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Plastic Ligament Ahead of an
Edge-Crack

Complete, accurate numerical results are given for the solution to the problem of a
semi-infinite crack aligned perpendicularly to the free-edge of a semi-infinite half
space in which the ligament is subject to arbitrary combinations of bending and ten-
sion or compression. The material is an incompressible, pure power-law deforma-
tion theory solid. Conditions of plane strain are assumed. Approximate solutions

are proposed for predominantly bending loadings and also for predominantly stret-

ching loadings.

1 Introduction

Accurate numerical results will be presented for the basic
problem of a semi-infinite crack approaching the free edge of
a semi-infinite plane, as depicted in Fig. 1. The remote stresses
acting on the upper-half plane are equivalent to a net load per
unit thickness 2 and a net moment per unit thickness M taken
about the origin in the sense shown. This is a Mode I problem,
and attention is directed to the plane strain problem with
€33 = €13 = €53 = 0. The study is carried out within the context of
small strain theory, and the material of the cracked body is
taken to be described by J, deformation theory for an incom-
pressible pure power-law stress-strain behavior. In uniaxial
tension the material deforms according to

e/e,=(o/0,) (1.1

where o, and e, are the reference stress and strain. Under
multi-axial stress states, o,;, the strain is

e,-j/eo:—;— (0./0,)""'s;/0, (1.2)
Here, s,; is the stress deviator and o, = (3s;;5,;/2)" is the effec-
tive stress. (In earlier papers on pure power-law problems we
have introduced an additional convenient scale factor o
multiplying the right hand sides of (1.1) and (1.2). In this
paper « has been absorbed into ¢,).

Approximate solutions to semi-infinite crack problems have
been used to model the effect of deep part-through cracks in
plates subject to combined tension and bending. In particular,
such solutions play a central role in the development of the
line-spring model for analyzing the effect of surface cracks in
pressure vessel walls (Rice, 1972, and Parks and White, 1982).

This paper begins with the derivation of some fairly general
relationships for arbitrary small strain deformation theory
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materials and then proceeds to specialize them to the power-
law material. Numerical results are presented for quantities of
interest over the full range of combined loading. The effect of
shifting the origin about which the moment is defined is also
discussed, and approximate analytical solutions are proposed.

Conventions

Fig. 1
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2  Some General Relationships for Finite and Infinite
Geometries

At this stage, consider a body characterized by a gene{al
deformation theory in which w(e) is the strain energy density
and ¢(o) is the complementary stress energy density so that

aw o
g _—:—ae-—ij, € =3017 and €y =¢+ w
Consider a body occupying a finite region S, such as that in
Fig. 1, and let T denote the portion of the body of S in the
upper-half plane other than the traction-free crack fgces and
the traction-free edge along x,=0. Prescribe in-plane
displacements on T

.1

U (5]
u, :_2_50!2 + - €.8Xg (2.2)

where the sense of © is shown in Fig. 1 and §,; is the
Kronecker delta and e,z is the permutation symbol. Opposite-
signed prescriptions are made in the lower-half plane.

The force-like variables P and M are identified most directly
through the external virtual work expression as

25 Tuéuﬂds:(g Tzds>6U
T T

+ (SF eaﬁxﬂTads)695P6U+M69 (2.3)
where T, = g,3n;, is the traction vector. In both (2.2) and (2.3)
the origin of the coordinates (x,, x;) is taken at the free edge as
shown in Fig. 1. Other choices are possible and may be pre-
ferred for certain purposes. The effect of shifting the origin of
the coordinates is discussed in Section 5.

By (2.1) and the principle of virtual work,

PdU+ Mdo = SS 0,pde,5dS = SS dwdsS (2.4)
Thus, with the overall strain energy defined as
w(U,0)= SS wdS (2.5)
it follows that
W aw
P= U and M:W (2.6)
The complementary connections may be derived similarly as
U= gﬁ and e=% 2.7
where
P.M)= Ss ®dS (2.8)
In addition,

PU+MO=W+& 2.9)

Now imagine that the stress-strain behavior of the material
is such that W and ® are well defined in the limit as the outer
contour T is expanded to infinity (e.g., r,— oo in Fig. 1). For
the power-law material (1.2) this limit is well defined as long as
n>1. However, a linear material (n= 1) is excluded from con-
sideration unless P=0. By dimensional considerations similar
to those first exploited by Rice et al. (1973), it necessarily
follows that the functional dependence of W for the semi-
infinite crack problem on the uncracked ligament, b, U and ©
is of the form

W=b*F(U/b,0)

where F depends implicitly on material properties.
The energy release rate, J, for the semi-infinite body is

(2.10)
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Fig. 2 Nondimensional displacement and load variables

aw aF
= = 2bF-U——
J db aU/b)
(2.11)
2w PU
T b b

where P=bdF/3(U/b) from (2.6), and (2.10) has been used.

1t has become fairly common practice (Turner, 1980) to
write the relationship between J and W under combined
bending and tension loadings as

J=qW/b (2.12)
so that, from (2.11), the ““eta factor’’ is given precisely by
n=2—-PU/W (2.13)

For either P or U vanishing, n =2. As an approximation, n has
been taken to be 2 for load combinations typical of several
“‘bend-type’’ geometries, but this approximation is of dubious
accuracy in general. For example, when either M=0o0r 6=0
one finds using (2.9) that

n=1-&/W (2.14)

which is necessarily less than unity since ® and W are each in-
herently positive. For a pure-power-law material this becomes
p=(n-1)/n.

3 Relations Among J, P, M and O for Semi-infinite
Crack in a Power-Law Material

Because the equilibrium equations and the strain-
displacement equations are linear, the dimensional forms for
W and ¢ from the solution for the pure power-law material
(1.2) are

W = 0,e,b2f 5 [U/(c,b),0/¢,] 3.1)
@ = a,e,0%,[P/(0,b), M/(0,b?)] (3.2)

where f), and f, are dimensionless functions of the arguments
indicated. Moreover, it also follows from the linearity of the
equilibrium and strain-displacement equations and the
character of the stress-strain law (1.2) that fy, and f, satisfy

Swl=U/(e;b), = 6/€,] =fwlU/(€,0),0/¢,] (3.3)
Sol=P/a,b),— M/(a,b%)] =f,[P/(a,b),M/(0,b?)] (3.4)

Of course, contact between the crack faces is disregarded in
writing these relations. Our interest is restricted to the range of
variables such that the crack faces are not in contact; never-
theless, for mathematical purposes it is useful to produce the
solution over the full range of the variables under the ficitious
assumption that the crack faces may overlap.

From the equations listed in the previous section it is seen
that knowledge of either fy, for f; fully determines the rela-
tionships among J, P, M, U and O. There are various ways to
present the numerical results for f,, or f;, but the pure power
character of the stress-strain law favors the following ap-
proach. Let

R= [(?’Ub—>2 + (%)2 ] * and §‘=arctan[T?(/:oLb)] (3.9

be polar coordinates in the plane of U/e,b and O/¢, as in-
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Table 1 Normalized functions for n=3

g b4 n £ f! g k h h'
0.0 1.1 0.667 0,693 0,557 0.462 1.079 1,71E-01 =4.12E-01
5.0 3l.6 0.735 0,739 0.492 0,543 1,101 1,68E-01 =3,35E-01

10.0 31.9 0.799 0.778 0.418 0.622 1.119 1,66E-01 =2.67E-01
15.0 32,4 0.861 0.811 0.340 0.698 1,134 1.64E-01 -2.05E-01
20.0 32,9 0.921 0.837 0,255 0.771 1,145 1,62E-01 -1 _48E-01
25.0 33.3 0.980 0.856 0,167 0.838 1.153 1.61E-01 -9,45E-02
30.0 33,9 1.040 0,867 0.080 0.901 1.158 1.61E-01 -4,43E-02
35.0 34.5 1,100 0.870 -0,010 0.956 1.160 1,60E-01 5,71E-03
40.0 35.0 1,160 0.865 ~0,100 1.003 1.157 1.61E-01 5.60E-02
45.0 35.5 1.222 0,852 =-0.19%0 1.041 1,152 1,61E-01 1.08E-01
50.0 36.1 1.286 0.832 -0.275 1.070 1.143 1.63E-01 1 _61E-0}
55.0 36.7 1.354 0.804 ~0.355 1.089 1.130 1.65E-01 2,18E-01
60.0 37.3 1.425 0.770 ~0.429 1.097 1.113 1,67E-01 2,80E-01
65.0 37.9 1.501 0.729 =-0.497 1.095 1.092 1.71E-01 3.49E-01
70.0 38.6 1,582 0.683 -0.,53%6 1.081 1.068 1,75E-01 4,28E-01
75.0 39.3 1.671 0.633 -0,606 1.057 1.038 1,8lE-01 5,21E-01
80.0 40.1 1.769 0,578 =-0.644 1.023 1.004 1.90E-01 6.33E-01
85.0 41.1 1.878 0,521 -0,669 0,978 0.964 2.01E-01 7.75E-01
90.0 42.2 2,000 0.462 -0.679 0.924 0.916 2.18E-01 9,62E-01
95,0 43.6 2,135 0.403 ~0.673 0.860 0.861 2_44E-01 1,22E+00Q
100.0 45.3 2.282 0.345 -0,649 0,787 0,795 2,87E-01 1.62E+00
105,0 47.8 2,429 0.290 ~0.601 0.705 0.715 3,70E-01 2.30E+00
110,0 51.5 2.5:4 0.241 =0.524 0.612 0.615 5,62E-01 3,67E+0Q
115.0 58.2 2,5:1 0.200 =0.406 0.508 0.486 1.19E+00 7.29E+00
116.0 60.3 2,514 0.193  -0.377 0,485 0.456 1.4BE+00 8,69E+00
117.0 62,7 2,474 0.187 -0.346 0.462 0.426 1.89E+00 1,05E+Q1
118.0 65,6 2,423 0.181 -0,313 0.438 0.395 2,48E+00 1.29E+01
119.0 69.1 2,357 0.176 =0.278 0.414 0.363 3,36E+00 1.59E+01
120.0 73.4 2.277 0.171 -0.241 0.390 0.332 4.,69E+00 1.98E+01
121.0 78.6 2.184 0.167 -0,204 0.365 0.302 6.69E+00 2,44E+01
122.0 84.7 2,083 0.164 =0.167 0.342 0.275 9.53E+00 2,91E+01
122.8 90,0 2,000 0.162 -0.138 0.324 0.257 1,24E+01 3,15E+01
123.0 91.8 1.974 0.161 -0,131 0.319 0.252 1,34E+01 3,25E+01
124,0 100.0 1.858 0.160 -0.095 0.296 0.233 1,81E+01 3.22E+01
125.0 109.4 1.736 0.158 =0.059 0.275 0,219 2.28E+01 2._56E+01
126.0 120.0 1.606 0.157 -0.022 0.253 0.211 2_.64E+01 1,11E+01
127.0 131,89 1,462 0.157 0,018 0.230 0,211 2.66E+01 -9,14E+00
128.0 144,2 1.307 0.158 0.061 0.207 0.220 2,27E+01 -2,63E+01
129.0 155.8 1.143 0.160 0.107 0.182 0.238 1,65E+01 -3,33E+01
130,0 166.0 0.972 0.162 0.157 0.157 0,267 1.06E+01 -3.09E+01
131.0 174.3 0.804 0.165 0.207 0.133 0,302 §6.58E+00 -2.48E+01
132.0 180.7 0.648 0.169 0.257 0,110 0,342 4.13E+00 -1,88E+01
133.0 185.7 0.508 0.174 0,305 0.088 0.383 2,69E+00 -1.41E+01
134,0 189.8 0.377 0.180 0,352 0.068 0.426 1.82E+00 ~1.07E+01
135,0 193.1 0.264 0.186 0.39% 0.049 0.470 1,2BE+00 -8,19E+00
140.0 201.7 0.000 0,229 0.567 0.000 0,644 4,44E-01 -3,29E+00
145.0 205.0 0.018 0.283 0.655 0.005 0,756 2.89E-01 -2.01E+00
150.0 206.8 0.118 0.342 0.698 0.040 0.834 2.36E-01 -1.44E+00
155.0 207.9 0.230 0,404 0.711 0.093 0.892 2.12E-01 -1,12E+00
160,0 208.8 0.333 0,466 0.710 0.155 0.943 1,96E-01 -8,97E-01
165.0 209.5 0.429 0.527 0.690 0.226 0.985 1,87E-01 -7.33E-01
170.0 210.1 0,515 0.586 0.658 0.302 1,021 1,8B0E-01 -6.04E-01
175.0 210,86 0.594 0.642 0.613 0.381 1.052 1.74E-01 -5.00E-01
180.0 211,1 0.667 0.693 0,557 0.462 1.079 1,71E-01 -4.12E-01

dicated in Fig. 2. Because fy is homogeneous of degree N+ 1
in U/e,b and ©/¢,, one can further specialize (3.1) to

W=0,e,62RN U AEN) (3.6)

where f is a dimensionless function of N=1/n and ¢ which by
(3.3) has the periodicity

S+ 7 Ny =A5,N) 3.7

Thus, knowledge of f({, N) completely determines the rela-
tions among all variables of interest. In particular, from (2.6)

P = g,bRN[(N+ 1)fcos¢— fsing] 3.8)
M = o,b*RN[(N+ 1)fsin{ + f” cos¢] (3.9)
where f* = 9f({, N)/3¢. From (2.11) it follows that
J = 0,e,bBRNTH{[2~ (N + Dcos?{1f + f'sinfcosy]  (3.10)
= 0,¢,bRN*1g({,N) @3.11)
and then, from (2.13), that
2W&,N) =g/ f=2— (N+ )cos?t+ (f* /f)sinfcost (3.12)

Alternatively, if P and M are preferred as independent
variables, let

S= [((:b)z + (TA/I;) ] ” and -y=arctan[%§%l;;—)]

(3.13)
Now, since f, is homogeneous of degree #n+ 1in Pand M,
& =g,c,b*S" L h(y,n) (3.14)
where A(y + 7,n) = A(y,n). From (2.7),
U = ¢,b5"[(n+ 1)hcosy — h'siny] (3.15)
O = ¢,8"[(n+ 1)hsiny + A’ cosy] (3.16)

Journal of Applied Mechanics

Table 2 Normalized functions for n=5

5 ¥ n f £! g k h h!

0.0 30.2 0.800 0.911 0,636 0,729 1,265 4,46E~02 =1.56E-01

5.0 30.5 0.859 0.963 0,551 0.827 1,280 4,38E-02 ~-1.25E-01
10.0 30.8 0,914 1.007 0,460 0,921 1.293 4,31E-02 -9,86E-02
15.0 31.2 0,968 1.043 0.363 1,009 1.303 4,26E-02 -7,43E-02
20.0 31,8 1.019 1.070 0.263 1.091 1.311 4.22E-02 -5,19E-02
25.0 32,0 1,071 1.089 0,160 1,166 1,316 4,19E-02 -3_.09E-02
30.0 32.5 1.123 1,098 0,057 1.233 1,319 4.17E-02 -1.09E-02
35.0 33.0 1.175 1.099 =0.045 1.291 1.319 4.,17E=-02 B8.60E-03
40,0 33.6 1.229 1.050 ~0.147 1,340 1.316 4,19E-02 2,82E-02
45,0 34.1 1.284 1.073 -0,248 1,378 1.311 4.22E-02 4,8BE-02
50,0 34,6 1.34) 1.047 -0,346 1.404 1.303 4.28E-02 7.07E-02
55.0 35.1 1.402 1.013 -0.439 1.419 1.292 4,35E-02 9.43E-02
60.0 35.8 1,466 0,971 =0.524 1.423 1.277 4,47E-02 1,21E-01
65,0 36.4 1.536 0.921 -0,602 1.415 1.259 4,63E-02 1,51E-01
70.0 37.1 1,611 0.866 =0.671 1,394 1.237 4.84E-02 1,87E-01
75.0 37.9 1,692 0.805 ~0,731 1.362 1.211 5.10E-02 2.32E-01
80.0 38,7 1.783 0.739 -0.780 1.317 1,180 5.46E-02 2.88E-01
85.0 39.6 1,885 0.669 -0,815 1.261 1.144 5,97E-02 3,64E-01
90,0 40.7 2,000 0.597 -0,834 1.194 1.099 6,77E-02 4,73E-01
95,0 41.9 2.130 0.524 ~0,838 1.116 1,048 7,91E-02 6.33E-01
100,0 44.0 2.269 0.452 ~0.805 1.024 0.970 1.08E-01 9.64E-01
105,0 45.9 2,420 0.383 =0.768 0.928 0.893 1,49E-01 1,49E+00
110.0 48,9 2.527 0.319 -0.691 0.815 0.790 2.62E-01 2.84E+00
115.0 55.9 2,552 0.265 -0,531 0.677 0.619 9.45E-01 9,45E+00
116.0 57.9 2.528 0.256 -0.494 0.648 0.582 1.32E+00 1.28E+01
117.0 60.3 2.491 0,248 =0.453 0.618 0.542 1,96E+00 1.73E}01
118.0 63.3 2,438 0.240 =0.408 0.586 0,493 3,10E+00 2.63E+01
119.0 67.0 2,368 0.234 -0.359 0.554 0.455 5,24E+00 4.02E+01
120.0 71.8 2.281 0.228 -0.306 0.520 0.410 9.53E+00 6,40E+D1
121.0 77.8 2,180 0.223 -0,252 0.486 0.368 1,81E+01 1,02E+02
122.0 85,0 2,070 0.219 ~0.199 0.454 0.330 3,42E+01 1.55E+02
122.6 90.8 2.000 0.217 -0.167 0.434 0.30% 4,95E+01 1,79E+02
123,0 93.6 1,953 ¢.216 =0,146 0.422 0,298 6,20E+01 2,10E+02
124.0 103.7 1,831 0.214 =~0.095 0.392 0.274 1,01E+02 2.25E+02
125.0 115.0 1,704 ¢.213 =0.04% 0,363 0.253 1.40E+02 1.4BE+02
126.0 127.6 1,569 0.213 0.007 0.334 0,255 1.54E+02 -2,60E+01
127.0 141.0 1.421 0.213 0,064 0.303 0.264 1,27E+02 -1,90E+02
128.0 153,29 1.262 0.215 0,125 0.271 0.287 7.76E¥01 -2,26E+C2
129,0 165.2 1.095 0,218 0,191 0.238 0.324 3,79E+01 =1,67E+02
130.0 174.6 0.922 0,221 0.262 0.204 0.373 1.64E+01 -9.70E+01
131,0 182.0 0,750 Q.227 0.336 0.170 0,432 6,97E400 -5,16E+01
132.0 187.7 0.587 0.233 0.411 0.137 0.497 3,09E+00 =2.72E+01
133.0 192.3 0.434 0.241 0.487 0.105 0.567 1.46E+00 -1.47E+01
134.,0 196.0 0,293 Q.250 0.565 0,073 0.640 7,29E-01 -B.24E+00
135.0 199.1 0.165 0.261 0,644 0.043 0.716 3.87E-01 -4,78E+00
140.0 205.3 0.010 0.329 0,859 0.003 0.946 9.20E-02 -1,20E+00
145.0 206.5 0.158 0.406 0,895 0.064 1.019 7.25E-02 -8_0lE-Cl
150.0 207.5 0,285 0.485 0,913 0.138 1,082 6.04E-02 -5,68E-01
155.0 208.1 0.401 0.564 0,903 0.226 1.128 5,47E-02 -~4.38E-01
160.0 208.6 0,502 0.642 0.875 0.322 1,165 5,12E-02 -3,49E-01
165.0 209.1 0.590 0.716 0.832 0.422 1.196 4.88E-02 -2.84E-01
170,0 209.5 0.667 0.787 0.779 0.525 1.224 4.68E-02 -2,32E-01
175.,0 209.9 0.737 0.852 0.712 0.627 1.246 4.56E-02 -1,91E-01
180.0 210.2 0.800 ¢.911 0,636 0.729 1.264 4,46E-02 =1,56E-01

where 4’ =dh(y, n)/dy.
The relations between the polar load variables and the polar
displacement variables follow directly from (3.8) and (3.9) as

§ = RN[(N+ 122+ (f)*]* =k(;,N)RV 3.17)
and
(N+ 1)fsin{+ f’cos¢ }
= 1. 3.18
Y = are an{ (N + 1)fcos{ — f'sin¢ (3.18)
Finally, from the fact that & = NW, it follows that
h = Nfk-WN+1/N 3.19)
and
J = o,e,b(S/k)"+ g (3.20)

4 Numerical Results

As has already been emphasized, all information regarding
the relationships among M, O, P, U and J is contained in the
function f({, N). This function has been computed numerical-
ly using a finite element method specially designed for incom-
pressible materials as has been described in prior publications
(Shih and Needleman, 1984a, 1984b). Details peculiar to the
present problem are discussed in the Appendix. In addition, a
number of consistency checks on the numerical solution are
also discussed in the Appendix. These checks give some indica-
tion of the accuracy of the computed quantities.

The numerical data is presented in Tables 1-3. Values of f,
S’ & h, h', n, y and k are given at 5 deg intervals of ¢ for
n=3, 5, and 10. Within the range of { from 115 deg to 135
deg, vy changes rapidly so values are given for each 1 deg inter-
val of { within this range. This range spans pure bending (i.e.,
P=0, y=90 deg), and data for y=90 deg is also included in
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Table 3 Normalized functions for n=10

t y n £ £ g x h Rt
0.0 29.5 0,900 1.072 0.667 0.965 1.355 3.79E-03 -2.36E-02
5.0 29.8 0.952 1.126 0.571 1,073 1.364 3.70E-03 -1.87E-C2
10.0 30.1 1.002 1.172 0.471 1.174 1,372 3,61E-03 -1,45E-02
15.0 30.4 1.049 1.208 0,366 1,268 1.378 3.54E-03 -1,07E~02
20.0 30,8 1,096 1,236 0,258 1,354  1.383 3.48E-03 -7.27E-03
25.0 31.2 1,142 1,253 0.150 1,431 1,387 3,44E-03 -4.10E-03
30.0 31,7 1.189  1.262  0.041 1,500 1,388 3.41E-03 -1.11E-03
35.0 32,3 1,237 1.261 -0.066 1.559 1.388 3.42E-03 1.80E-03
40.0 32.8 1.287 1.250 -0.173 1.608 1,386 3,45E-03 4,77E-03
45.0 33.4 1,337 1,230 -0.278 1.645 1,382 3,51E-03 7.94E-03
50,0 33,9  1.389  1.202 =0,382 1,669  1.376 3.60E-03 1.14E-02
55,0 34,5  1.445  1.164 -0,479  1.682 1,367 3.74E-03 1.54E-02
60.0 35,1 1.504  1.118 =0.570  1.682  1.356 3.93E-03 2.01E-02
65.0 35.8 1,568 1.065 =-0.655 1.669 1.342 4.19E-03 2.5BE-02
70.0 36.5 1.637 1.004 -0.731 1,644 1.325 4.55E-03 3.32E-02
75.0 37.2 1.713 0.937 -0.799 1.606 1.304 G5.04E-03 4_30E-02
80.0 38.0 1.798 0,865 -0.856 1,555 1,280 5,73E-03 5.67E-02
85.0 38,8 1.892 0,788 -0,903 1,491 1,252 6.65E-03 7.62E-02
90.0 40,1 2,000 0,708 -0.924  1.416 1,208 8,84E-03 1,158-01
95,0 41.1 2,123 0.627 =-0.945  1.331 1,170 1.12E-02 1.68E-01

100.0 42,3 2,264 0,544 ~0.944 1,231 1,118 1.60E-02 2.77E-01
105.0 44.6 2,410 0.463 =-0.896 1,117  1.031 3.31E-02 6.39E-01
110.0 47.7  2.5:4  0.388 -0.813  0.988  0.919 9.88E-02 2.07E+00
115.0 53.6 2.575 0.324 -0.652 0.834 0,743 8.46E-01 1,70E+01
116.0 55.5 2,585 0.313 -0.609 0,799 0,699 1,60E+00 3,12E+01
117.0 57.8 2,520 0,303 =0,559 0,762 0,650 3,44E+00 6.36E+0L
118.0 60.7 2,468  0.293 -0.503  0.724  0.597 B.51E+00 1,.46E+02
119.0 64.5 2,396  0.285 -0.440  0.683  0.541 2.48E+01 3.82E+02
120.0 69.4 2.305 0.278 -0.372 0,641 0,482 8.61E+01 1,15E403
121.0 75.9 2.196 0,272 -0.301 0,597 0,424 3,40E+02 3,76E+03
122.0 84,1 2,076 0,267 =0,229 0,555 0,373 1,38E+03 1.18E+04
122.6 90.0 2,000 0,265 -0,187  0.531  0.346 3,08E+03 2,17E+04
123.0 94.5  1.947 0,264 -0,158  0.514  0.331 5,12E+03 3,06E+04
124.0 107.3 1.809 0.262 ~0.086 0.474 0.301 1.44E+04 4.73E+04
125.0 122.0 1.665 0.261 -0,015 0.435 0.288 2.35E+04 1.34E+04
126.0  137,5  1.514  0.261  0.059  0.396  0.293 1.88E+04 -4,21E+04
127.0 152.2 1.353 0,263 0,136 0,356 0,320 7,36E+03 -3,80E+04
128.0  164.6 1,187 0,266  0.217 0,316 0,365 1,7SE+03 -1.43E+04
129.0  174.5 1,017  0.271 0,303 0,275 0,425 3.34E+02 =-3,73E+03
130.0  182,2 0,848 0,277  0.392  0.235  0.497 6,11E+01 -8.66E+02
131,0  188,1 0,684  0.284  0.484 0,194 0,577 1.22E+01 -2.07E+02
132.0 192.8 0.530 0.294 0.577 0.156 0.661 2.77E+00 -5.45E+01
133.0 196.5 0.330 0.305 0.671 0.11% 0.750 7.21E-01 -1.S9E+01
134.0  199.5 0,263  0.317  0.766  0.083  0.842 2.12E-01 -5,11E+00
135.0 202.1 0.150 0.331 0,862 0,050 0,936 6,89E-02 -1,79E+00
140.0 206.8 0,092 0.420 1,076 0.038 1.171 7.40E-03 -1,%0E-01
145.0  207,0 0,290 0,512  1.060  0.148 1,201 &,84E-03 -1.41E-01
150.0  207.7  0.421  0.605 1,053 0,255 1,246 5,38E-03 -9.36E-02
155.0  208.1  0.536  0.695 1.017  0.373  1.273 4.90E-03 -7,17E-02
160.0 208.5 0.630 0.782 0.971 0.493 1.298 4,46E-03 -5,53E-02
165.0 208.6 0.711 0.864 0.907 0.615 1.314 4,28E-03 -4,49E-02
170.0  208.9  0.78)  0.940  0.835 0,735 1,330 4.09E-03 -3.64E-02
175.0 209.3 0.843 1.010 0.757 0,852 1.344 3,90E-03 =2,92E-02
180.0 208.5 0.900 1,072 0,667 0,965 1.355 3.80E-03 -2.36E-02

the Tables. Use of the data can be illustrated by two special
cases.

Pure Stretching (0 =0). Pure stretching is defined with
©=0and U>0so that {=0deg and R = U/(¢,b). Then

J=0,e,b(U/e,b)N* 1g(0,N) @.1)

where g(0, 1/3)=0.462, g(0, 1/5)=0.729, and g(0,
1/10)=0.965. The corresponding values of P and M can be
obtained from (3.8) and (3.9). Note that v =30 deg in pure
stretching, and, from (2.14), n=1-N.

Pure Bending. In pure bending, P=0 and M>0 so that
¥=90deg and S=M/(v,b%). By (3.20)

M n+1
J= 0060b<—---—k00b2> b4

The values of k and g associated with 4 =90 deg are included
in the Tables, as are # and k', which allow one to determine U
and © from (3.15) and (3.16). Equation (4.2) can be rewritten
in the form given by Shih and Needleman (1984a) as

(4.2)

J=a,e,bh (n)(M/M,)"+! 4.3)
where, for all n, the reference moment is
M, =0, (u,=0.364) 4.4)

The results from Shih and Needleman (1984a) for a deeply-
cracked strip with a ligament to width ratio of 1/8 are
h(3)=1.30, A;(5)=1.16 and h,;(10)=0.97. The corre-
sponding results converted from (4.2) using the values in the
Tables are 4, (3) =1.31, h,(5)=1.15 and A,(10)=0.92. In pure
bending » =2.

The overall strain energy W is equal to the work of the com-
bined loads through their respective displacement quantities.
If the loads are increased so that M and P maintain a fixed
proportion, the deformation theory W is also exactly equal to
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compact specimen

the work done on the body if the material is described by a
pure-power flow theory (i.e., an incremental plasticity
theory). The significance of the ‘“‘eta factor,”” n, defined in
(2.12) is that it permits the determination of J directly from
the work done on a specimen by the applied loads. Curves of
the eta factor are presented in Figs. 3@ and 3b. In Fig. 3a, 7 is
plotted as a function of iy for n=3, 5 and 10 over the full range
of loadings. The same variation of 5 is shown in Fig. 34 for
n=3 and 10 for y between 50 deg and 90 deg, corresponding
to the range of vy appropriate to standard compact tension
specimens. Predictions from the present calculations are
shown as dashed line curves in Fig. 3b. Predictions for » from
other investigators are also shown and will be discussed below.
To apply the deeply-cracked solution to a compact tension
specimen, we let M = Pw where w is the distance between the
line of action of the load P and the back face of the specimen.
Thus, tan v = w/b. The parameter x=(w— b)/w is frequently
used to characterize the geometry of the compact tension
specimen. 1t is related to by tan y=1/(1 — x), and the varia-
tion of » with x is also included in Fig. 3b.

A typical value of x for a compact tension specimen is 1/2
corresponding to y = 63.4 with n=2.46 for n=3 and 5 =2.42
for n =10, according to the present calculations. These values
are substantially above the pure bending value, n =2. Several
investigators have developed approximations for 5 to account
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for combined loading effects present in the compact tension
specimen, including Ernst (1983), Kaiser (1985), and McMeek-
ing (1984). In each case, the approximation for the plastic part
of Jleads to an expression of the form
A P

J:nlb*‘go PdA+n2b*‘S0 AdP 4.5
where 7, and 7, depend on x or y (but not on #) and A denotes
the plastic part of the overall load-point displacement. For the
pure power law material, this expression reduces to

J=0n + )b ' W=nb'W 4.6)

We have used the variations of 5, and 5, with x given by
Ernst (1983), Kaiser (1985), and McMeeking (1984) to plot the
curves of # in Fig. 3b for the pure power material. Ernst’s
results for 5 are about 13 percent below the present predictions
for x=1/2. McMeeking’s results are exceedingly close to those
obtained here over the range 0.4 =x =<1 for which he tabulates
his 7, and 75,. This suggests that the more general formula
(4.5), which is not tied to the power law material, may be used
with confidence with McMeeking’s values of %, and 7,.
Kaiser’s predictions for 5 are also in reasonable accord with
those obtained over this same range. However, outside this
range his predictions deviate substantially from the present
ones, as is already evident in Fig. 3b. We also note that Ernst’s
results become significantly in error in the vicinity of y=26
deg, which is his “‘pure tension’’ limit. Ernst’s notion of a
pure tension limit is tied to the approximate form of the stress
distribution he assumes. His approximation in this limit
assumes the stress is uniform across the ligament so that P acts
through the mid-point of the ligament. Unlike the special
states of pure stretching and pure bending which are defined
precisely, the ‘‘pure tension”’ state does not appear to have a
precise meaning outside the context of his approximation.

5 Shift of Origin

For some applications another choice of origin may be
preferred, and two other particular choices will be illustrated.
Consider a second set of coordinates (x,, X,) with x, =x, and
X; =X, +¢, as shown in Fig. 4. The quantities P and © are in-
variant with respect to this coordinate shift, but denote the
moment about the new origin (X, =0, X, =0) by M where from
moment equilibrium

M=M-cP 5.1
The remote displacements are rewritten as
U (5] A
u,= Sop +—— €,5Xp (5.2)

2 2
where, by comparison with (2.2), it is readily established that
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Fig. 6 Contours of constant ® for choice of origin such that M=0
when 0 =0 according to equation (5.9)

U=U+ O (5.3)

In deriving the relations of Sections 2 and 3 we could have
equally well used the variable pairs (U, ©) and (P, M)
associated with ¢#0. With the exception of the expressions for
J, the formulas connecting the variables remain unchanged.
However, given the fact that results have been presented for
the choice ¢=0, it is probably simplest to use these results
together with (5.1) and (5.3) to shift to a set of coordinates
with ¢#0. The alternative is to form a new table of functions
(f, f', etc.) for the new choice from the functions presented
for ¢=0.

The form of formula (2.11) for J is not preserved under a
shift of origin. By (5.3), (2.11) becomes

J_2W _PU-cH)

b 5 5.4

and (2.13) is

n=2—-P(U—-cO)/W (5.5)
To determine numerical results for J in terms of shifted
variables, (P, M) or (U, ©), it is probably easiest to use the
relations (5.1) and (5.3) to transform to (P, M) or (U, ©) and
then use Tables 1-3.

Origin at the ‘‘Axis of Rotation”’ for Pure Bending. Asan
illustration, choose ¢ such that =0 when P=0. That is, the
origin is located such that in pure bending the remote
displacements in the upper-half plane are given by

ua=7—eaﬁiﬁ (5.6)
By (5.3) and (3.5), U=0 requires

¢ U _ 1 5.7)

b Ob tang ’

where the value of ¢ is that associated with v =90 deg (i.e.,
P=0). From Table 1, we obtain

0.644 (n=3)
c/b= < 0.640 (n=5) (5.8)
0.639 (n=10)

The slip-line field for the perfectly-plastic material from the
analysis of Green and Hundy (1956) gives ¢/b=0.631. This
choice of origin will be considered again in the next section in
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connection with an approximation for predominantly bending
behavior.

Choice of Origin such that M =0 in Pure Stretching. As a se-
cond illustration, choose ¢ such that M=0 when ©=0. That
is, choose the origin so that the moment about this origin
vanishes under pure stretching. By (5.1), this gives

¢/b=M/(bP) for { =0 deg. From (3.8) and (3.9), one obtains
0.603 (n=3)
. SO o2 (n=s) (5.9)

b (N+1)A0)

0.566 (n=10)

This choice will be used in developing an approximation for
predominantly stretching behavior.

6 Two Approximations

Predominantly Bending States. Take the origin at the axis
of rotation for pure bending as specified by (5.7) and (5.8).
With M measured about this choice of origin, contours of
constant ¢ are shown in Fig, 5 for n=3 and n=10. For the
power-law material these contours are self-similar, and the
particular contour shown was chosen such that the vertical in-
tercept is unity. The nondimensional load variables used in the
plot are

P 0d M

pi1o,b : #200b2
Here, u,=0.364 so that u,o,b? is the Green-Hundy (1956)
limit load for the perfectly-plastic problem in pure bending.
We take u, =2/V3 so that u,0,b would be the limit load in
pure stretching, if the stress state for this perfectly-plastic pro-
blem were plane strain tension across the entire ligament. It is
not certain that this is the correct limiting state; nevertheless,
this choice for u, is suitable for the normalization. The two
contours in Fig. 5 were derived from the numerical results
given in Tables 1 and 3. (The limit of these contours as #— o is
the limiting yield surface under the combined loads.)

By virtue of the choice of origin such that U=09®/dP=0
when P=0, it follows that the contour of ®=con. in Fig. 5
must intercept the vertical M axis with zero slope, as can be
seen. We construct an approximation in the range of pre-
dominantly bending states (i.e., | M/(u,0,b?)1>
|P/(u,0,b)1), by choosing an ellipse to approximate the con-
tour of ® = con. in such a way that the curvature, as well as the
intercept and slope, matches that of the actual contour at the
vertical intercept. The result can be seen in Fig. 5, and the
specification of the approximation is as follows.

With &, denoting the approximate ¢, we take

A =—z§%{cl(m MTPb) " e (Tsz) 1" 6

This choice ensures that the approximating contour in-
tercepts the M axis with zero slope; c,(n) is chosen so that
®,=¢ when P=0. We determined c,(n) by requiring that
® , =¢ at an angle ¥ about 30 from the horizontal axis in the
first quadrant of the plane in Fig. 5. This simple procedure
leads to a very small error in the curvature of the approx-
imating contour at P=0 but slightly extends the range of the
approximation so that it is accurate everywhere in the first
quadrant except in the vicinity of M =0, as can be seen in Fig.
5. The values of ¢; and ¢, so determined are

c,(3) =1.2141  ¢,(3) =0.9329
c,(5) =0.9663  ¢,(5) =0.8838
¢,(10)=0.8433  ¢,(10)=0.8828

and the corresponding locations of the origin to which A is
referred are given by (5.8).

Let H? denote the quadratic terms within the brackets in
(6.2), so that

6.1)

(6.3)
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&, =a,e,b2H" 1 /(n+1) (6.4)

It follows then that the associated approximate displacement
quantities are

U= 0%,/0P=¢,bH" '(¢,/u,)P/(u,0,b)

0=03%,/0M = e H"~(C3/ )M/ (n20,b%) 6.5)
Moreover, the associated approximate overall strain energy
W, =n® , is readily found to be

W, =0,e,b2nL+/n

oot () 2 ()

o (m) \e,b c,(n) \g,
Using the connections P=3W,/3U and M=34W /30, one
can derive the associated load variables in terms of U and O.

With these results in hand, the approximation for J follows
immediately from (5.4) i.e.,

J =R_W,—P(U-cO)/b=2nd, -P(U-O)]/b (6.8)
where U and © are obtained from (6.5) if P and M are
prescribed or P and M are obtained from (6.6) if U and © are
prescribed. We have compared J, with the “‘actual’’ J given
by the full numerical results over the full range of angle ¥
measured from the P axis in Fig. 5. For

30 deg=y=100deg 6.9)
J, differs from J by less than 1 percent for n=3 and by less
than 3 percent for n=10. For the range

15deg=y=<125deg

(6.6)

where

6.7)

(6.10)

J 4 differs from J by no more than 6 percent for both n=3 and
n=10. The approximation does become inaccurate in the
vicinity of the P axis. With M =0, the J, differs from J by 16
percent for n=3 and 12 percent for n=10. Thus, this approx-
imation is only recommended for use in the range (6.9) or
possibly (6.10).

Predominantly Stretching States. Now take the origin as
specified by (5.9) such that M=0 when © =0. Contours of
® =con. with this choice of origin are shown in Fig. 6. The
same nondimensional load variables (6.1) are used except, of
course, now M is taken with respect to the new choice of
origin. The same constant value of & as was used in Fig. 5 is
used in plotting Fig. 6. Since © = 3%/9M =0 at the intercept
with the P axis, the contour necessarily has an infinite slope
there, as can be seen.

The approximation for predominantly stretching states
G.e., |P/(u0,b)| > | M/(uyo,b%)1) is obtained in the same
way as in the previous instance, except that now the ellipse is
chosen so that it approximates the contour in the vicinity of
the P axis. The functional form of the approximation is
precisely that given above. All of equations (6.2) through (6.8)
carry over, except that the coefficients ¢, and ¢, in (6.3) will be
different. In this approximation, ¢ (n) is determined by re-
quiring ¢, = ® for M =0 and ¢,(n) is chosen to provide a good
approximation to the curvature at the intercept with the P
axis. Here we chose ¢, (n) such that ® , = ® at ¥ =15 deg, where
now ¥ is defined as the angular measure from the P axis in Fig.
6. The resulting coefficients are

c,3) = 1.1267 ¢,(3)=0.9321
c,(5) = 0.8625 ¢,(5)=0.8882
¢,(10) = 0.7408 c¢,(10)=0.8051

As is clear from the contours in Fig. 6, the range of validity
of this approximation is not nearly as extensive as in the
previous case. For

(6.11)

(6.12)

the error in J,, compared to our numerical results for J, does
not exceed 4 percent when » = 3 nor 6 percent when n=10. But

Odeg=<y=<15deg
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outside this range the approximation becomes increasingly in-
accurate, and thus its use is only recommended for the range
(6.12). Together, the two approximations, for predominantly
bending states and predominantly stretching states, do span
essentially the entire range of practical interest,
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APPENDIX

Finite Element Analysis of Fully Plastic Crack Prob-
lems

Penalty Formulation, Element Choice and Mesh
Design. The numerical solutions for the deeply cracked
panel presented in Section 4 were obtained by a finite element
reduced integration penalty method (Shih and Needleman,
1984a). Fully plastic solutions obtained by the method have
been shown to satisfy rather stringent consistency relations
(Shih and Needleman, 1984b). We employed the 9-noded
Lagrangian element to model the geometry depicted in Fig. 1.
The volumetric stiffness matrix is obtained by 2 by 2 (reduced)
integration while the deviatoric stiffness matrix is obtained by
3 by 3 (regular) integration. Hydrostatic stresses are computed
at the 2 by 2 Gauss points and deviatoric stresses at the 3 by 3
Gauss points. To obtain the total stress at the 3 by 3 Gauss
points, we used Lagrangian bilinear shape functions in con-
junction with the values of hydrostatic stress at the 2 by 2
Gauss points to determine the hydrostatic stress at the 3 by 3
Gauss points.

Journal of Applied Mechanics

With reference to the geometry in Fig. 1 we modelled only
the upper-half plane since the problem possesses reflective
symmetry about the crack plane. We experimented with r,/b
ratios of 4, 5, 10, and 20 and total number of elements ranging
from 24 to 120. We found that the solutions for n=3, 5, 10
did not change with r,/b ratios when the ratio is 5 or greater.
Based on these studies we settled on a mesh with 40 elements
and r,/b=5. The ring of elements surrounding the crack tip is
formed with a singular plastic (9-noded) wedge element. This
element choice and mesh design in conjunction with selec-
tive/reduced integration has been shown to give accurate solu-
tions (Shih and Needleman, 1984a, 1984b).

Parameter Tracking. The solution to the nonlinear boun-
dary value problem is obtained by the Newton-Raphson
method. The iterative method is second order convergent if a
close initial estimate of the solution is available. This initial
estimate is generated by parameter tracking (Shih and
Needleman, 1984a). Our numerical procedure begins by ob-
taining the solutions for n=3, 5, 10 for a particular combina-
tion of displacements, say R=1 and {=0. The solution for
n=3, R=1and {=0is then employed as the initial estimate in
the Newton-Raphson iterations for a slightly different value of
{ (the value of n and R are held fixed). A typical solution con-
verges within 5 to 7 iterations. In this manner solutions for the
complete range of displacement combinations are obtained
with { serving as the tracking parameter. Solutions are obtain-
ed at { increments of 5 degrees; smaller increments are used in
the range where the solutions change rapidly with respect to ¢
as indicated in Tables 1 to 3.

Function Evaluations and Spline Fitting. Several quan-
tities of interest can be evaluated directly from the field solu-
tions which are obtained at distinct combinations of remotely
applied displacements parameterized by ¢{. In particular the
total strain energy W is obtained by summing the element
strain energy as defined by (2.5). Using (3.6), the values of f
are then known at distinct values of {. To evaluate the
derivative of f with respect to { the following approach is
taken. We employ the natural cubic spline (Young and
Gregory, 1972) to interpolate the distinct values of f and ¢.
Values of fand f’ at any value of { can then be determined
directly from the spline functions (note that first and second
derivatives of the spline interpolation function are continuous
everywhere, Young and Gregory, 1972). Noting the periodici-
ty of f(3.7) and of f, we have given values ¢orresponding to ¢
ranging from O to 180 deg. The values of the other functions
listed in the tables are obtained by using the appropriate for-
mulas given in Section 3 in conjunction with the tabulated
values of fand /.

Consistency Checks. We carried out several consistency
checks. In one check, we calculated P and M wsing (3.8) and
(3.9) and the tabulated values of f and f’. These values were
found to be within 1 percent of the P’s and M’s calculated
using (2.3) and the equivalent nodal forces associated with the
nodes on the remote boundary I'. We also evaluated the value
of the J-integral using a volume integral (area integral in the
case of two-dimensional problems) expression (Li et al., 1985)
and the finite element field quantities evaluated at the 3 by 3
Gauss points. The J values associated with various (area) do-
mains differed by less than 1 percent from the value deter-
mined from (3.11). For the constitutive relations considered in
this paper (1.2) the surface of constant ¥ (3.1) and #(3.2)
must be convex in their respective displacement and force
planes indicated in Fig. 2. A check of the values of f, f” and 4,
h’ given in the tables showed that they satisfy the geometrical
requirements associated with convexity. Finally, we add that
the convergence of the rotation points (5.8) towards the Green
and Hundy slip-line rotation point (1956) is an independent
verification of the accuracy of the fully plastic solutions.

JUNE 1986, Vol. 53/ 277






