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Abstract—The effects of non-planarity on the fracture resistance Jocus of interfaces has been investigated
using a simple model of contacting facets along the crack surface. The contacts resist the motion of the
crack surface by means of friction and locking and thereby modify the energy release rate G* at the crack
front. The modified G' governs the effect of the contacting facets on the overall interface fracture
resistance, G,. The trends in G, with phase angle of loading are found to be influenced largely by a
non-dimensional parameter that determines the length of the contact zone. This parameter is, in turn,
chendcnl on the amplitude of the undulations on the fracture interface as well as its intrinsic fracture
resistance.

Résumé —Nous avons étudié les cffets de la non-planéité sur les lieux de résistance a la rupture des
interfaces en utilisant un modéle simple de facettes en contact le long de la surface de la fissure. Les
contacts freinent le mouvement de la surface de la fissure par friction et blocage, et ils modifient donc
la vitesse de perte d'énergie G' en téte de fissure. Cette vitesse G' modifiée régit I'effet des facettes en contact
sur la résistance a la ruptue interfaciale totale, G,. Les variations de G, avec I'angle de phase de la mise
en charge sont fortement influencées par un paramétre sans dimension qui détermine la longueur de la
zone de contact. Ce paramétre, par contre, dépend de I’amplitude des ondulations sur I'interface de rupture
comme de sa résistance intrinséque a la rupture.

Zusammenfassung—Der EinfluB der Unebenheit auf den Ort des Bruchwiderstandes von Grenzflichen
wurde mit einem cinfachen Modell kontakticrender Facetten entlang der Bruchfliche untersucht. Die
Kontakte widerstchen der Bewegung der RiBoberfliche durch Reibung und Verankerung und verindern
daher die Freisetzungsrate der Energie G' an der RiBfront. Die modifizierte Rate G' beherrscht den Einfluf
der kontaktierenden Facetten auf den gesamten Bruchwiderstand der Grenzfliche G,. Die Abhadngigkeiten
von G' von dem Phasenwinkel der Belastung werden groBtenteils durch einen dimensionslosen
ParameterbecinfluBt, der die Linge der Kontaktzone bestimmt. Dieser Parameter hingt wiederum von
der Amplitude der Wellungen auf der Bruch-Grenzfiiche und deren intrinsischem Bruchwiderstand ab.
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1. INTRODUCTION

Many important interface fracture problems involve
mixed mode (shear and opening) displacements along
the crack surfaces, as exemplified by thin film deco-
hesion [1-3] and fiber debonding in composites [4].
Subject to such displacements, interface fracture must
be influenced by non-planarity of the interface and by
the phase angle of loading, ¥ = tan~' (X,)/K,), where
K, and K|, are the Mode I and Mode II stress intensity
factors. Typical interfaces are non-planar [5] (Fig. 1)
and crack surface contact either at undulations or at
facets along the interface crack can have an effect on
the overall fracture resistance of the interface, G,,
especially at large phase angles. Such phase angle
effects are illustrated in Fig. 2, which indicates the
results of a fracture test on Al,O, bonded with Ti.
The upper, interface failure was caused by applied
loading, with ¥ =~ 0. The lower crack in the Al,O,
parallel to the interface formed subsequently, caused
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by the residual stress in the Ti acting as a thin film.
For this case, ¥ ~n/4 [6] at the interface crack,
whereupon the crack is diverted into the Al,O, rather
than propagating along the interface.

Trends in G, with phase angle of loading are
predicted in the present study for the case of a faceted
interface. The simplest model of the process that
provides insightful preliminary conclusions, illus-
trated in Fig. 3, consists of kinks along the crack
surface. When the crack surfaces contact at the kinks,
the stress intensities X" at the crack front differ from
the applied values to an extent governed by the kink
angle, the kink amplitude and the friction coefficient.
The trends in K* with these variables provide one
contribution to the increase in interface fracture
resistance with phase angle of loading, as elaborated
in the present article. Other possible influences on G,,
such as crack front deflections, plasticity etc. are not
considered in this study.
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(b}

Fig. 1. Non-planar metal ceramic interfuces  (courtesy

M. Rihle). (a) Inierface facets in the system Nb AlLO,.

(b) Interface undulations in the system Th AL.O,. with

interphases of TiAl and Ti,Al. Cracking occurs along the
AlO, TiAl interface.

Fig. 2. The results of a fracture test on a Ti AlLLO, system.

The upper. interface crack formed first upon loading. The

lower crack in the AL.O, formed subsequently, becasue of
residual stress in the T1 (courtesy M. Riihle).

a) Basic Configuration

b) Frctional Force

c) Elasticity Mode!

Fig. 3. The crack kink model used to analyze effects of crack
surface contact. The loading in this case is K, >0 and
K, <0.

2. THE BASIC MODEL

The modet is developed for a thin interface between
elastically homogeneous bodies with identical elastic
properties. However. the general trends should be
applicable to bimaterial interfaces, albeit that com-
plex stress intensities should then be used [7]. The
basic geometry involves a single kink [Fig. 3(a)] at
angle p. along the crack surfaces at a distance. 4.
from the crack front. This geometric choice simulates
each contact along a muliply facetted interface.

When the phase angle of loading allows contact at
the kink, Coulomb friction is assumed to obtain with
a friction angle

¢ = arctan pi N

where g is the friction coefficient. Otherwise, elasticity
exists throughout. An approximation for the effect of
contact on the crack tip field invokes an inclined
force. F. acting on the surfaces of a planar crack [Fig.
3(c)], with the inclination angle w governed by ¢ and
the kink angle B. (assuming that the faces of the facet
are either sliding or on the verge of sliding) where

w=f—¢. (2)

The derivalion which follows assumes 0 < B < n/2, as
in Fig. 3. For kink angles in the range n;2 < f <m.

all equations continue to be valid if ¢ is replaced by .
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— @ corresponding to the switch in direction of the
friction force. The force is represented as a uniformly
distributed traction acting over a characteristic
microstructural length, 2¢d [Fig. 3(c)]. This geometric
choice allows the effect of contact to be expressed in
terms of normal and shear forces, P and Q. re-
spectively. acting over 2¢d

P=Fsinw, Q=Fcosw (3a)
or
Q +iP = Fe™. (3b)
The uniformly distributed normal force causes a
crack opening, v, at x = —d
u =[4(1 — v)/nG]Pg(c) (4a)
where [8]
S He-JT=e++¢/2)n
X (T+e+ D T+e-17
ge)=(2)""

— (1 —¢/2)In
x[(1+/1—€e)(1-1 -¢)7)

while the uniformly distributed shear force causes a
relative shear displacement, r; at x = —d

41 -v)
R
where G is the shear modulus and v is Poisson’s ratio.

The crack surface displacements caused by contact
are related to the forces by

41 —v)
nG

(4b)

r

Qg(¢)

u+iv= g(e)Fe™ (5)
such that the contact induced contribution to the

stress intensities at the crack rip. K'. are

Ky + K=/ 2ndf(¢)Fe” (6)

where
JEO=(Jl+e—y1—e)e

and the subscripts I and 11 refer to the opening and
shear modes. respectively.

The corresponding crack surface displacements at
the contact site (x = —d) dictated by the remote loads
are

@)

where K, and K, are the stress intensities associated
with the applied loads.

¢ +iu = [4(1 - v)/Gly/d2n(Ky + iK))

3. CONTACT AND LOCKING CONDITIONS

The existence of crack surface contact and of
frictional locking are influenced by the relative mag-
nitudes of the phase angle of loading, ¥. the friction
angle, ¢, and the kink angle, f. Conract along the
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kink only occurs when
ucosf +rsinf >0. (8)

Hence, by defining a characteristic stress intensity
K* as

K* = —(K,cos B + K, sin B) (C))
contact of the facet faces occurs when
K*>0 (10a)
which, since tan ¥ = K,,/K|, is equivalent to
n—f<¥<2n—-§ (10b)

Furthermore, contact along the straight crack sur-

faces occurs when
K, <O. an

The basic contact conditions are mapped in Fig. 4.
For present purposes, the condition, K, <0, is not
meaningful. The analysis should only be used for
positive K,. A separate analysis would be needed for
negative Mode 1.

Frictional locking occurs when the tangential force

along the kink, 7, satisfies the inequality
T <uN (12)

where N is the normal force. This condition can be
expressed in terms of the forces P and Q using

N=Qcosf+ Psinf =Re[(Q +iPe % (13a)
T=Qsinf —Pcosf=—Im[(Q +iP) *]. (13b)
Then. by noting that
Nsing — Tcos¢ =Im[(N —iT)e*]
=Im{(Q + iP)e* #)

K
\Cuck open everywhere
—&

\
\
d-8 ThA

N
(if positive) \/\\
\, AN
\ \
\
\ Contact with sliding
\

Frictional tocking
) p\o

Fig. 4. A map of the sliding and locking conditions antici-
pated with the crack asperity. For present purposcs. only
K, >0 is relevant.

(14)
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the locking condition becomes
Im[(Q + iP)e" "> 0 (15a)

or, because locking requires that w = ¢ =0, (3b), (5)
and (7) give

Im[(K), + iK))e** P < 0. (15b)
Consequently, since
Ky+iK = |K|e "D (16)
locking occurs when
sin(f +—¢ —n/2)>0 (17a)
or
n2—-f+¢ <y <3n2-B+¢. (17b)

Thus, if ¢ — # > 0, a range of loading exists in which
K, >0 and the facets are frictionally locked as
mapped in Fig. 4.

4. INTERFACE FRACTURE RESISTANCE

The above conditions of contact and frictional
locking provide insights concerning the analysis of
the interface fracture resistance. For purposes of
analysis, the spectrum of contacts must be simulated
by means of a contact model. Two such models are
presented, each providing a different perspective of
the contact phenomenon. One model considers a
single row of contacts with friction having a full
spectrum of facet angles located at a fixed distance
from the crack front. The fracture resistance can then
be estuimated, in principle. by summing over the
number of rows within the contact zone. However. to
accomplish this. an estimate of the zone size and of
interaction between rows is needed. For this reason,
a second zone model is developed that examines a
simple contact condition at the facets. but more
rigorously addresses the zone size and interactions
that occur along the zone.

4.1. Single row model

Contact behavior at facets within a row is governed
by the net displacements of the facet surfaces, derived
from equations (5) and (7) as

l—v

G

[d ) (¢) ;
x[ ﬂ(Ku+IK|)0—'ﬂ+%Fe'M_”C|- (18)

When sliding contact occurs, f —w =¢ and u-n =0
or, equivalently, Re{u + it)e #} = 0. Thus, by (I8).
the resultant force across the facet faces is

F=./ndj2 K*/cos ¢.

(u+iv)e*=4

a9

Inserting this expression for the force Finto equation
(6) and adding the stress intensities from the applied
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loads gives
nt+iKi=K;+iK + h(e)e“K*/cos¢ (20)

where h(¢) = f(e)/gle) is the function plotted in
Fig. 5. Consequently, the tip stress intensities are

K} = K, + h(c)sin(f — ¢)K*/cos ¢

K}y =Ky + h(e)cos(f — ¢)K*/cos ¢ 1)
and the strain energy release rate at the tip is
G' =11 - v)2G)[(K})* + (K})). (22)

Noting that the eflective energy release rate associ-
ated with the applied loads is

G =[(1 = v)/2G][K] + K}, (23)
the crack tip energy release rate becomes
G=G I—v
=C+35
x 2hK*[K,sin(f ~ ¢) + Ky cos(f — ¢)]
cos ¢
h:K‘:
Thus. by (9)
A?G = (¢, B.¥.¢)
[(sin B +cos B tan ¥ )(sin(B — ¢)
-+ 2% + cos(f - ¢nan )}
cos (1 + tan<y)
B h*(sin B + cos f tan ¢ )? 25)

cos’ ¢(l +tan® )

where AG = G — G' is the reduction in G. ie. the
shielding. caused by contact at the facet. (Recall
that this equation. as well as all others above in-

Fig. 5. Comparison of the functions h(¢) from the present
approximate model and A(¢) from the exact solution for a
microcrack ahead of a macrocrack.
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¢ =tan-V (Kn/K1)
€]
Frictiona! Locking
08
B = 180°
o6 165°
150°
© - 135°
\ 1200
© o4l
<
105°
02
] |
ag® 60° 90°
y= tan~! Ky /Ky
(b)

Fig. 6. (a) Reduction in crack tip release rate as a {unction

of phase angle of loading for various kink orientations in the

absence of friction (h = 0.5, ¢ =0). (b) Effect of friction

(p = 45°) on reduction in near tip cnergy release rate
(h =0.5).

volving ¢, are limited to 0 < § < /2. For the range
n/2 < B <n, ¢ must be replaced by —¢.)

When locking occurs [equation (17), Fig. 4], the
model gives

/K= Ky/Ky =1 —h(e) (26)

and
GYG =[1 — h(e)f =Qe) 27

which coincides with (21) and (24) when ¢ —3n/2 +
¢ — B. When locking occurs, the material along the
kink behaves elastically and the tip stress intensities
are equivalent to those for a microcrack of length
(1 —€)d at distance 2¢ed from the macrocrack tip
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[Fig. 3(c)}. The solution to this problem is known
exactly and thus provides some calibration of the
model. The solution is [9)

KYyK, = Ky/Ky=1-hk(e) (28)

where A (¢) is plotted in Fig. § along with A(¢). Noting
the roles of kin (26) and A in (28), it is concluded that
the present model underestimates somewhat the re-
duction in crack tip intensities due to contact at the
facet. In the results calculated below, values of A are
prescribed (rather than ¢). To improve the accuracy
of the model, these values may be identified with 4 for
the purpose of evaluating the associated relative facet
width e.

Curves of AG/G vs ¢ for various § as calculated
from (25) are plotted in Fig. &a) with ¢ =0 and in
Fig. 6(b) with ¢ = /4, in each case with k = 0.5. For
loading combinations in the range shown (0 < ¢ <
n/2), contact does not occur for facet orientations
with B less than n /2. The effect of friction is greatest
when the facet angle is large, i.e. B greater than about
3n /4. For the example in Fig. &(b), frictional locking
only occurs for g > 3n /4.

The interface fracture resistance is estimated based
on consideration of a row of contacts with a uniform
distribution of kink angles parallel to the front,
ranging from 0 to . (Kink angles with § <Oor f > n
are unlikely because alternative, noninterfacial, frac-
ture paths would normally obtain at facets having
B <0 or B>n) For loading combinations with
0 <y <n/2, the following conditions pertain. No
contact occurs if

O<B<n—y. 29)

If ¢ +¥ <=/2, no locking occurs at any f and the
range of sliding contact is

n—-y <B<n (30a)
If ¢ +y > n/2, sliding contact occurs for
T—y<Bf<iIn2—-¢ -y (30b)
while locking occurs for
In2-¢—y<f<n (30c)

The local values of AG /G along the crack front are:
zero for regions of no contact, I for contact without
locking [equation (25)], and 1 — Q for locked kinks
[equation (27)]. Interaction eflects caused by neigh-
boring kinks having different contact/locking condi-
tions are thus neglected. With this simplification, an
average value of AG along the crack front can be
obtained by integration. For the case ¢ + ¥ < /2,
the fraction of noncontacting kinks is | — y /n, while
the fraction of contacting, non-locking kinks is ¢ /x.
Thus

(AG>/G =71: J' T dg. (31a)

LR 4
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Fig. 7. Variation in crack shielding (AG ) with phase angle
of loading caused by a row of contacts, for several friction
angles (h =0.5).

Similarly, for ¢ + ¢ >=n/2

2-0-¥

Idp

+("7 ild —1)(1 ~Q). 3lb)
n 2

Curves of (AG);G as a function of  obtained from
(31a, b) are plotted in Fig. 7 for several values of the
friction angle ¢. These curves were obtained using
h =0.5. The effect of different choices for h ranging
over all realistic possibilities (cf. Fig. 5) is shown in
Fig. 8. These results can be used to illustrate some of
the issues involved in determining the extent of crack
shielding.

It is firstly evident that there is only a moderate
effect of the friction coefficient on crack shielding.
within the usual range 0 < ¢ < n 4. because locking
constitutes the greatest impediment to crack surface
displacement. It is also noted from Fig. 5 that A
remains quite large (3 0.2) down to quite small
values of ¢( ~ 0.05). Consequently. by simply sum-

(AGH/IG = 1J‘
n

x-v

03

02

{(AG)>Y/G

o L
30° 60° 90°
Y = tan-1 (K, /Ky)

Fig. 8. The variation in crack shielding (AG) with phase
angle caused by a row of contacts, for a range of
h(p =tang = 1).
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ming (AG ) on parallel rows of nominally identical
facets. all governed by equation (31), the net shielding
must be sensitive to the number of rows and hence,
the size of the contact zone. These insights suggest
that a zone model which emphasizes the locking
characteristics and explicitly incorporates the zone
size should provide a more reasonable prediction of
the effects of contact on the interface fracture re-
sistance. Such a model is presented below.

4.2. Zone model

A zone model is developed for the simplified
contact conditons depicted in Fig. 9 corresponding to
B =0 and ¢ =0 (no friction). Then, K] = K| and the
crack opening depends on K| only, as given by

u(r) =801 —v)K,\/r/\/2nE (32)
where r is the distance from the crack tip. Contacts
exist over a zone length, L, that satisfies the condition

u(lly=H

where H is the height of the interface step (Fig. 9),
such that

L =(n32[EH/(1 —v)K]T. 33)

Within the contact zone. the shear stresses and
displacements are elastic and analogous to those
associated with a linear array of microcracks (Fig. 9).
Furthermore. in order to evalaute KXj,, the
microcracks can be simulated by a continuous linear
spring model (Fig. 9) in which the stresses t and

Last Contact Point Interface

’d
"’ [ /_F’—+
N —

Crack
Surface

&) Zone Configuration

/Cr“k b ¢ / Microcrack
Lo S —am——
L

b) WMicrocrack Zone

L4

c) Elastic Spring Configuration

Fig. 9. A schematic illustrating the -one model used to
determine trends in G, with phase angle of loading.
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Table I. Interface properues for the
gluss polymer system
G, $Jm -
E 70 GPa
H 10 'm
rx0.1 EH G,
2 10°

displacements - are related by
e 8t/(1 = v¥) In[l/sin(n D 21)]
nE

where / is the spacing between facet (microcrack)
centers and D is the facet length (Fig. 9). This is the
exact result for the additional shear displacement due
to the presence of an infinite linear array of micro-
cracks subject to remote shear stress 1 paraliel to the
cracks [11,12]. The linear spring model has been
solved by Budiansky ef al. [13]. For the present linear
spring (34), the result of interest is

Ky Ky =k(2)

(34)

(35)
where
(L
1=
In[1 sin(zD.2)]
and the function k(x) is given in Table I (as 1.4) in
Ref. {13]. Plots of K}, K,, vs D/l from (35) are shown
in Fig. 10 for various numbers of microcracks
N(L = N!I). The result for one microcrack is the exact
result from Ref. [9].

Using K}, K, and (35). the relation between the
energy release rates is obtained as
1 + k¥x)tan*y
Tt +uanty

(36)

GYG 37

Further progress is achieved by combining equations
(33) and (36) 1o give
_ nEH(G' G)(]l +tan” )
X =0 G )1 sin(aD 2)]

The basic trends in the fracture behavior of the
interface with the phase angle of loading can be

(38)
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estimated by selecting the value of x at y =0 as a
reference value, x,. and sciting G' equal to the
fracture resistance of the interface G,, such that
_ n(EHIG,)

7321 = v3)In[1 sin(xD 21))

2 (39)
The quantity x, contains the basic information con-
cerning the interface and is thus a material parametrer.
The results contained in equations (35), (37), (38) and
(39) can be combined to provide an expression for the
crack shielding as

tan®y {1 — k[x(] + tan’ ¢)(AG/G + )]}

AG/G = >
1 +tan“y

(40)

Specific trends in AG/G with ¢ for various 2, deter-
mined using equation (40) are plotted in Fig. 11.

It may be ascertained from Fig. 11 that two
regimes exist: one at 2,3 l. and the other when
%, 2 10 ' For the former. contact has the maximum
effect on crack shielding. such that. K}, x 0 and

tan” y

AG G = ———.
| +tan-y

4n
For the latter. there is essentially no shielding when
¥ < n 2. The significance of these two regimes may
be appreciated by noting that undulating interfaces
typically have geometry: D/ ~12 H.l~ 12 Then
%, becomes

2, x0.(EH G,) (1 =+v7), (42)

The governing material parameter s thus
7 =EH G,.

This paramcter. in essence, determines the contact
zone dimensions. such that small values result in no
contact and large values give full contact. Further-
more. the transition between these extremes occurs
over a relatively small range of 7 between ~ 10 and
~ 10 -. Consequently. either a small value of the
intrinsic interface toughness G, or a large amplitude

K, = remote intensity

0 ! ! 1
0 0.1 0.2 03

D/¢

0.4

Fig. 10. Siess intensity a1 up of lead microcrack in an array of equally spaced microcracks ahead of a
macroctrack.
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Fig. 11. Vanation in crack shielding AG with phase angle of

loading for various values of the contact zone parameter. .

Also shown are some experimental results obtained for a
glass polymer interface [10].

undulation. H. may cause y to become large, resulting
in a mixed mode fracture resistance governed by
equation (41), such that

G, = Gy(1 + tan*y). (43)

Conversely, when H is small and/or G, is large.
contact does not occur and G, x G, for Y <z /2.

5. COMPARISON WITH EXPERIMENT

Experimental results have been obtained in sepa-
rate studies [10). The results are in general accordance
with the zone model predictions as depicted on
Fig. 11 with 2, = | (or x = 10). Values of y indepen-
dently determined for the test interface are somewhat
larger (z ~ 10°, Table ). This difference probably
derives from the geometric simplicity of the zone
model (Fig. 9). In particular, more realistic interface
geometries would allow sliding of the edge of the
contact zone and reduce the effective magnitude of
the contact tractions, leading to improved cor-
relations between theory and experiment. Some
aspects of the discrepancy may also be associated
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with the modulus mismatch across the interface,
which is not explicitly considered in the present
analysis.

6. CONCLUDING REMARKS

The present analysis of contact effects on interface
fracture resistance indicates that a simple zone model
without friction predicts trends with the phase angle
of loading qualitatively consistent with experimental
results for a brittle interface that has no obvious
plasticity associated with crack propagation. More
complete experimental studies of contact zones would
evidently allow further progress, and highlight
deficiencies associated with the neglect of friction and
with the present geometric simplification used to
describe the interface. Studies of trends with the zone
size parameter, EH/G,, would be particularly in-
sightful in this regard.

When the interface is subject to normal com-
pression (negative K;), a different analysis of fracture
is needed. Nevertheless, it is already evident from the
present analysis that sliding induces a positive K|
at the tip over a substantial range of com-
pressions. Consequently, crack propagation will still
be possible, as observed experimentally [10).
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