress field has an inverse square root singularity. A path
independent line integral is introduced in Section 4 which facilitates the derivation of a
general energy balance relating the near-tip energy release-rate, the overall energy
release-rate, and the plastic dissipation. Estimates of the plastic strain-rates enable one
to obtain the energy balance equation in analytical form, and this is carried out in
Section 5 for the case of a plane strain crack in mode I. A propagation equation for the
crack is obtained once the near-tip energy release-rate is specified. In this paper,
propagation conditions are discussed for the case in which the near-tip energy release
rate is maintained at a velocity-independent critical value. In Section 6 it is shown that
the approximate calculation is actually exact in a certain asymptotic sense, and it is
argued that the qualitative features which are revealed by the approximate analysis are
likely to emerge from more accurate analyses as well. Nevertheless, the need for more
complete analyses is also emphasized in Section 6. Speculation as to the relevance of the
theory to the propagation of macro-cracksisillustrated in Section 7 with consideration
of the temperature dependence of cleavage cracking of mild steel.
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2. HIGH STRAIN-RATE PLASTICITY

Constitutive equations governing plastic flow in the several regimes of high strain-
rate deformation have been compiled by FrRosT and AsuBy (1982) for a wide variety of
metals. The relations are visco-plastic in character with plastic strain-rate being a
function of stress and temperature.

At an absolute temperature T below about one quarter of the melting temperature,
the plot of shear stress, 1, vs plastic shear strain-rate, 7, has the features shown in Fig. 1.
At sufficiently high strain-rates (¥ = y,, where 7y, is typically between 103/s and 10%/s)
dislocation motion is limited by dynamical responses inherent to the lattice known as
phonon drag. In this regime an increase in plastic strain-rate is linearly proportional to
an increase in stress, so that

P = e+ olt—tu for t>1, 2.1)

where u is the elastic shear modulus at the temperature in question and 7, is the
transition stress associated with 7,. The above form (2.1) is suggested by the data of
CampBELL and FERGUSON (1970) for mild steel. The material constants , and 7y, are
relatively independent of temperature and the Campbell and Ferguson data givey, = 5
x10*s ' and j, =3x 107 s~ 1.

At stresses below the transition stress dislocation motion is controlled by either
lattice resistance or discrete obstacles. In either case, the stress dependence of the plastic
strain-rate is much stronger than in the regime controlled by phonon drag. The plastic
strain-rate drops by many orders of magnitude with a relatively small stress drop, as
depicted in Fig. 1.

Temperature dependence can be quite strong in this intermediate strain-rate range,
particularly for body centered cubic metals. For a pure a-iron, lattice resistance is the
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F1G. 1. Relation of stress to plastic strain-rate at a given temperature showing the transition between high
strain-rate regime and low to intermediate strain-rate regime.
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governing mechanism in this regime. Frost and Ashby give

T 2 AF T 3/4714/3
Wtc"(ﬂ) exp—{kT" |:1—(_E> :| } for <1, (2.2)

where 7 is the flow stress at 0 K. This parameter, the other parameters in (2.2), and the
temperature dependence of u are all presented in Table 8.1 in the book of Frost and
Ashby. Using their values for a-iron, we have plotted curves of 7/u vs plastic strain-rate
in Fig. 2 for four temperatures. The transition stress 7, was determined such that (2.2)
coincides with ¥, at 7 = 1,, where Campbell and Ferguson’s values for y, and y, were
used. While ¥, has been taken to be independent of temperature, 7, is seen to have a fairly
strong temperature dependence.

Relations (2.1) and (2.2) will be used under transient conditions where a material
element experiences a sudden stress elevation for a short period of time. The two
relations were established for nominally steady-state deformation conditions and are
associated with some characteristic strain level. More complicated constitutive
relations strictly applicable to transient stressing are not available, at least not for
quantitative application to problems such as the present one. The relatively simple
relations (2.1) and (2.2) do capture the essence of high strain-rate plasticity and should
be suitable for the purposes of the present study. In a recent survey, CLIFTON (1983)
speculates on deviations from the simple descriptions used here.

To generalize the constitutive relation to multiaxial stress states, o5, let

T= (%Sij Sij)l/z (2.3)

Ed

where s;; is the stress deviator. Denote the pure shear visco-plastic relation charac-
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Fi1G. 2. Curves of stress as a function of plastic strain-rate at several temperatures for a-iron. See text for origin
of data.
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terized by (2.1) and (2.2) collectively by
9* = F(1). (2.4)
Then the plastic strain-rate under multiaxial stress states is taken to be
&r = 4F(v)s, /v, (2.5)

which reduces to (2.4) in pure shear. When 1 drops below 1,, the plastic strain-rate will
be taken to be zero. This cutoff is somewhat arbitrary and will be seen to be immaterial
in the analysis which follows.

The material is assumed to be elastically isotropic so that the elastic strain-rates are
given by

e

1+v v
aij=—E—

O-ij'_Ed-kk 61'1', (2.6)
where E is Young’s modulus and v is Poisson’s ratio. The total strain-rate is the sum of

the elastic and plastic parts.

3. PRELIMINARIES FROM THE THEORY OF ELASTIC CRACK PROPAGATION

A crack advances in its plane with velocity v in the x,-direction under conditions of
plane strain in mode I in an isotropic, linearly elastic solid. The singular stress field at
the tip of the crack is given by

- K s.0m (3.1

% \/ (2nr)

where K is the dynamic stress intensity factor and r and 6 are planar-polar coordinates
centered at the tip with 6 measured from the x,-axis. The functions X;; are also
functions of Poisson’s ratio, v, but v will not be listed explicitly among the arguments,
neither for Z;; nor for related functions introduced below. The crack Mach number m is
defined by

m = v/c,, (3.2)

where ¢, is the Rayleigh wave speed. This result, and others presented in this section, are
all taken from the review article by FREUND (1976).

Since they will be used in the sequel, we will specify the nondimensional universal
functions Z;;. To do so, let

¢, =(w/p)* and ¢ = u(1—v)/[(1-2v)p])'" (3.3)
be the velocities of shear and longitudinal waves, where p is the mass density. Let
o= [1—(v/c)*]"* and a =[1—(v/c)?]"? (34

and define 0, and 6, in terms of @ by

tanf,=o,tan § and tan 6, =a,tan 0. (3.5)
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Further, define w, and w, as functions of 8 by

w, = [1—(vsin 8/c)?]Y* and w, = [1—(vsin 6/c)*]"*. (3.6
Then,
0,/2 0./2
= 1 (1+a3)(1 +2a,2—as2)7cos( V2 _ 4a,as——cos( /2) ,
H . w,
20;(1 +a2) [sin(0,/2) sin(6,/2)
= - 3-7
Z12 H w, W, H ( )
1 cos(0,/2) cos (6,/2)
In=y [»-(1 +a2)? -—-_l’—— + 4asa,T’/
and
Ty =v(Z11+Z50)
where
H = da0,—(1+a2)> (3.8)

Ahead of the tip, on 6 = 0, X,, is normalized to be unity for all m. In the limit m — 0, the
above reduce to the well-known expressions for a stationary crack. The function H
vanishes for v = ¢, (i.e. m = 1), where the Rayleigh speed is approximately related to the
shear wave speed by

_ 0.862+1.14v

= 9
e T+v 39)

o

The elastic energy release-rate G, defined as the energy disappearing at the crack tip
per unit of crack advance per unit length of front, is related to K by

G = fim" ?2) K2, (3.10)
where
_ oy(v/ey)?
f(m) = 1-nH" (3.11)

This function is plotted in Fig. 3 for v = 0.3.

In the elastic problem G and K are measures of the asymptotic near-tip field of the
running crack. Solutions to elastic running crack problems provide the time
dependence of K and G in terms of crack length history, applied stress history and
overall geometry. In general these problems are extremely difficult, but some special
problems have been solved. One example discussed by FREUND (1976) is the semi-
infinite crack running into an infinite block of prestressed material. In this problem the
dynamic stress intensity factor depends only on the current crack tip velocity according
to the revealing form

K = k(m)Ks, (3.12)
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FI1G. 3. k(m) and f(m) for v = 0.3.

where K is the static stress intensity factor calculated for a stationary crack in the
prestressed material whose tip momentarily coincides with the running crack tip. The
function k(m) is plotted in Fig. 3 for v = 0.3. For future reference, we note that (3.12) is
equivalent to

G = f(mk*(m)Gs, (3.13)
where
Gy =(1—v)K2Z/E (3.14)

is the associated quasi-static energy release-rate. The combination f(m)k*(m) is well
approximated by (1 —m).

In the small scale yielding problem posed in the next section, G will be taken to
prescribe the remote fields. However, it should always be borne in mind that G is related
to the overall geometry, crack velocity and loading history through solution of the
dynamic elastic problem, i.e. through results such as (3.13). We will have use for this
relation in our discussion of crack propagation conditions.

4, DYNAMIC STEADY-STATE CRACK GROWTH IN SMALL SCALE YIELDING

The crack tip is imagined to be running at a uniform velocity v and is assumed to have
advanced a distance which is large compared to the size of the active plastic zone, the
zone within which the plastic strain-rates do not vanish. Furthermore, the active plastic
zone is assumed to be small compared to the zone of dominance of the dynamic
singularity stress field (3.1), and the dynamic stress intensity factor K is assumed to be




176 . L. B. FREUND and J. W. HUTCHINSON

maintained at a constant level. Under these conditions a steady-state, small scale
yielding problem can be posed as depicted in Fig. 4. The active plastic zone travels
along with the crack tip leaving behind a wake of residual plastic strains. Qutside the
wake, the remote stress field in this asymptotic small scale yielding problem is the
dynamic singularity field specified by K, or, equivalently, by G via (3.10).

The analysis will be carried out within the context of small strain theory. The total
strains, &, are related to the displacement, u;, by

£y = 3w+ ;) 4.1)
and the momentum equations are
055 = Pl 4.2)

where the dot denotes the time-rate of change and Cartesian components are employed
throughout the paper. The incremental form of these equations is the same with an
extra time derivative of each term. The constitutive relation is specified by (2.5) and
(2.6). In the steady-state problem, the time derivative of the Cartesian component of any
vector or tensor associated with a material point is related to the x,-gradient by

0 0

o o,

()= 4.3)

The following observation is essential to the subsequent analysis and discussion. As
K
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F16. 4. Dynamic steady-state, small scale yielding crack propagation.
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the crack tip is approached (r — 0), the elastic strain-rates become unbounded in
proportion to z, while, by (2.5), the plastic strain-rates increase in direct proportion
to . It follows from (4.3) that, if the stresses are unbounded at the tip, the elastic strain-
rates are more singular than the plastic-rates and, therefore, that they dominate
asymptotically as r— 0. Consequently, the singularity field governing near-tip
behaviour is the dynamic elastic field with precisely the same form as (3.1) except that
the amplitude factor will be different. This observation holds for growth in
elastic/power-law viscous materials as long as the stress exponent is less than 3, as
shown by Lo (1983). BricksTAD (1983) made use of the same singularity in his
interpretation of crack propagation experiments. With K, as the dynamic stress
intensity factor of the near-tip field,

\/I(;l:r) Z,6,m as r—0. (4.4)

The energy release-rate at the tip is denoted by G;, and is given in terms of K ;, by the
relation (3.10), i.e.

Uij=

(1—-\)2) K2

E fip: 4.5)

Gip = f(m)

The solution to the steady-state problem will provide the relation between G;, and
G. An exact work-rate balance equation exists for the dynamic steady-state problem
which relates G;, to G. To derive this equation we now introduce a path-independent
line integral for steady-state problems.

Given arbitrary material properties, rate-dependent or rate-independent, let U be
the stress work density defined by

&
0

which, in general, depends on the history of deformation experienced by a given

material point. Let T be the kinetic energy density, T = +pu;4;, and let T be any closed

contour with outward pointing unit normal, #;. The line integral

I= J [(U+ T —o;nu,]ds 4.7
I

is zero for all closed contours encircling no singularities. Path-independence is proved
in the Appendix. This integral generalizes similar ones by StH (1970) for linear elastic
solids and by FREUND (1984) for nonlinear elastic solids. It is a special case of a path-
independent integral for steady-state growth derived under somewhat more general
conditions than those considered here by WiLLIS (1975). We emphasize that the integral
is limited to problems involving steady-state growth in the x,-direction for which (4.3)
holds. Otherwise, it is unrestricted in its application to solids with arbitrary properties,
as long as these properties are independent of the x; coordinate.

For the present problem, where the material is characterized by the elastic/visco-
plastic relation (2.5) and (2.6), we show in the Appendix that I = G,;, when evaluated on
a near-tip contour encircling the tip in a counterclockwise sense, such as that shown in
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Fig. 4 but shrunk down to the tip. Evaluation on a remote contour encircling the tip in
the same sense (again, see Fig. 4) gives

h
1= G—j U* dx,, (4.8)
—h

where

U*(x,) = lim U(xy,xy)
is the stress work density in the wake far behind the tip. From path-independence it
follows that

h
Gyp = G—J U* dx,. (4.9)

—h
This work-rate balance is obvious from first principles in that the difference between the
overall work and the work deposited in the wake in a unit advance of the crack under
steady-state conditions is necessarily the work released at the tip. We also show in the
Appendix that (4.9) can be rewritten as

1 h
Gip=G~—~| 6;é,dA— U¥ dx,, (4.10)

UV Ja —h
where the area integral extends over the active plastic zone and where U* is the residual
elastic strain energy density in the remote wake.

5. APPROXIMATE ANALYSIS OF STEADY-STATE HIGH VELOCITY CRACK GROWTH

A complete analysis of the steady-state small scale yielding problem posed in the
previous section will require an extensive numerical analysis. Such an analysis will not
be given in this paper. Instead, in this section we will carry out an approximate analysis
which captures some of the qualitative features of the effect of plasticity on high speed
crack growth. In particular, it will be shown that the present analysis is asymptotically
rigorous under limiting conditions when the plastic dissipation is a sufficiently small
fraction of the total energy release-rate.

The first step in the analysis is the determination of G, in terms of G using (4.10). To
estimate the plastic dissipation in (4.10), the plastic strain-rates will be computed using
the near-tip stress distribution (4.4). The amplitude of the near-tip stress fields, K, is as
of yet unknown and is related to G, by (4.5). Proceeding to calculate the plastic
dissipation, one notes from (2.3) and (2.5) that

165 = 1F (1), (5.1)

where 7 is the effective shear stress defined in (2.3). Using the near-tip field (4.4) to
calculate t, one finds

g

Kyip
= Ton B(0, m), (5.2)




High strain-rate crack growth 179
where
B={1%},+23, +325, +3 vV 31+ )21 + 22072 (5.3)

Denote by R(#) the radial distance to the boundary of the active plastic zone from the
tip. Setting T = 1, in (5.2) and solving for r gives

R=L (%)232(9, m). (5.4)

2n v

Then, by (5.1), the plastic dissipation term in (4.10) can be written as
1 1 T R(8)
— | o0;€édA=— do tF(t)r dr. (5.5)
UV Ja v )z o}

Next, using (5.2) to change the integration with respect to r to an integration with
respect to 7, one finds

1 ) 1 e
; jA Uij 65} dA = 27.[—2” K:p.@(m) J;y T 4F(T) dT, (56)
where

A(m) = j B*(0,m) dé. (5.7)
Values of #(m) are included in Table 1 for v = 0.29.

The integral with respect to 7 in (5.6) is independent of crack velocity. It is convenient
to separate this integral into the contribution for 7 > 1,, corresponding to the highest
strain-rate regime, and the remaining contribution according to

J T 4F(r) dr = f T74F(1) dr+j T *F(7) dt. (5.8)
With F identified as (2.1), the first integral is readily integrated to give
© 1y 179
4F s S R .
L T *F(t) dr 350 +e s (5.9

The contribution (5.9) from the regime in which plasticity is limited by phonon drag is
large compared to the second contribution in (5.8). This is illustrated in Fig, 5 where the

TABLE 1. (v = 0.29)

m 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

#(m) 0202 0205 0217 0241 0285 0367 0548 1.06 342 387

D(m) o] 0.441 0224 0.155 0.124 0.110 o111 0135 0233 0892

D(m) = 0.0438/m as m—0
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F1G. 5. Integrand of (5.8) based on the stress-strain-rate curves of Fig. 2. The high strain-rate regime
corresponds to T > T,.

integrand ¢~ *F(t) is plotted as a function of 1 (in an appropriately normalized fashion)
using the curves of 77 vs = taken from the carlier example in Fig. 2. At each temperature,
the solid dot denotes the transition between the intermediate strain-rate regime and the
high strain-rate regime where © = 1,. The contribution of the second integral in (5.8)
never exceeds 109 of (5.9), and to simplify the discussion it will be neglected entirely.

For simplicity, we will also neglect the term representing the residual elastic energy
stored in the remote wake in (4.10). This term is generally fairly small and is
asymptotically negligible for small plastic dissipation, as will be discussed further in the
next section. Then, using (4.5) to express K, in terms of G;, in (5.6), one can write (4.10)

as

15,4/ 2

o= G—D(m)( = 2FPN g | Sl Ge (5.10)
3 rt Voft

G

where

1 Rm(c/c,)
Dm) = 2 = fm

Values of the dimensionless function D(m) are given in Table 1 and plotted in Fig. 6 for
v = 0.29. Note that the minimum of D is D,;, = 0.109 occurring at m = 0.55. As m — 0,
D = 0.0438/mfor v = 0.29, and this formula is moderately accurate for m as large as 0.3.

Suppose the criterion for the crack to run under steady-state conditions is taken to be

Gy, = G¢ (5.12)

tip — Vitip-

(5.11)

The critical energy release-rate, Gy, represents the energy per unit of crack extension
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F1G. 6. D(m) for v = 0.29. The minimum of D is 0.109 at m = 0.55.

absorbed by the fracture processes and not otherwise accounted for by the continuum
analysis. In principle Gf;, could be a function of v, but for simplicity of discussion it will
be regarded here as a material constant independent of v. With (5.12) imposed, (5.10)
gives the value of G required to propagate the crack at a given speed m, i.e.

G

c
tip

=1+ D(m)P., (5.13)

where P. is the nondimensional collection of material constants

L ) .
p, = LI Gig [y 2hst] (5.14)
3 Tt YoT:

Curves of G/Gy;, as a function of m for various values of P, are shown in Fig. 7. Ata
given value of P_, the minimum value of G needed to drive the crack occurs form = 0.55

with

G .
— =14+0.109P,. (5.15)
tip
Combinations of G/Gf;, and m falling below the appropriate curve in Fig. 7 correspond

tip
to Gyp < Gj;,, while combinations above the curve give G;, > Gy,. Assuming that the

tip tip> tip
steady-state solutions have approximate validity under nonsteady conditions, this
suggests that a running crack nucleated under combinations of G and m lying below the

curves will decelerate until either a solution state on the contour is attained or the crack
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FiG. 7. G/Gy;, as a function of m for various P, (v = 0.29).

arrests, the latter possibility occurring if m < 0.55 at nucleation. Conversely, if
nucleated with a combination lying above the curve, the crack will accelerate until a
solution state on the right half of the solution curve is reached.

The above discussion becomes more relevant from a physical standpoint when an
overall applied stress is regarded as being prescribed rather than the overall dynamic
energy release-rate. For this purpose, imagine that a result such as (3.13) holds so that
G5, which is directly tied to the prescribed load, is regarded as being prescribed. The
factor f(m)k*(m) in (3.13) is well approximated by (1 —m), and therefore we will use

G = (1—m)Gs. (5.16)
Substituting (5.16) into (5.13), one obtains
G 1
S = [1+D(mP,]. (5.17)
Gf 1—m

tip
Curves of Gg/Gj;, as a function of m are shown in Fig. 8.

The minimum value of Gs, G¥, needed to drive the crack and the associated value of
the normalized speed, m*, are strong functions of P, as can be seen in Fig. 9. For

sufficiently small P, (with v = 0.29),
G¥/Gi, = 1+0419,/P, and m* = 0.209,/P, (5.18)




High strain-rate crack growth 183

¢
thp !

m=V/Cr

F16. 8. Gy/G;,

tip as a function of m for various P, (v = 0.29).

3
m*
2
1
0 1 [ | |
0 2 4 6 8 10
PC-

F16. 9. Minimum value of Gy needed to drive the crack dynamically and associated value of m as functions of
P, (v = 0.29).
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while for large P,
G¥/GS, = 1.67+0.187P. and m* — 0.40, (5.19)

tip =
Implications of the strong dependence of G¥ and m* on the material parameter P, will
be discussed in Section 7.

6. FURTHER DISCUSSION OF THE STEADY-STATE PROBLEM
To gain further insight into the approximate solution it is useful to present the

relation between G,;, and G in a slightly different manner. Following division by G # 0,
the relation (5.10) has the form

Gip/G = 1 —=D(M)P (G;,/G)*, (6.1)
where P is defined in terms of G (and not Gy;,) as
1y G 2y
P=yi‘_/(‘z‘l[1+—fﬁ]. 6.2)
3 T Yo
Solving (6.1) for G;,/G, one finds
Gy, (14 4DP)12 1
G 2P 63

Curves of G,;,/G as functions of P are shown in Fig. 10 for several values of m.
We now argue the following two points:
(1) The nondimensional variable

.2
Yeu=G

= 6.4

R 64

y

0 L L [ | i [ - L
0 10 20 30 40
1 Jo/Ep s [, enm
3 th 70 Tt

FiG. 10. G,;,/G as a function of P for various values of m.
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provides a measure of whether or not the growth should be characterized as high strain-
rate growth. For sufficiently small « the plastic strain accumulation essentially all
occurs in the high strain-rate regime. The larger is a, the larger the contributions from
the low and intermediate strain-rate regimes. When « is sufficiently large, low and
intermediate strain-rate processes will dominate over most of the plastic zone. The zone
of dominance of the singular field (4.4) is expected to shrink as o increases, For
sufficiently large « we thus expect Gy, to lose its significance as the controlling near-tip
parameter, and the growth should no longer be considered as high strain-rate growth,
(2) A second nondimensional variable,
g =TolG (6.5)
vT;

provides a measure of the range of validity of our approximate solution (6.3) or (5.10).
For sufficiently small 8, or equivalently for sufficiently small P/m, we will argue that our
solution is asymptotically exact. This means that the initial slope of the relation
between G;,/G and P given by (6.3) and plotted in Fig. 10 is essentially exact.

lip

6.1. Characterization of high strain-rate growth

Equation (1.2) provides an estimate of the plastic strain-rate y? in the outer region of
the plastic zonge, and thus « in (6.4) is proportional to the ratio of the transition strain-
rate y, to y7. If a is large enough, most of the plastic zone, except very near the tip, will be
associated with low strain-rate deformation. Then it is to be expected that the crack
growth will not be radically different from growth under rate-independent conditions.
Growth of a sharp line-crack in a rate-independent plastic material is characterized by
an inherently weaker singularity than the inverse square root singularity and the
energy release-rate is identically zero according to such models. For such models
alternative critical near-tip growth criteria must be assumed, such as a critical strain at
some fixed distance ahead of the tip or an invariant opening profile near the tip (RICE,
DrUGAN and SHAM, 1980). But if « is sufficiently small, the major portion of the plastic
strain accumulation will take place in the high strain-rate regime, and the characteriz-
ation of the near-tip field by G,;, is meaningful. This latter situation is what is meant
by high strain-rate crack growth for present purposes. It may be, under certain
circumstances, that high strain-rate growth conditions are met at velocities which are
sufficiently low (e.g. m < 0.2) such that inertia effects are relatively unimportant. It
remains for future work to determine the numerical value of o marking the transition to
high strain-rate growth.

6.2. Asymptotic validity of the present solution

From (6.1) it can be seen that G;, — G as D(m)P — 0. Thus for sufficiently small
D(m)P, the plastic dissipation term in (6.1) or (5.10) is well approximated by replacing
G, by G. This is precisely equivalent to determining the plastic dissipation using the
elastic field for the stresses (3.1) to calculate the plastic strain-rates rather than the near-
tip stresses (4.4). In other words, the initial slope of the relation between G;,/G and P is
independent of whether the elastic stress field or the near-tip stress field is used to
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calculate the plastic strain-rates, since the near-tip stress field asymptotes to the elastic
field as D(m)P — 0.

That this is to be expected can be seen in another way by making a consistency check
showing that the elastic strain-rates dominate the plastic strain-rates when D(m)P is
sufficiently small, or equivalently when the parameter f§ in (6.5) is small. For order of
magnitude purposes, we note that a typical elastic strain-rate quantity is given by

y-e=1=_3ﬁoc33£/2, (6.6)
7 pox, pr
assuming the elastic field to be predominant.
The distance from the tip to the boundary of the high strain-rate zone where t = 7, is

R, o (K/1)) oc pG/1, (6.7)

assuming m is not greater than about 0.4 or 0.5. Thus at the transition boundary where
,);p = ’)jti

p . 2G .
Voo HEY /3(_”‘). (6.8)
Well within the transition boundary for t > 1,,

PP = Jot/u oc JoK/(urt'?),
and thus

v SR G
Voo Tl (o THE g (6.9)
7 v v vT;

Experimental data for iron-based materials, such as that presented in Fig. 2, indicate
that the nondimensional collection of material constants, j,1/(7o7,), appearing in (6.8) is
small compared to unity, typically on the order of 0.1 or less.t Thus if f is sufficiently
small, the plastic strain-rates will be small compared to the elastic strain-rates
everywhere within the high strain-rate portion of the plastic zone. Next note that

a _ ([
5= (e )) 610

Since 7,/7, is typically on the order of 2, the right hand side of (6.10) is on the order of
unity or smaller. Thus, we can simultaneously ensure that « is small by requiring § to be
small. Moreover, it is easy to show that sufficiently small « ensures that the plastic
strain-rates in the outer portion of the plastic zone are small compared to the elastic
strain-rates. In conclusion, then, the elastic strain-rates will dominate the plastic strain-
rates everywhere when f is sufficiently small. To finish the argument we note that

B oc P/m, (6.11)

assuming the collection of terms ,1/(7,7,) can be neglected in the definition of P in (6.2).
For m less than about 0.2 or 0.3, D oc 1/m and thus § goes to zero in proportion to DP.

t Note from (2.1) that $47,/u corresponds to the plastic strain-rate increase due to a doubling of stress above
7,. This increase is typically at least an order of magnitude larger than 7,.
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For sufficiently small 8 the plastic strain-rate is dominated by the elastic strain-rate
everywhere in the plastic zone, and our calculation of the plastic dissipation in the
energy balance (4.10) is asymptotically correct. Finally, it can be shown that the term
representing the residual elastic energy density in the wake is of order f relative to the
plastic dissipation term. Consequently it makes no contribution to the initial slope of
the relation of G,;,/G to P. This concludes our argument that the initial slope is given
exactly by our analysis.

At arbitrary values of P, we expect the approximate relation (6.3) to overestimate
G,;,/G since the near-tip stress field (4.4), on which the calculation is based, almost
certainly underestimates the stresses in the outer portion of the plastic zone. In other
words, our approximate analysis has underestimated the plastic dissipation, as well as
having neglected the residual elastic energy in the wake. Further work of a numerical
character will be needed to establish the range of the B-parameter over which the
present relatively simple solution is a good approximation and to obtain accurate
results outside that range.

7. APPLICATION OF THEORY TO MACROSCOPIC CLEAVAGE
CrAack GROWTH IN MILD STEEL

As a representative example we consider dynamic growth of a macroscopic crack in
mild steel which is assumed to have a transition stress, 7,, which varies with temperature
as shown in Fig. 11. For temperatures above 200 K, 7, has been taken from the data for
the fine grained mild steel given in Fig. 6 of the paper by CAMPBELL and FERGUSON (1970).
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F1G. 11. Representative temperature dependence of 7, and P, for mild steel. See text for origin of data.
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The limit as T — 0 is taken as t, = 810 MN m? which emerges from data given by
FrosT and AsHBY (1982) for steels. The variation of 7, between 0 K and 200 K is taken as
a smooth interpolation between these two sets of data. Between 0K and room
temperature, t, drops by about a factor of three which is typical of the drop in the low
strain-rate yield stress, 7,, for mild steel over this same temperature range.

A representative value of K, for mild steel at 0K is 22 MNm ~*2 (20 ksi in'/?). If this
value is identified with the minimum value, K¥, needed to drive the crack dynamically,
then from (3.14) the associated value of G¥ at 0K is 2.37 x 10° Nm ! Given G§,
together with the other materiai constants at 0 K that enter into the definition of P,, one
can use Fig. 9 to infer Gf,. With u = 7.26x10* MN m "2, p = 7.2x 10® Ns*> m "%,
Jo = 3% 107571, 1, = 810 MN m ™2, and neglecting 7,1/(7,7,), one obtains

¢ = 1.73x10° Nm . 7.1)

tip

In what follows, we will assume that Gj;, is independent of T even though the near-tip
cleavage processes in a polycrystalline metal are expected to have some temperature
dependence. Specifically, the energy absorbed in ductile tearing of the uncleaved
ligaments connecting cleavage facets on neighboring parallel planes appears to
increase strongly with temperature in the vicinity of the ductile-brittle transition.

Given the temperature variation of 7, in Fig. 11, the temperature variation of ¢ (which
is relatively unimportant) given by Frost and Ashby, and the value of Gf;, in (7.1), the
temperature variation of P, is that shown in Fig. 11. Figure 10 can now be used to
crossplot the variations of G¥ and m* as functions of T, and the results are shown in Fig.
12. Over the range of temperature shown, G¥ is seen to increase by a factor of 3 while m*
increases from about 0.125 to 0.33. The most important point, which is seen most
clearly in Fig. 8, is the elimination of accessible propagation states as P, increases.

0 | \ | \ 0
0 100 200 300 400 '\
T ( K)

Fig. 12. Minimum Gs needed to drive macroscopic crack dynamically in mild steel and associated
normalized crack speed as functions of temperature.
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Assume again for the purpose of discussion that the steady-state solution has
approximate validity under nonsteady conditions. Then, for example, if P, = 1 a crack
nucleated at m = 0.1 will run if Gg/Gy;, > 1.6, while G4/Gj;, > 6 is required when a
crack is nucleated with m = 0.1 if P. = 10. By the same token, if Gs/Gj;, = 3, for
example, a crack will run at initiation velocities as low as m = 0.02if P, = 1; the crack
cannot be made to run at all if P, = 10,

In the above discussion any dependence of Gf;, on temperature has been disregarded.
The steep increase in fracture toughness observed experimentally as the ductile-brittle
transition temperature is approached is most likely associated with an increase of G,
with temperature in the vicinity of the transition, within the context of the present
model. That is, increases in Gf;, with temperature would give rise to a stronger
temperature dependence of P, than illustrated in Fig. 11 and a correspondingly
stronger increase in G¥ with temperature.
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APPENDIX

A path-independent integral for steady-state crack growth

The path-independent line integral given below is a consequence of momentum balance and
the assumed steady-state character of the solution. No constitutive restrictions are necessary ; the
integral applies to rate-dependent or rate-independent nonlinear materials. With U as the stress
work density defined in (4.6) and T = 3pu;1; as the kinetic energy density, we first demonstrate
the path-independence of the line integral defined in (4.7) for all closed contours I" which contain
no singularities. Essential to the path-independence is that the steady-state relation between the
time derivative and the x,-gradient given by (4.3} hold. Steady-state solutions will only exist for
special geometries and loadings. Our application of the integral is to solids with initially
homogeneous properties, but steady-state solutions can exist in certain instances when initial
material properties vary in the x,-direction, as long as there is no x;-variation. The present
derivation is made within the context of small strain and small rotation theory, but it can be
generalized to a full finite deformation formulation.

Let I surround the area A, which is assumed to contain no singularities. In the derivation
which follows the divergence theorem, the steady-state relation (4.3), and momentum (4.2} are
used in ways which will be obvious in their context :

f(U+T)n1ds f (U,1+771)dA=—v’1f (U+T)da
r Ar Ar

—v! f (0;8;+ pti;ii) dA
Ar

l

f (0i;u; ;1 + pllu; 1) dA

Ar

= f [(Jijui,l),j_(Jij,j_pﬁi)ui,l] dA4
Ar

= .( on;u;  ds. _ (A1)
r

This establishes path-independence. Application of the divergence theorem requires that the
solution be [ree of discontinuities such as shocks. Shock-like discontinuities are common in wave
propagation problems, including dynamic crack propagation problems. However, the equations
governing the steady-state growth of a crack in a linear, isotropic elastic material are elliptic, and
therefore discontinuity-free, as long as the crack velocity is less than the Rayleigh speed. The
present application to crack growth in elastic/visco-plastic solids is also governed by elliptic
equations.

In its quasi-static limit (T = 0), the integral was applied by BupiaNsky, HUTCHINSON and
LAMBROPOULOS (1983) to analyze steady-state crack growth in a special class of two-phase
composite ceramic systems. The integral was used to connect near-tip and remote stress fields
when a zone of martensitic-like transformation is induced in one of the phases by the high stresses
near the tip. A derivation of the integral for steady-state dynamic growth was first given by SiH
(1970) for linear elastic materials and later by FREUND (1984) for nonlinear elastic solids.
Although nonlinear elasticity was invoked by Freund, a careful inspection reveals that his
derivation goes through for arbitrary material behavior if the energy density function is
interpreted as the stress work density. WILLIS (1975) gives a more general derivation than the
present one which includes heat flux, and is also valid for arbitrary materials.

For the small scale yielding, steady-state problem, we define I as in (4.7) where I now encircles
the crack tip in a counterclockwise sense. To relate I to the near-tip fields, deform I to the
rectangular contour centered at the tip with sides parallel to the axes such that Ay is the region
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—6; £ x; €6, and —§, € x; < 8,. Then shrink the contour down to the tip to get

L
I=1lim lim —2 (0120, + 055U, 1) dx,y
5120 330 -6

(A2)

81
= lim lim 2v~! J (012811 + 6,4,50,) dx,

510 8,20 -
where, by the symmetry of mode I, the integral can be evaluated on the side x, = J,. For a near-
tip field which asymptotes to (4.4), FREUND (1976, p. 70) has shown that the right hand side of
(A.2) equals Gy, given by (4.5). As already discussed, the plastic strain-rates are dominated by the
elastic strain-rates as r - 0 and make no contribution to (A.2).

Next, deform I to a circular contour centered at the tip with radius r which is large compared
to the active plastic zone. On this contour the contributions decouple into two parts as r — oo,
one from the asymptotic elastic solution (3.1) outside the wake and one from the wake. The
behavior in the remote wake is equivalent to that in a layer of thickness k with residual plastic
strains, which are independent of x,, attached to a semi-infinite half-space. The non-zero stress
component within the layer is ¢, ;, and the strain component &, is the same as in the half-space,
ie. gy, = 0 as r - oo in the wake. The stress distribution outside the layer is unaffected by the
existence of the residual stress in the layer. The contribution to I on the remote circular contour
from the region outside the wake is therefore just G as r — o0, The contribution from the wake
itself in mode 1 is

h
lim —2J Ulxy, x,) dx,, (A.3)

X == 0

since T and o;;n;u; ; vanish on I" in the remote wake. The latter follows from the fact that
n=(—1,0)on I as x, » — oo and, furthermore, that ¢, and u, ; = ¢, vanish in the remote
wake. The two contributions to I combine to give (4.8), with (4.9) following from path-
independence.

Lastly, we note that (4.10) can be obtained from (4.9) in several ways. Perhaps the simplest is as
follows. Split U into the elastic energy density, U*, and the plastic work density, U?, according to

Ue = jaij def; and UP = ja,-j def. (A4)

Then note that the area integral in (4.10) can be written as

f o€ dA
4

where the integration with respect to x; has been performed using the fact that U? = 0 on the
leading edge of the active plastic zone. It now follows immediately that (4.10) is equivalent to (4.9).

I

f UrdA = _Uf U?, dx, dx,
y y
(A.5)

h
im v j UP(x,,x,) dx,,

b3 il ¢] —h







