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Abstract—The mechanics of crack tip plasticity in dynamic crack growth is considered as it influences two
modes of dynamic fracture—cleavage and micro-void nucleation, growth and coalescence. The subject is
approached using both the continuum theory of visco-plasticity and dislocation dynamics, The viewpoint
underlying each approach is that the crack is traveling through material with a relatively high density of
pre-existing mobile dislocations. Analysis is directed at discovering the role played by the associated
rate-dependent plasticity in establishing conditions for dynamic crack propagation. The theory is far from
complete, but the contents of the paper should serve to aid understanding of basic material fracture
phenomena, such as cleavability and the ductile-brittle transition, as well as provide a background for

the engineering theory of dynamic fracture.
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1. INTRODUCTION

This paper focuses on conditions for rapid crack
propagation in metals using both the continuum
theory of plasticity and a dislocation theory. The
underlying premise of the paper is that a dislocation
source distribution and/or a mobile dislocation den-
sity exists in the material prior to the cracking event
such that plastic dissipation in a zone around the tip
of the crack plays an essential role in setting condi-
tions for propagation or arrest. This premise is of
necessity in effect when a crack advances by the
mechanism of micro-void nucleation, growth and
coalescence. In this mode of growth, relatively large
strains must occur in the fracture process zone, which
is typically many microns in extent, and substantial
plasticity occurs in a zone surrounding the fracture
process zone as well. The premise also often holds for
cleavage cracking of single crystal and polycrystalline
metals even though the fracture process itself is not
necessarily accompanied by extensive plastic defor-
rmation.

This paper does not address the “intrinsic cleav-
ability” of a given metal. Investigations of intrinsic
cleavability of a single crystal of a given material (e.g.
[1-3]) generally assume that background dislocations
in the vicinity of the crack tip are absent and consider
a competition between dislocation emission from the
tip and the atomic separation process. Given that a
material is intrinsically cleavable, whether or not a
crack advances by cleavage in a typical test situation
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seems to be greatly influenced by the interaction of
the crack tip with pre-existing background dis-
locations. It is not even known, for example, whether
a phenomenon as dramatic and basic as the
ductile-brittle transition observed in many metals
represents a loss in intrinsic cleavability or whether it
is primarily due to crack tip interaction with the
background dislocation field. Recent discussion has
called attention to the apparent limitations of various
measures of intrinsic cleavability in classifying ob-
served cleavability of a wide range of materials. A
simple model has been used in Ref. [4] to estimate the
effect of pre-existing dislocation density on the
ductile—brittle transition; critical densities in the ob-
servable range are predicted.

A continuum theory of crack tip plasticity does not
distinguish between the motion of dislocations emit-
ted from the tip and those pre-existing in the interior
of the solid or nucleated from internal sources.
However, it is assumed that the scale of the inelastic
deformation, the plastic zone size, is very large
compared to the dislocation spacing and the travel
distance of individual dislocations. Qur objective is to
discuss quantitative estimates of the stress field and
plastic dissipation in the region surrounding the crack
tip. We will hot attempt to characterize details of the
fracture process itself. The extent of the fracture
process zone when the micro-void mechanism oper-
ates is some multiple (typically, from 2 to 20) times
the spacing of the void nucleating particles. Because
the growth and coalescence process generally requires
relatively large plastic strains, crack advance by this
mechanism is innately accompanied by substantial
plastic deformation, both in the fracture process zone
and without, as has already been remarked. By
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contrast, cleavage is not necessarily accompanied by
plastic deformation and in fact the essence of cleav-
age in many metals seems to be tied to the ability of
the crack to outrun most of the plastic deformation
which would otherwise accumulate if it were advan-
cing quasi-statically.

Stroh’s [5] early discussion of the micro-mechanics
of cleavage fracture gives a remarkably clear picture
of some of the qualitative aspects of the process. For
many metals, cleavage appears to be an inherently
dynamic process in which a crack somehow gets
started running at high speed. The rate-dependence
of plastic flow enables the crack to outrun most of the
plastic deformation. The mechanism of crack ad-
vance by void growth was not appreciated at the time
Stroh wrote his article. It is of historical interest to
read of Stroh’s insightful groping for a mechanism
other than cleavage to explain phenomena which
clearly did not fit into his view of cleavage.

The outline of the present paper is as follows.
Aspects of high strain rate plasticity are discussed in
section 2. Some of the most relevant results from
elasto-dynamic fracture mechanics are summarized in
section 3 along with an asymptotic result for the
plastic dissipation at a steady running crack tip when
the dissipation is not too large. The most complete
results available for elucidating the role of crack tip
plasticity over the full range of crack velocities, from
quasi-static to high speed, are for the anti-plane shear
problem (mode IIT) 6], and these results will be given
in section 4. Plane strain, mode I, high speed crack
growth is discussed in section 5 from the vantage
point of continuum plasticity theory following the
treatment in Refs [6-8]. The initial steps in a parallel
treattment which accounts for the motion of individ-
ual dislocations is given in section 6, permitting the
results of the continuum theory to be reinterpreted in
dislocation terms. Throughout the paper, application
of the theory to establish conditions for crack prop-
agation and arrest will -be discussed with a strong
distinction drawn between conditions appropriate for
the two fracture mechanisms, cleavage and the micro-
void process. In addition, implications of the theory
are discussed related to a number of central issues
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such as the ductile-brittle transition, suppression of
cleavage, velocity—toughness relations and crack ar-
rest.

2. HIGH STRAIN RATE PLASTICITY

The strain rates experienced by material elements
close enough to the crack tip to undergo plastic
deformation are generally very large for typical crack
velocities, usually well above 10°s~! and as large as
10°s~! or more. Although data on metal deformation
at strain rates as high as 10°s~! is rare, it is well
established that many metals display sharply in-
creasing resistance to plastic flow at strain rates
above, typically, 10*s~'. The effect of this elevation
in flow resistance has very different consequences for
cleavage and for fracture by the micro-void mech-
anism, as will be seen.

A running crack tip subjects nearby material ele-
ments to a very brief stress puise. This pulse results
in relatively small amounts of plastic strain in the case
of cleavage cracking and relatively large plastic strain
for a crack advancing by the micro-void mechanism.
As discussed below, high strain rate data is not
usually gathered under conditions which model a
brief stress pulse resulting in small plastic strains.
Consequently, the constitutive law for material be-
havior in the inelastic zone of a cleavage crack can
only be inferred from data taken under other high
strain rate histories.

Most high strain rate tests are conducted in the
manner indicated in Fig. 1(a). Specimens are tested
under a sequence of strain rates, each specimen being
subject to a nominally homogeneous strain and con-
stant strain rate over the entire test history. A series
of stress-strain curves, plotted as shear stress 7 vs
plastic shear strain y* in Fig. 1{a), are generated, each
associated with a particular strain rate. This data is
then cross-plotted as in Fig. 1(b} as 7 vs 7 at a given
level of plastic strain. The relation of 7 to 7 reflects
the visco-plastic nature of the response. Most data of
this type (e.g. [9-12]) display a fairly dramatic in-
crease in flow resistance at strain rates above a
transition rate y, about 10*s~? or 10*s~!, The transi-
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Fig. 1. High strain rate testing. (a) Data as collected, in the form of relation between shear stress and
plastic shear strain for nominally constant strain rates; (b) data cross-plotted as relation between shear
stress and plastic shear strain rate for given levels of plastic strain.
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Fig. 2. Transient strain histories produced by high strain

rate pulse acting on material initiaily deformed at low strain
' rate.

tion is usually atiributed to dislocation velocities
being pushed into the phonon drag regime [13], but
the particular mechanism is not important for present
purposes. Simple dislocation models, which neglect
the multiplication of mobile dislocations, indicate
that  increases in linear proportion to increases in ¥7
in this regime. Some data of the type depicted in Fig.
1(b} are in approximate accord with the linear de-
pendence, at least over a limited range of strain rates
above §, [12]. :
Recently it has been argued [11] that the state of
the material following a given plastic strain depends
strongly on the strain rate which occurred over the
strain history. Such a dependence is also evident in
data taken under transient histories where a specimen
experiences a high strain rate pulse (but with 5° < )
following straining at a low strain rate [12]. Figure 2
depicts the nature of such transient histories. Once
the high strain rate pulse starts, the stress increases
rapidly and approaches the stress associated with the
history in which the strain rate is the high value from
the start of straining. It is data of this type which
should be most relevant to the brief stress pulse
associated with a running crack, particularly for
cleavage cracking where relatively small plastic strain
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increments are induced. One would expect the pre-
cracked material to have a dislocation structure
which arose as the result of one or more low strain
rate processing steps, and it is on this pre-existing
structure that the stress pulse acts.

The idealized mechanical models of material be-
havior used to obtain the results described below are
visco-plastic in character such that the plastic strain
rate during a brief pulse is taken to be given by

¥ =F(t), 2.1
with any explicit dependence on strain omitted due to
its seemingly secondary significance. For cleavage
cracking, strain hardening should be of secondary
importance since the increments in plastic strain are
small. For a crack advancing at high speed by the
micro-void process, strain hardening is likely to be
more important, but it will not be accounted for here.
In either case, when F(r) is identified with data
cross-plotted in the manner of Fig. 1(b), the strain
level y” associated with the cross-plot should be
representative of that occurring in the plastic zone.

Specifically, we will consider two visco-plastic ide-
alizations. The simplest is that in Fig. 3(a) where the
material is elastic-perfectly plastic with t =1, for
7 <9, and

=Ygl =) for t>1,  (22)
where y is the elastic shear modulus. For the relation
displayed in Fig. 3(b), the material has a relatively
weak stress dependence below the transtion stress 1,,
such as that suggested in Ref. [13] and used in Refs
[7, 8]. Above the transition stress, the material will be
characterized by either eqn (2.2) or the slightly more
elaborate representation

» - . 'C—T,. . T—7
V=547, + Vs
T T

This latter representation is motivated by a sug-
gestion in Ref. [10] that the dependence of plastic
strain rate on stress may approach a power law
relation at very high stresses, where the stress ex-

')” (rt>1). (2.3

3b)

Fig. 3. Visco-plastic idealizations of material behavior. (a) Elastic/perfectly-plastic at low strain rate,
linear stress dependence at high strain rate; {b) weak stress dependence at low strain rate, linear or power
law siress dependence at high strain rate.




988

ponent may be between 2 and 3. Cur analysis can
embrace eqn (2.3) with no extra complication and
thus eqn (2.3) will also be considered. However, most
of the discussion which follows will center on eqn
2.2).

The multi-axial form of the constitutive law is
based on the Mises stress invariant in the usual way.
With 6, as the stress, s; as the stress deviator, and
T = (s, 5,/2)'* as the effective shear stress, the plastic
strain rate is

&= F(t)s;{(21). 2.4)
The total strain rate is &, = &5 -+ £7 where the elastic
part is given by

1
E‘:&=E‘ [(1 + V)d'y— Vd'kkafj], (2.5)

where F is Young's modulus and v is Poisson’s ratio.

The general visco-plastic relation (2.4) continues to
apply under conditions of decreasing effective shear
stress; the material description then implies a transi-
tion to an elastic unloading regime when 1 falls below
the level at which F(t)=0.

3. ELASTIC CRACK PROPAGATION
AND STEADY-STATE GROWTH IN
SMALL SCALE YIELDING

3.1. Elasto-dynamic results

The clasto-dynamic stress fields at the tip of a
crack lying on the x-axis and advancing with
velocity v in the x,-direction in a linear, isotropic
elastic solid are of the form

S K
¥ < 2nr

where r and @ are planar polar coordinates centered
at the tip. The normalized velocity m is defined by

Z,(0,m), @.

m=uje, (model},

=vfc, (mode III), (3.2)
where ¢, is the Rayleigh wave speed and c, is the shear
wave speed. The functions £,(0, m) are universal for
a given mode of loading, and K is the associated
dynamic stress intensity factor. In mode I the nor-
malization X,, = 1 is used on the line ahead of the tip,
while ;=1 is used in mode III. In mode III
g+ o, Ty =(cos & —iw,sin§)"12,  (3.3)
where o, = (1 —~m?}? and i=./—1 The corre-
sponding formulae in mode I are slightly more com-
plicated; they can be found in Refs [7, 14, 15].
The fundamental relation between the dynamic
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elastic energy release rate  (the energy “loss” out the
tip per unit of crack extension per unit length of crack
front) and the dynamic stress intensity factor is

G =f(m)(1 —vI)KE (planestrain, mode I), (3.4)

G=(1-m) 2K (2u) (modelll), (3.9
where f(0) = 1 and f(im) has a dependence on m much
like (1 —m?®)~2, together with a very weak de-
pendence on v[14].

The quantities K or G characterize the near-tip field
of the running crack in any elastic problem. The
solution to an elasto-dynamic problem provides the
history of K or G as a function of the history of the
crack tip position and loading. Few closed form
solutions are available which provide the time history
of K or G, but one example discussed in Ref. [14]
nicely illustrates the way K or G depends on crack
velocity and applied load. Imagine a crack running
into a block of pre-stressed material. Let K denote
the static stress intensity factor of a stationary crack
in the pre-stressed block whose length coincides
momentarily with that of the dynamic crack, and let
Gg=(1 — v)KL/E be the corresponding quasi-static
energy release rate. As long as there are no wave
reflections from the outer surfaces of the block or
from the other end of the crack back onto the tip,
then the dynamic energy release rate of the running
crack is given by G, times a function of m. To a good
approximation

G = (1 —m)Gy, (3.6)
reflecting the tendency for the energy release at the tip
to be reduced at high velocities due to inertial shield-
ing. This simple result will be useful in interpreting
some of the theoretical predictions later in the paper.

s

3.2. Steady-state, small scale yielding

In this paper we will discuss solutions to several
steady-state crack problems where the active plastic
zone is small compared to all geometric length scales,
including the crack length itself. In the small scale
yielding problem (see Fig. 4) one focuses on behavior
near the crack tip in the plastic zone by posing an
asymptotic problem in which the remote, or outer,
solution is the elasto-dynamic field feqn (3.1)] charac-
terized by K or, equivalently, by G. The plastic zone
size scales as (K/ty)* or uG/t% where 7y is an
appropriate yield stress. As indicated in Fig. 4, the
outer part of the active plastic zone is generally
characterized by plastic strain rates below the transi-
tion ¥,, while the inner region surrounding the tip is
the high strain rate regime. A wake of residual plastic
strains is left behind the active plastic zone advancing
with the tip. In the steady-state problem an observer
moving with the tip sees an unchanging field. The
time derivative of ‘any Cartesian component of any
field quantity associated with a material point is
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Fig. 4. Dynamic steady-state, small scale vielding crack
propagation.

related to the x,-gradient by
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3.7
The studigs reported below are carried out in plane
strain or anti-plane shear within the context of the
small strain theory of plasticity so that linearized
equilibrium and strain—displacement relations are
used.

An important feature of each of the problems for
propagation in rate-dependent materials discussed in
this paper is that the elastic strain rates become large
compared to the plastic strain rates as r — 0. This
fact, which requires the stress exponent » in eqn (2.3)
to be less than 3, is easily established using argu-
ments similar to those in Refs [16-19]. An impertant
consequence of this fact is that the asymptotic
near-tip stress fields within the high strain rate zone
have precisely the same form as in the elastic
problem, except that the amplitude will be reduced
below K by the plasticity. That is,

Kri
oy = — Z0,m) as

N 2mr

and the crack tip energy release rate is given by

(3.8

r—0

Gy =fm)(1 — V)KL, [E  (model), 3.9)

Gp=(01—m*)"""K2 /(2u) (modelll). (3.10)

The main result from each of the small scale
viclding problems is the relation between G,, and G
as influenced by the parameters of the visco-plastic
material model and the crack velocity. The basic
steady-state energy balance is [7]

1 h
G""’=G=_J gyggdA_j U,dx,, (3.11)
U Ja A

where the area integral extends over the active plastic
zone and U, denotes the residual elastic strain energy
density in the remote wake. Within the context of the
continuum theory, G, must be regarded as the
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energy rate available for the fracture processes deep
within the plastic zone. In other words, the con-
tinvum theory discussed here accounts for the plastic
dissipation in the plastic zone, but not that associated
with the fracture process itself; the fracture process
consumes the energy flowing out the tip as given by
G, in the continuum solution. The continuum ap-
proach is then meaningful in application to dynamic
crack growth to the extent that the fracture process
can be decoupled energetically from the plastic dissi-
pation in the plastic zone.

An asymptotic expression for the plastic dissi-
pation term in egn (3.11) was derived in Ref. [7]
which is valid under conditions, to be discussed in
detail in what follows, when the plastic dissipation is
not too large compared to G. Moreover, under these
conditions the contribution of the residual elastic
energy left in the wake is extremely small and unim-
portant in the energy balance of eqn (3.11). When the
crack runs rapidly with relatively little plastic dissi-
pation, nearly all the plastic dissipation which does
occur is associated with plastic strain rates in the high
strain rate regime (3”>7,), and these plastic strain
rates can be calculated using the near tip stress field
[eqn (3.8)]. The calculation for plane strain gives (see
Ref, [7] for details)

Bmy® G

tip

2

1 - 2
EL"""S""P =)/ mF o
x JmF(T)T4 dz,

r

(3.12)
where
B(m) =f" BZ;(0) = (0))* de, (3.13)
and
=5~ Tud,.

For the linear relation (2.2),

= 1 1 .
j F("f)r“dr=r?3[§?r+33%]51?3}’, (3.14)
% g

while for the more elaborate representation (2.3),

o 1 1
J F(tyr*dc =Tr_3|:§}j:+—75.4+c(n)}iﬂ:|

, 6
=1}, (3.19
where for n <3
(n) =fmf.-4(«: —1ya
=En(n —D(n — 2)_ (3.16)

6 sin am

Values of ¢(n) are listed in Table 1.
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Table I. Selected values of ¢(n)

‘n 1 % 2 % 3
' Fd I 5m
““ 6 3 6

With 9 denoting the collection of strain rate-like
terms defined in eqns (3.14) or (3.15), depending on
the representation used, the asymptotic energy bal-
ance (3.11) can be written as

Ju’
G,p=G — H(m) (E)Gf,,,, (3.17)
; :

where

2 Bm)
2% [(1 = )fm)l"

This reduces to the equation in Ref. [7] for the case
of the linear representation for the high strain rate
regime; however, the terms in the plastic dissipation
have been regrouped here. In particular, the effect of
inertia comes in exclusively through H(m) which is
presented in Fig. 5 and Table 2 for v = 0.29. For m
less than about 0.3 inertia has almost no effect on the
energy balance [eqn (3.17)]. In the limit m —0,
H =0.0810 for v =0.29, and the relation becomes

H(m) = (3.18)

G, =G 00810("’”2)62 3.19
w=0G—0. == | Gl (3.19)
T

which is precisely the result one would obtain from
an analysis which neglected inertia from the start.
In mode III, eqn (3.12) still holds but with
(1 —=v)f(m) replaced by (1 —m?)~'? where, now,
m =uv/c,. The integral (3.13) for B(n) can be evalu-
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ated anaiytically. The resuiting energy balance is
again eqn (3.17) where now

4 1—m?>43m*/8
Ao = —a

The asymptotic equation (3.17) for G, in terms of G
will be compared with accurate numerical results in
the next section. It will be seen that a slight
modification of this equation leads to a result with
improved accuracy at relatively large plastic dissi-
pation.

(mode IIT). (3.20)

4. STEADY-STATE, SMALL SCALE YIELDING
CRACK GROWTH IN MODE III

Mode III (anti-plane shear) crack problems have a
long and useful history in fracture mechanics as
mathematical models of their counterparts in plane
strain or plane stress which are generally more
difficult to analyze. In dynamic crack propagation
this utility persists even though the cleavage process
itself is not a mode III phenomenon. The mode II1
problem provides relationships between variables
such as G, and G which-are similar to those for the
plane problems. At the present time, the most com-
plete picture of crack growth is that for mode IIL

4.1. Quasi-static and dynamic growth in rate-
insensitive, perfectly-plastic solids

With 7, as the yield stress in shear of an isotropic,
elastic/perfectly-plastic solid, the yield conditien ac-
cording to the Mises criterion or the maximum shear
stress criterion is 12+ 3 = %, where the notation for
mode 1M1 is displayed in Fig. 6. We first give the
quasi-static (i.e. inertia-free) result for the shear
strain distribution on the line ahead of the crack
(f = 0) within the plastic zone [20, 21]:

n=7ell +I(R/x)) +3I*(R/x))], (A1)

D(m)
0.5
Him)
0.0 1 |
0.0 0.5

m = v/¢r Lo

Fig. 5. H(m)and D{m) in plane strain, mode I (v = 0.29). The value of H at m = 0 is 0.081. The minimum
value of D is 0.109 at m =0.55. [D is defined below by eqn (5.6).]
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Table 2. Selected values of H(m) and D(m)}{(v =0.29)

m 0 01 02 03

04

05 06 07 08 09

H{m) 0.081 0081 0.083 0.086 0.092 0.102 0.I123 0.175 0.345 1.484

Dim)

co 0441 0.224 0155 0.124 0.110 0.111 ©0.135 0.233 0.892

where yy=1,/u. The distance R the plastic zone
extends ahead of the crack tip is ca 7% less than the
corresponding distance for the stationary problem,
ie. 7% less than

R =(Q2/m)Gujry. (4.2

The near-tip strain field in the steady-state quasi-
static growth problem is significantly less singular
than for the stationary problem, where y, = ¥R x|
on the line ahead of the tip in the plastic zone. It is
even less singular than that for the linear elastic
problem at the same level of G. The energy release
rate at the tip, G,,, is identically zero, implying that
all the energy released from the remote field G is
consumed by plastic dissipation [21]. Consequently,
within the context ‘of the problem of a line crack in
a rate-independent solid, it is not possible to accom-
modate a criterion for propagation based on a
critical near-tip energy release rate. The dramatic
reduction in the strain levels ahead of a growing
crack compared to the stationary crack leads to the
highly stable crack growth characteristics of cracks
advancing by the micro-void mechanism in ductile
metals [21, 22].

Some sense of the implications of the mode HI
model for crack growth under ductile void growth
conditions can be had using the simple strain-based
criterion [22] for continuing crack advance that the
plastic strain a distance x, ahead of the tip maintains
a critical value, i.e. :

Yi=v, at x =x,. (4.3
Imposition of eqn (4.3) on the stationary solution for
initiation of advance gives

Rinirlfxc = 1 + ?c/’?}’s (44)

while imposition of eqn (4.3) on the steady-state
sofution (4.1) gives

Rofx. = expl(1 + 2y, fyy ) — 1]. (4.5)
Thus, the ratio of the plastic zone size associated
with steady-state growth to that associated with
initiation is

Reo/Rise= (1 +v:fyy) " expl(1 + 27, /y)"? — 1], (4.6)

which becomes large when y,/y, is large. Based on
the ductile propagation criterion (4.3), resistance
curves in the form of G vs crack advance Ae have
been determined in Refs [21, 22]. These have the form
shown on the left in Fig. 7 where steady-state
conditions are approached after a crack advance of
about, typically, 2 or 3 times R,,.
. The strain distribution ahead of the crack for the
dynamic, elastic|perfectly-plastic problem in which
inertia is included is more complicated that that for
the quasi-static limit, but it has also been obtained
in closed form [23]. Within the plastic zone it has the
form

?2=yYf(msR/x1)= (4'7)
where m =uv/c, and R is again the distance to the
elastic/plastic boundary directly ahead of the tip.
Equation (4.7) reduces to the quasi-static result (4.1)
as m —0. The distance to the elastic/plastic boundary
must be obtained by a numerical solution to the
steady-state problem. An approximate expression for
R obtained by fifting numerical results for m < 0.6
is [23]

R=(0.59 — 1.0m?)(1 — m?)2(uG /7). (4.8)

active plastic zone

h=2e, o
H=2ey

T="Ci3
=03

Fig. 6. Notation for mode III steady-state, small scale yielding crack propagation.
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arrest

initiation

Aal Ry

m

Fig. 7. Resistance curves for elastic/perfectly-plastic material for a strain-based propagation criterion such
as eqn (4.3). On the left G is plotted against crack advance for transient quasistatic crack advance. On
the right G is plotted against normalized crack speed for steady-state dynamic crack advance.

To see the effect of inertia on steady-state, ductile
crack growth, the authors in Ref. [23] also imposed
the criterion for crack advance eqn (4.3) on (4.7), to
obtain

Volvy=f(m, Rix.)—1. 4.9)
The dependence of G on m is obtained by eliminating
R using eqn (4.8). Figure 8 displays the ratio of the
value of G needed to drive the crack at velocity m
from eqn (4.9) to the value of G needed to drive the
crack quasi-statically from eqn (4.9) with m =0.

Alternatively, the quasi-static value can be obtained
from eqns (4.2) and (4.5) as

CGm=0)= 1769(xct§,,n’u)
x exp{(1 -+ 2y./yy)'* — 1}.

The ratio in Fig. 8 is independent of x,. The more
ductile the material (i.e. the larger is y, /y,), the lower
the crack velocity where inertial effects start to
become important. For the rate-insensitive material
advancing according to the simple strain-based
growth criterion, the steady-state velocity increases
monotonically with .

Experimentally measured relations between the
dynamic K or G and velocity under conditions of
plane strain, mode I show the trends predicted by the
mode IIT model when the material fractures by the
micro-void mechanism. Figure 9 presents such data
from Ref. [24] for a high strength steel (AISI 4340)
which has a very low strain rate sensitivity and which
did fracture by the micro-void mechanism. The data
in Fig. 9 is plotted as K{ (which is just X in the
notation of the present paper) as a function of
velocity. The data is taken under conditions in-
volving significant crack extension but not,-of course,
strictly steady-state. The data point associated with
v =0 is the crack arrest value for the running crack
and not the initiation fracture toughness, K, of the

(4.10)

material. The initiation toughness for this material is
about 15% below the arrest value of K. This is to be
expected since the arrest value of K or G for a
running crack should be essentially the quasi-static,
steady-state value, i.e. G,= G,,, assuming the crack
is running into a slowly varying stress field. This
value, in turn, should always exceed the value of K
or & needed to initiate crack growth in a standard
fracture toughness test of a material fracturing by the
micro-void mechanism.

The relationship between the behavior of the crack
under quasi-static advance starting from initiation
and the nominally steady-state behavior of the run-
ning crack is shown schematically in Fig. 7. If the
material has substantial tearing resistance with a
quasi-static G value for steady-state growth, G,
many times the initiation value G,, then the relation
between G and m for the running crack will be
correspondingly high, assuming of course that the
micro-void mechanism does not give way to cleavage.
The AISI 4340 steel, for which data was presented in

G{m)
G{m=0)
10

0 Il L N I 1
m = v/c, E
Fig. 8. Value of G needed to drive crack at normalized crack
speed m in rate-independent elastic/plastic material com-
pared to quasistatic value G(m =0), plotted for various

?cll?.'(‘
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Fig. 9. Experimentally measured relation between dynamic stress intensity factor and crack speed for a
high strength steel (reproduced from Ref. [24]).

Fig. 9, had only modest tearing resistance, and thus
K, did not exceed K|, by a large factor.

4.2, Crack growth in rate-dependent solids

The mode III results in this subsection are all
based on the idealized visco-plastic shear
stress—strain rate curve shown in Fig. 3(a). The
response of the material is elastic/perfectly-plastic
with t = 7y =+, for ¥ <, and with §, given by the
linear representation (2.2) in the high strain rate
regime for 37>y, and 1 >1,.

The solution to the small scale vielding, steady-
state problem depends on three dimensionless combi-
nations and these are convenienily chosen to be

=tk
Yo

. G '
and 0 =2 @y
et

v
m——,
CS
Results for the distribution of plastic shear strain
ahead of the tip and for G,,/G [6] were obtained
using a finite element scheme specially adapted to the
steady-state problem along the lines of previous
studies [8, 23, 25]. The numerical calculations were
made for the following combination of parameters:
m =003, 0.1, 0.3, 0.5, 0.8; {=0.01, 0.1; with Q
ranging from 0.01 to 100. For iron-based materials
we have estimated { to be of the order of 10-2. In
the range of refatively small values of { considered
here, the solution displays little dependence on this
parameter. The () parameter is strongly material
dependent ranging from as small as 0.005 for cleay-
age micro-cracking of a single crystal of iron to more
than 50 for crack propagation in 2 tough poly-
crystalline steel.
Some sclected results for the distribution of 3
ahead of the tip are shown in Fig, 10. The distribu-
tions in Fig. 10(a) are for several values of m with

a common value of (. The limiting curve for m =0
coincides with the rate-independent, perfectly plastic
distribution (4.1) becanse the portion of the plastic
zone in which 7 > 9, shrinks to zero as m — 0. As m
increases, the high strain rate regime #">7,) oc-
cupies a larger and larger fraction of the active
plastic zone. If

v}

——=_—>12
YurG LT

(4.12)

then the plastic strain rate exceeds.y, essentially
everywhere in the active plastic zone.

The effect of increasing the material rate sensitivity
at a fixed crack velocity can be seen in Fig. 10(b). The
curve for 0 — oo is the perfectly plastic result (4.7)
of Ref. [23]. The smaller ( is, the greater the rate
effect. One way to think of this is that as G decreases
with m fixed, the size of the active plastic zone
decreases and the portion of the zone dominated by
the high strain rate regime increases, as indicated by
eqn (4.12). Alternatively, if G and m are regarded as
fixed, then Q decreases with decreasing j,, corre-
sponding to increasing strain rate sensitivity. Then,
{ also increases but its effect on the solution in the
range of small { is of secondary importance,

Curves of G;,/G as a function of m are shown in
Fig. 11(a) for several values of @ with { =0.01. The
points are from the numerical calculations; the
solid-line curves are the predictions from the asymp-
totic formula (3.17); and the dashed-line curves are
obtained from a slight modification of the asymptotic
formula. The modified formula reproduces the nu-
merical results with high accuracy over the range of
parameters in which calculations have been made,
The motivation for the modification is now de-
scribed.” The asymptotic result [eqn (3.12)] for the
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Q —ea (perfectly plastic)

(10a)

(10b)

Fig. 10. Plastic strain distributions ahead of crack tip in mode IIL (a} For fixed Q and various m; (b) for
fixed # and various Q.

plastic dissipation and the ensuing asymptotic for-
mulae [eqn (3.17)] for G,,/G were derived using the
near-tip stress field [eqn (3.8)] with amplitude K, to
caleulate the plastic strain rates. The modification is
obtained if, instead, one uses the stress field (3.8)
with the amplitude (KK,,,)"”%, which is the “harmonic
mean” of K, and K. With this change, eqn (3.12) for
the plastic dissipation still holds but with G, re-
placed by GG, and eqn (3.17) becomes
Gyy=G — H(m) (yiz
” 73y

) GG,.  (413)

This modified formula still retains its asymptotic

validity in the limit of small plastic dissipation since
Gyp— G in this limit. The significantly improved
accuracy of eqn (4.13) reflects the fact that the
singular stress field with amplitude K, under-
estimates the stresses while (KK,,)'* represents a
choice between K, and K. The modified formula is
still restricted to the range in which most plastic
dissipation occurs in the high strain rate regime.
Although it correctly predicts that G,,/G—0 as
v —0, it does not provide an accurate transition to
the rate-independent case since in this limit essen-
tially all dissipation.occurs with ¥7 < ,.

With ¥ defined by eqn (3.14), G, /G from egn
(4.13) can be expressed in terms of the parameiers in

unmodified formula (3.17)
modified formula (4.13)

o numerical

m = vicg

{8

v

(11b} RipG

Fig. 11. Comparison of mode IIT numerical results to asymptotic formulae for G,, /G as a function of
m. (a) Dynamic results for { = 0.01 and various {; (b} inertia-free results for various {.
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Fig. 12.. Value of G needed to drive crack at normalized crack speed m in rate-sensitive material compared
to quasistatic value G = 0). (a) For { =0.01, y,/yy = | and various ¢,; (b} for { = 0.01, y.fyy =2 and
various J,.

eqn (4.11) as

G, .
bl 0
el

For m < 0.3 inertia is relatively unimportant in this
relation. Using H{m} = H{0) = 4/ from eqn (3.20),
one finds from eqn (4.13) that in the inertia-free limit

Gy 4 932G
Tip _ 1142
G I: +n 3y

_ 2 WG ™!
_|:1+§(1+2C)—2_U:I . @15

LT,

+é %’Q (1+ ZC)Q:I_l. (4.14)

where the latter expression holds for the case of
linear high strain rate behavior. Figure 11(b) shows
the comparison between eqn (4.15) and numerical
calculations carried out with inertia neglected in the
formulation.

We end this section by showing results for the
effect of strain rate sensitivity on the propagation of
a crack in mode IIT when the strain-based propaga-
tion criterion {4.3) is imposed on the solution to
model crack advance by the micro-void mechanism.
We defer discussion of application to cleavage crack-
ing until the next section when mode I is considered.
Curves giving the value of G needed to drive the
crack in steady-state with the criterion (4.3) met are
plotted in Fig. 12, with y./y, =1 in Fig. 12{a) and
v./7y =2 in Fig. 12(b). The curves are derived from
the plastic strain distributions such as those in Fig.
10. The G-value in Fig. 12 is normalized by the
quasi-static, steady-state G-value for driving the
crack [i.e. G(m =0) from eqn (4.10) with 7, =1,].
Each curve in Fig. 12 corresponds to a prescribed

T For the purpose of discussion it is assumed that this
strain level is not a strong function of crack velocity. Some
ideas on the role of strain rate on the micro-void fracture
process itself have been advanced in Ref. [27].

993
G(m)
G(m=0}
wt =2
st
Q= == (perfectly plastic)
0 . . . .
0 0.5 m
(12b)
value of the parameter
#5,G (m = 0)
o= 4‘2—
Cstl
_ xr."y'(] 172
= 1.69Texp{(1 +2p.f1r)2 =1}, (4.16)

5

together with {=0.01. The curves in Fig. 12 are
otherwise independent of x,.

The lowest curve, corresponding to @) — o0, is the
rate-independent result which was also shown in Fig.
8. The material rate-sensitivity has its greatest effect
at relatively low values of m; at values of m above
about 0.3 inertial effects become important. Anal-
ogous behavior is reported in Ref. [26] for a mode
III study which used a visco-plastic formulation of
rate-sensitivity based on an over-stress model.

The mode IIT model implies that material rate-
sensitivity significantly increases the resistance to
high speed crack growth when crack advance occurs
by a mechanism such as micre-void coalescence
which requires a critical level of strain in the fracture
process zone.f The effect is easy to understand. The
faster the crack runs, the higher must be the general
stress level in the active plastic zone to achieve the
critical strain level. This, in turn, requires a higher
crack driving force. It will be seen that the effect of
rate-sensitivity on crack advance by cleavage is quite
different.

The values of y,/y, used to generate the curves in
Fig. 12 are unrealistically small; these choices were
dictated by the range of accurate results available
from our numerical calculation. Nevertheless, the
trends of the model for larger v,./vy are clear. An
experimental study of dynamic crack propagation in
a high strength aluminum alloy [28] reveals the strong
dependence of K on crack velocity in the range of
relatively low velocities for which inertial effects are
not very important (i.e. m <0.3). The strain rate
sensitivity of aluminum is very weak in the low to
moderate strain-rate region for 7 < 10*s™!, and the
elastic-perfectly plastic representation used here for
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that regime is appropriate. Moreover, there is ample
evidence [12] that aluminum has strong rate-
sensitivity above about 10*s~!.

5. STEADY-STATE CRACK GROWTH IN PLANE
STRAIN, MODE I WITH APPLICATION
TO CLEAVAGE

5.1, Numerical results

Numerical calculations for theé plane strain, mode
I problem have been made [6] for the material
characterized by the linear high-strain rate relation
(2.2). With } defined by eqn (3.14), the modified
formula (4.13) can be rewritten as

Gr . G —1

and this formula applies to both mode IIT and mode
I with the appropriate choice for H(m). A com-
parison of the numerical results with predictions
from the two analytical formulae (3.17) and (5.1) is
given in Fig. 13, and this figure may be contrasted
with the corresponding comparison for mode III in
Fig. 11{a). The numerical results are in close agree-
ment with the modified formula (5.1} at high veloc-
ities but fall roughly halfway between the predictions
of the two formulae in the range of low m. A more
extensive comparison involving all the numerical
results obtained in mode III and mode I is given in
Fig. 14. To reveal in the most convincing way the
predictive -capability of the modified result [eqn
(5.1)], we have plotted the numerical results, as well

as the unmodified prediction from eqn (3.17), as
G,,/G against

[1 FLHm1+20) ”3:26] . (5.2)

t

In the case of mode III the agreement with egn (5.1)
is excellent for all m-values for G,,/G as small as 0.1.
For mode I the agreement with eqn (5.1) is not quite
as good when G, /G is below 0.5 and when m <0.3.
Clearly the unmeodified formula (3.17) consistently
underestimates the plastic dissipation (i.e. over-
estimates (7,,/G) while the modified formula (5.1) or
(4.13) tends to overestimate the dissipation, although
not by much except at low values of G,,/G and at
low m.

5.2. Application to a running cleavage crack

For a crack running fast enough such that most of
the plastic strain accumulates in the high strain rate
regime, the relation between G, and & is given
approximately by the asymptotic formula (3.17) or
its modification (4.13) with H(m) plotted in Fig. 5.
For the purposes of discussion, it will be assumed
that the material is characterized by the linear
representation (2.2) in the high strain rate regime,
but the discussion could equally be based on the
more claborate representation (2.3). The discussion
which follows will be based on the medified formula
(5.1), together with the numerical results themselves.

Under the assumption that the energy consumed
by the cleavage fracture process is separable from the
plastic dissipation occurring outside the fracture

—— unmodified formula (3.17)
— — modified formula (5.1)

0 numerical

1

m = v/,

Fig. 13. Comparison of mode I plane strain dynamic numerical results to asymptotic formulae for G,/G
as a function of m({ =0.01, v =0.29).
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process zone, the condition. for continuing propaga-
tion of a running cleavage crack is

Gli_a = Ggip(Ts D), (53)
where G}, is the energy per unit area of crack
advance associated with the fracture process. Under
idealized “lattice cleavage” one might assume that
&7, is not strongly dependent on either temperature
T or crack velocity. But for cleavage cracking of
polyerystalline metals, and even for cleavage of single
crystals, the fracture process is rarely a simple
cleaving of the atomic lattice. For example, the
cleaved surfaces of single crystals of iron [29] and
tungsten [30] are covered with river patterns which
clearly indicate that &, cannot be taken as simply
twice the surface energy of the crystal. Estimates of
&7, for single crystals of iron are usually 10 to
20 times the surface energy. Moreover, the surface
features tend to become more prominent, and evi-
dently more dissipative, the higher the temperature.
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This trend is even more apparent in polycrystalline
metals which cleave, such as silicon iron [31] and
carbon steels [32, 33] below the ductile-brittle transi-
tion. The advance of the macro-crack involves the
nucleation of a multitude of grain-sized micro-
cleavage cracks in a fracture process zone which is
many grain diameters in extent. The final separation
of the crack flanks requires a fracturing of the
remaining ligaments bridging the micro-cracks. At
low temperatures the ligament fracture is observed to
occur by cleavage on less favorably orientated cleav-
age planes accompanied by some plastic deformation
of the ligaments [32]. At higher temperatures ap-
proaching the ductile-brittle transition, the ligaments
often fail by micro-void nucleation and coalescence
with extensive plastic straining. This combination of
cleavage and the micro-void mechanism is sometimes
referred to as quasi-cleavage. Even though a high
fraction of the fracture surface has been cleaved,
most of the energy consumed by the fracture process
goes into deforming and rupturing. the ligaments.
Estimates of G§, for cleavage of typical structural
steels, such as that discussed below, are of the order
of a thousand times the surface energy of iron. To
date there has been little effori to develop micro-
mechanical models for G, {T,v) for either single
crystal or polycrystalline materials. One exception is
a study on steel [33].

To illustrate application of the energy balance
equation (5.1) to cleavage crack propagation, it will
be assumed that G§, is a function of temperature but
not of crack velocity. The actual velocity dependence
of G{, is likely to be significant, especially in poly-
crystalline materials where the ligament breaking
should be strongly velocity dependent as discussed
further below. However, there is little information
available at the present time to estimate this de-
pendence.

By imposing the propagation criterion (5.3) on
(5.1), onc finds

G - DmP,

¢
tip

(5.4)

where P, is a temperature dependent,
dimensional material parameter given by

G 1l 2w e
Pl 20)He ,,,,=_(1+ v:#)#?ofr;“,, 5.5)

non-

CST,Z 3 ']jﬂ‘rl CsTr
and
1 H(m) c,
D = — =, .
(m) 2 m ¢ (56)

The function D(m), which was given in Ref. [7], is
included here in Fig. 5 and in Table 2.

Inspection of eqn (5.4) reveals that the propaga-
tion criterion cannot be met if P, is larger than a
critical value. For v =0.29 the minimum value of
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D(m) is 0.109, and thus P, cannot exceed 9.17.
Moreover, when P, is large, but below 9.17, the range
of crack velocities for which propagation is possible
is restricted to m-values satisfying D (m)P.< 1. The
prediction of a critical value of the material param-
eter P, above which cleavage is not possible is a
“consequence of the modified energy balance formula.
This is evident in Fig. 15 where the numerical results
from Fig. 14 have been used to plot values of G§,/G
as a function of D(m)P,. It is seen that the cut-off
at D(m)P, =1 predicted by eqn (5.4) is not a feature
of the numerical results. In other words, the numer-
ical results do not indicate that cleavage will neces-
sarily be excluded for values of P, greater than some
critical value. On the other hand, using the empirical
upper envelope of all the numerical results which is
shown in Fig, 15, we will show later that cleavage is
effectively excluded at sufficiently large P,.

To illustrate the prediction of crack arrest for a
crack propagating according to the criterion (5.3),
imagine the crack is running into a pre-stressed block
and assume that reflected waves have not yet reached
the crack tip. Let G be the quasi-static energy release
rate of a crack whose length coincides with that of the
running crack. The approximate relation between G
and Gy is given by eqn (3.6). The equation for the
propagation velocity of the crack (m = v/c,) follows
from eqn (5.4) as

1
O _ 1 n_pmer.
¢ 1—m

tp

(5.7)

The prescribed loads and current crack length enter
this equation through Gy, and it is in this manner that
the small scale yielding energy balance at the crack tip
is coupled to the applied loads and overall geometry.
More complicated problems, including the arrival of
reflected waves at the tip, will generally require a
numerical solution for the history of G.

1k
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Curves of G5/G7, vs m for various values of P, are
plotted in Fig. 16. The curve for P, =0 corrasponds
to the propagation of a perfectly brittle crack in-
volving no plastic dissipation, As long as Gy> G5,
the crack will propagate, and crack velocity increases
monotonically with Gg. When plastic dissipation
occurs (i.e. P,> () the crack cannot propagate if
G/G4, does not exceed the minimum shown in Fig.
16. Furthermore, the slowest velocity for which prop-
agation can be sustained is the value m* associated
with (Gg/Gp)mu- The left-hand branch of the curve
of G5 vs m corresponds to unsustainable (or unstable)
propagation in the sense that any perturbation which
slows the crack can readily be shown to cause G to
drop below G}, and thus arrest the crack. Similar
considerations have been discussed in Ref. {27]. The
minimum of G5/G}, and the minimum of sustainable
propagation velocity m* is plotted against P, in Fig.
17. Also shown in Fig. 17 are the corresponding
curves derived from the empirical upper envelope to
the numerical results in Fig, 15.

For a crack propagating into a prestressed body
such that Gg/Gj, decreases with increasing crack
length, propagation cannot be sustained when G/G¢,
falls below (G5/G7, ). Moreover, arrest is expected
to occur abruptly, essentially from m* to zero veloc-
ity and not by a gradual slowing of the crack to zero
velocity as was seen to be possible for crack advance
by the micro-void mechanism. Of course, the arrest
process is transient, and not steady-state, But the fact
that steady-state propagation is not possible in the
range 0 < m < m* strongly suggests that the transient
arrest process is associated with a very small amount
of crack advance, probably much less than the extent
of the active plastic zone. Experimental evidence for
abrupt arrest of cleavape cracks is not extensive.
Recent data [34] on cleavage cracking of wide plates,
with the crack running against a temperature gra-
dient, suggests that abrupt arrest may occur. Early

{=001 =01
-0
Gc (] m
i A m=01
G 7 m=03

] m=9{.5 4

el m = 0.65

fe) ma03

DI (empirical upper envélope
S of numerical results)
.
A=
v oA .
modified formula L
- S—
v A AT —
v _—‘__
0 1
1 A
0 D(m) E,

Fig. 15. Comparison of numerical results and modified asymptotic formula (5.1) for G, /G as a function
of D(m)P,. Also shown is an empirical upper envelope to the numerical results.
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Fig. 16. G5/G}, as a function of m for various P, ({ =001, v = 0.29), as predicted by the modified
formula (5.1).

crack arrest tests [35] in rate-sensitive brittle plastic
materials do strongly suggest abrupt arrest with the
minimum propagation velocity increasing with in-
creased rate-sensitivity, in accord with the present
predictions,

Another basic point about cleavage crack propaga-
tion which can be inferred from the above example is
that, while the relation between G and v is material
specific, it is not strictly correct to speak of the-crack
arrest toughness Ky, or, equivalently, Gy, as a material
property. Given a propagation relation of the form &
vs m such as eqn (5.4), the value of 7 at arrest is not
independent of the prescribed loading history. The
arrest value of G in the example above was associated
with the minimum value of Gg since (7, was pre-
scribed and nof G. Other loading histories or
configurations will generally lead to other relations
between G and the prescribed quantities, and thus G
at arrest may differ somewhat from the example
above. If arrest occurs at relatively low values of m,
these differences will be small and possibly unim-
portant,

5.3. Arn illustrative example

An illustration which brings out the influence of
temperature on the material parameter P, and its
effect on the arrest level of G is presented in Fig. 18
for cleavage of mild steel. The temperature de-
pendence of the transition stress ¢, of a fine grained

mild steel shown in Fig. 18(a) was developed from
Refs [9] and [13] as discussed in more detail in Ref.
[7]. From the data of Ref. [9] we also chose

F,=5% 10" and $,=3%10's"! (5.8)
and these were taken to be independent of T as
suggested by the data. The value of G, at absolute
zero was taken as

G 0Ky =173 x 10° Jm~? (5.9)
giving, from egns (5.7) and (3.6},
GL0K) = (1 —m*}Gy), =20 x 1* Jm~2, (5.10)

which is representative of the arrest value of mild
steel at very low temperatures. The temperature
dependence of p was taken from Ref. [13]. The
parameter { was less than 0.1 and was neglected. To
illustrate the temperature dependence of G§,(T) we
have considered (arbitrarily, since actual data or
estimates are not available) the three dependences
labeled (A), (B) and (C) in Fig. 18(b). Case (A)
assumes (7§, is independent of T, while the other two
assume the fracture process consumes more energy as
T increases. The corresponding temperature vari-
ations of P, computed from the temperature vari-
ations of 7,, g and GY, are shown in Fig. 18(c).
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Fig. 17. Minimum value of G; needed to drive the crack dynamically and associated value of m as
functions of P, ({ =0.01, v =0.29) as predicted by the modified formula (5.1) and by the empirical
envelope of Fig. 15.

Finally, in Fig. 19, the temperature dependence of
the arrest value,

Gla = (1 - m*) (GS)mfm

is plotted as a solid-line curve for the three cases,
where (G's),,» and m* are obtained from P, using Fig.
17. In each case, the temperature above which
cleavage cannot occur corresponds to the tem-
perature at which P,==9.17. The relatively minor
differences in the temperature variations of G, over
the three cases give rise to fairly significant shifts in
the temperature above which cleavage is excluded.
As already emphasized, we expect these predictions
to overestimate the G, at a given temperature since
the modified formula tends to overestimate the
plastic dissipation. The second set of curves in Fig.
19 (the dashed-line curves) were generated using the
empirical upper envelope to the numerical results
shown in Fig. 15. These curves are expected to
underestimate &, and thus the two sets of predic-
‘tions should serve to bracket results from a full
calculation. If there is some modest temperature
variation of G§,, as in cases (B} or (C), then Gy, is
predicted to rise dramatically within a fairly narrow
range of temperature corresponding to P, attaining
values of about 10. While cleavage may not be
strictly excluded above some critical temperature (as
the modified formula predicts), there is nevertheless
a fairly abrupt upturn in the crack arrest toughness
which is due to the increased plastic dissipation
associated with increasing temperature.

5.4. Extensions and alternatives

The above discussion was based on the linear
representation in the high strain rate regime, but
other representations can be accommodated and will
lead to qualitatively similar predictions. For exam-
ple, the derivations go through in precisely the same
way for the more elaborate power law representation

(2.3) where ¥ is given by eqn (3.15). Formulae (5.4)
and (5.7) continue to hold if P, is defined as

P,=247Gs,f(en)). (5.11)
The Bodner-Partom visco-plastic model (see Ref.
[15], p. 228) has been used in an analysis of cleavage
crack propagation in a pressure vessel steel [36]. That
analysis is similar in most respects to the present one
with qualitatively similar results,

In the illustrative examples discussed above the
velocity dependence of G, has been ignored. It
seems likely that there is a strong velocity de-
pendence associated with the cleavage fracture pro-
cess, particularly in polycrystalline materials.
Indirect evidence for this dependence can be inferred
from the fact that the visco-plastic theory presented
here predicts higher crack velocities than are usually
observed. For example, it is seen in Fig. 16 that crack
velocities of approximately one half the Rayleigh
wave speed {(i.e. m = 1/2) are implied when visco-
plasticity is substantial. Crack velocities in steels
undergoing cleavage cracking are seldom reported to
be this high, and velocities as low as one tenth the
Rayleigh speed are frequently observed. The micro-
mechanics of the temperature and velocity de-
pendence of G, remain to be explored. We speculate
that the velocity dependence of Gj, at a fixed
temperature may have the form shown in Fig. 20. As
the crack velocity increases there is some evidence
that an increasing profusion of micro-cracking oc-
curs accompanied by increasing roughness of the
fracture surface of the macro-crack. Moreover, at
temperatures in the quasi-cleavage range the energy
absorbed by the remaining ligaments may increase
with strain rate (and thus velocity) because of the
tendency for flow localization to be retarded at a very
high strain rates. Thus, G, may be an increasing
function of velocity for velocities which are not too
small. I so, this would help to reconcile experi-
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Fig. 18. Representative temperature dependence of material
properties for mild steel. (@) t,; (b) three postulated tem-
perature variations of G¢,; () consequent variations of P,.

mentally observed crack velocities with predictions of
the theory.

6. A DISLOCATION DYNAMICS MODEL OF
HIGH STRAIN RATE CRACK GROWTH IN
PLANE STRAIN, MODE 1

In this section we re-examine the same problem
addressed in the previous section using dislocation
modeling. We consider the interaction of a rapidly
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propagating crack with pre-existing dislocations in an
otherwise elastic material. First, the interaction of the
crack with a single dislocation will be considered with
the geometry indicated in Fig. 21. The crack is
assumed to propagate with velocity v through the
material and to pass within the vicinity of an edge
dislocation that is restricted to a specific glide plane.
The stress field associated with the dynamic stress
intensity factor induces a shear stress on the glide
plane which is taken as the driving force for the
dislocation motion. An eqguation of motion for the
dislocation is adopted, and the energy dissipated
through the dislocation glide is computed. Finally, it
is assumed that the moving crack encounters a distri-
bution of like dislocations spread over the plane, and
the total energy dissipation per unit crack advance is
estimated. The analysis is not exact; approximations
or assumptions are introduced at various stages.
Nevertheless, the end result is an energy balance
which has a similar form to that discussed above and
which permits the continuum formulae to be rein-
terpreted in dislocation theory terms.

6.1. The crack—dislocation model

Consider a mode I crack growing steadily at speed
v in the x,-direction under plane strain conditions in
a linear isotropic elastic solid. The stress field near
the tip of the crack is given by eqn (3.1) where K is
the dynamic stress intensity factor. The position and
orientation of the dislocation relative to the crack are
shown in Fig.-21. The glide plane of the dislocation
is inclined to the plane of the crack at an angle w,
and the unit normal to the glide plane is #; = (—sin o,
cos ). The crack tip crosses the glide plane at time
t =0, and the position of the dislocation core is
specified by its distance u(¢) from the crack plane.
The polar coordinates r, & are now used to specify the
position of the dislocation with respect to the crack
tip. These equivalent but alternate descriptions of the
position of the dislocation are related by

u(t)sinw =rsind,

u(t)cosw =r cos § + vt.

(6.1)

Of fundamental importance in analyzing the mo-
tion of the dislocation is the shear traction on the
glide plane

S, = oy — oA,

The magnitude of S; (with due regard to sense), say
t(r,0) = £ ./(S2+57), is the resolved shear stress
on the glide plane. The resolved shear stress may
alternatively be expressed as a function of u and ¢ by

means of

(6.2)

r =\/u2—2uutcoscu + 022,

0 = tan-! u sin @
=tan~'| ———
uwcosw —uvt)

which follows directly from eqn (6.1).

(6.3)




1002

P. A. MATAGA et al.

Gy, (10° T m?)
C15 / B
e modified formula
— — empirical envelope
10
K
5 -~
—
0 I l : 4;)0
0 100 200 300 T (K)

Fig 19. Value of G immediately prior to arrest as function of temperature, as predicted by modified result
(5.1) and by empirical envelope of Fig, 15.

An equation of motion for the dislocation is next
developed. The idea that the resolved shear stress on
the glide plane at the dislocation core provides the
driving force, a common viewpoint in the area of
dislocation dynamics, is adopted. First, it is assumed
that the magnitude of the resolved shear stress must
exceed a certain value, say t,, in order to produce any
high velocity dislocation motion. In addition, it is
assumed that the velocity = is proportional to the
resolved shear stress. An equation of motion having
these properties is :

Bi ={bf if |t]=1,

6.4
0 if |T|;<'f;, ( )

where b is the magnitude of the Burgers vector of the

C
Gﬁp {T,v)

Y

Fig. 20. Speculative form of velocity dependence of G

€
tip*

dislocation, and B is a drag coefficient reflecting
viscous resistance of the lattice to dislocation motion
at low and moderate dislocation speeds. The right
side of eqn (6.4) is the familiar Peach—Koehler force
of dislocation mechanics.

The equation of motion suggested in eqn (6.4)
implies no restriction on the maximum attainable
dislocation velocity as the applied resolved shear
stress is increased. The equation of motion may be
modified to incorporate the condition that as the
shear stress becomes indefinitely large, then the dis-
location speed approaches the Rayleigh wave speed
of the material. An equation of motion having this
additional property is:

bt

Bi——
BRGR

if (2, (6.5

and # = 0 otherwise, where 7, = ¢, B/b. The equation
of motion could be modified further to incorporate
the idea that it is only the excess of the resolved shear

Fig. 21." Geometry for analysis of dislocation interaction
with propagating crack.
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stress above the critical stress 7, that drives the
dislocation. The results of the calculations described
here were obtained on the basis of the form in eqn
{(6.4).

An equation of motion of the form (6.4) or (6.5)
presumes that the primary resistance to dislocation
motion is a drag which may be described phenom-
enclogically as a viscous drag. It has been shown in
Ref. [37] and elsewhere that, for transient motion of
a dislocation in an elastic medium, the motion of the
dislocation through its own radiated stress field re-
sults in a resistance which depends on the history of
the motion. If the kinematic variable used to describe
the motion is an analytic function of time, then the
history is included in a Taylor expansion about the
current instant. Further, if the expansion is truncated
after the second derivative term for one reason or
another (e.g. uniformly accelerated motion), then the
resistance includes a contribution that is proportional
to the acceleration of the dislocation. In analogy with
Newton’s Second Law of Particle Mechanics the
coefficient of the acceleration term is identified as an
effective mass of the dislocation. This point of view
is not pursued further here because dislocation mo-
tion under the conditions imagined is not expected to
include rapid changes in speed or high accelerations
and it is expected to be adcquately described by the
viscous drag mechanism.

6.2. Energy dissipated in interaction

For a given level of crack tip stress intensity X and
crack speed », the following nondimensional physical
parameters are introduced:
i= T 1', iy

"=TJ"T1: H-"—‘M,I(K/‘t,)z,

t=vtf(Kjt,)', B=Bujt,b, F=r/(Kt). (6.6)

The dislocation equation of motion takes the form

_d f [f]=1
da_Jo b lel=1 ©.7)

ds 0 otherwise

where 7 is understood to be a function of 7, 0. Thesg

quantities, in turn, may be expressed in terms of #,

through nondimensionalized forms of eqn {6.3) as

F=\/'2 2it cos w + £2

0 = tan-! i sin
= 1an - .
#cosw — 2

Censequently, egn (6.7} is an ordinary differential
equation of the form

(6.8)

dia

< = F@, (6.9)

where the right hand side is given implicitly through
eqn (6.8). The differential equation is subject to the
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initial condition that u(ty) = u, = y,/sin @ where it is
assumed that o #0 and ¢, is the time at which the
resolved shear stress magnitude at the initial position
of the dislocation is first elevated to t, by the
approaching crack edge. The differential equation has
been integrated numerically by a standard fourth
order Runge-Kutta procedure,

In order to carry out a caleulation, values of system
parameters must be selected. The following values are
selected as being representative:

B=10"Pa-s, 7, = 10 MPa,

b=3%x10""m, ¢=3x10"ms"' (6.10)
For these values, T, & 1, which implies that the dis-
location eguation of motion (6.5) deviates from a
linear relationship between resolved shear stress and
dislocation speed at moderate dislocation speeds,
With values of the parameters and initial data
specified, the differential equation (6.7) can be solved.
The detailed features of the solution are not of
particular interest, except to note that the dislocation
speed was found to be a small fraction of ¢, unless the
crack speed approached this wave speed. Typically,
the maximum dislocation speed was about equal to
the crack tip speed. Of primary interest is the energy
dissipated through dislocation motion during the
interaction. The rate of energy dissipation on the
glide plane (per unit thickness in the direction normal
to the xy-plane) is defined as the rate of work of the
driving force on the dislocation 1 acting through the
dislocation speed #. If the total energy dissipated in
the interaction is denoted by w(y,, @) for a particular
glide plane and particular initial position y, then

4w KZ _
w{yp, w) = j Thit dt——-bjl dud

. 7 ds

K2b2
— =2
=B Lr dr = 3 w7, @), (6.11)

where T is the union of time intervals over which
|T] = 1. The coefficient of the dimensionless quantity
w has a simple interpretation. It is the work done as
a dislocation with Burgers vector # moves steadily
under the action of a driving force t,b at speed
# = 7,b/B during the time that the crack advances a
distance (K/7,)* at speed »,

6.3. A distribution of dislocations

Suppose now that the growing crack encounters a
uniform distribution of dislocations. The dislocation
lines are all paraliel to each other and normal to the
xy-plane so that the model is still within the frame-
work of plane strain deformation. The number of
dislocations piercing the xy-plane per unit area is N,
If it is assumed that the dislocations do not interact
then the energy dissipated as the crack grows
through the distribution is determined by summation
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(in the form of integration in the present circum-
stances) over the distribution. Furthermore, with a
view toward considering the result in terms of the
fracture mechanics concept of energy release rate, the
energy dissipated per unit crack advance is deter-
mined by integration only over the coordinate y, of
the pre-existing distribution. Thus, the total mech-
anical energy dissipated per unit crack advance is:

2NK4b2r° e )
Wi Yo, @) A}
Bt |, 0 ¢

i

W(N, @)=

ANK*B? _
=——- W(w). .
o @) 6.12)

The integral in eqn (6.12) has been evaluated numer-
ically, using the result of the previous calculation on
energy dissipated through motion of a single dis-
location.

. The result is now cast in terms of an overall energy
balance as was done for the continuum model. The
rate of energy flow per unit crack advance into the
crack tip region is still denoted by G and is related to
K by eqn (3.4). The rate of energy loss through the
tip is denoted by G,,, as before. In steady-state the
energy balance is:

G, =G — W(N,w). (6.13)

Using eqns (6.12) and (3.4), we now rewrite this
relation in a form which will permit immediate
comparison with the corresponding continuum for-
mula. Equation {6.13) becomes

. (NBHN n

where
Hmy=8 W@)[1-v¥m}F. (615

The continuum result [eqn (3.17)] for the linear high
strain rate representation (2.2) is

G, =G —LH(m) ["_"ﬁ] &, (6.16)

e

where { =79, p/(t,¥,) has been assumed negligible
compared to unity.

To ¢ompare the two formulae note that for the
linear continuum representation (2.2), dy? /dt = yo/u.
Now consider for a moment the collection of terms
Nb*/Bineqn (6.14). According to Orowan’s relation,
the plastic shear strain rate due.to & mobile dis-
locations per unit area, each with Burgers displace-
ment b, moving at speed # is Nbu. If the dislocation
velocity is taken to depend linearly on applied shear
stress with drag coefficient B as in eqn (6.4), then
dy?/dc = Nb?/B. Thus, the factor (Nh’u/B) in eqn
(6.14) corresponds exactly to §, in eqn (6.16). If these

factors are set equal to each other, and if the param-
eters b, i, B and y; are assumed to be known a priori,
then the result provides an expression for the
dislocation density in terms of these parameters.
For example, if 9,=13 x 107s~! is adopted from
eqn (5.16) and B=10"*Pa-s, 5 =3 x 107 m and
4 =7 x 10*MPa, the implied value of the mobile
dislocation density is N =5 x 10" m~%. This value
falls within the range of conceivable results, and is of
the same order of magnitude as the dislocation
densities observed following fast fracture of single
crystals of iron—silicon in Ref. [29] and of tungsten in
Ref. [30].

To pursue the correspondence a bit further, the
dimensionless factor A(m) in eqn (6.14) is compared
to H{m) in eqn (6.16) over the full range of crack
speed m. The correspondence is shown in Fig. 22 for
the case w =45°. While the two results differ
significantly in detail, it is perhaps surprising that the
difference in numerical values is no greater in view of
the seemingly different assumptions in the two ap-
proaches. The implication is that both the continuum
plasticity analysis and the simplified dislocation dy-
namics analysis lead to essentially one and the same
conclusion concerning necessary conditions for cleav-
age crack growth in metals. A number of details of
the dislocation modeling could be carried out more
realistically. For example, the interaction between
dislocations, both on the same glide plane and on
nearby planes, has been neglected. As a consequence
each dislocation sees the unperturbed stress field
associated with X, and this accounts for the factor G*
in the dissipation term in egn (6.14) as opposed to G%,
in egn (6.16).

In the previous section the importance of the
nondimensional parameter P, to cleavage cracking
was emphasized. If { = j,u/(j,7,) is neglected, then
from eqn (5.5)

1 pj, G5
p = Mo, (6.17)

1 ¢1;
G4
0.3 in‘i(rn)
0.2

H {m}
O
0.0 ] ] { ] {
0.0 0.2 C.4 [¢19) 08 10
m=v/cy

Fig. 22. Comparisen of dimensioniess factor H(m) derived
in continuum analysis to dimensionless factor H{m) derived
in dislocation analysis for the case w = 45°.
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Replacing 4, by (Mb2u/B) as motivated above, one
can rewrite P, as

TN u\ (G,
RTCLT AR

where each term in brackets is nondimensional. The
nondimensional combination pl'/(br?), where I' is
the surface energy, was singled out in Ref. [38] as a
candidate parameter for separating materials which
can potentially cleave from those for which excess
crack tip plasticity excludes cleavage. Values of
ul j(bt?) were tabulated in Ref. [38] for many ma-
terials, and the parameter ranged from order unity
for non-cleavable metals to order 10~* for easily cleav-
able substances such as lithium fluoride or ice. The
parameter P, identified by the present analysis in-
volves somewhat more information about the state of
the solid. In particular, it depends explicitly on the
mobile dislocation density and on the ease of dis-
location motion as measured by the drag coefficient
B. In addition, the dependence on G, rather than on
just I, includes the influence of the fracture mor-
phology.
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