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Stress concenfration at vertices where grains of a polycrystal
meet at a point is contrasted with stress concentration at
two-dimensional junciions where grains join ajong a line.
Effects of thermal anisotropy and elastic anisotropy orienta-
tion mismatches from grain to grain are considered. Special
geometries with moduli mismatches are also analyzed to
shed light on three-dimensional vs two-dimensional behav-
ior. Although there are exceptions, if is generally found that
the stress concentration at verfices is more singular than
that at junctions. Singularities which are stronger than
cracklike singularities (i.e., stress o« r~° where s > 1/2) are
found, and the implication of such “super singnlarities” for
micrecrack nncleation is discussed. Conditions for propaga-
tion of microcrack flaws at vertices are analyzed and con-
trasted with those at junctions. [Key words: microcracking,
nucleation, polycrystalline materials, grains, anisotropy.

1. Introduction

THIS paper summarizes a study of the three-dimensional
(3D) stress distributions in the vicinity of vertices where
grains of a polycrystal meet at a point. The study contrasts
behavior at vertices with that at two-dimensional (2D) junc-
tions where grains meet along a line. In particular, the study
addresses the quesiion whether the stresses responsible for
nucleating microcracks are more severe at vertices or at junc-
tions. Residual stresses and stresses due to an overall applied
stress are determined in the presence of both elastic anisotropy
mismatch (i.e., grains with a given elastic anisotropy but
different orientation meeting at a vertex or junction) and ther-
mal expansion anisotropy mismatch. Energy release rates for
microcrack flaws at a vertex or junction are also computed
and contrasted.

Studies of microcrack nucleation in brittle polycrystals have
been confined largely to 2D models. Thermal expansion mis-
match leads to logarithmically singular residual stresses at
junctions when the elastic properties are taken to be isotropic

and identical from grain to grain. Junctions are therefore
" likely sites for microcrack nucleation, and the consequence of
introducing cracklike flaws at a junction has been analyzed."*
Estimates have been obtained for the relation between the in-
trinsic flaw size and the critical grain size —the largest grain
size which can survive a given temperature drop below the
fabrication temperature.* More recently it has been shown
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that elastic anisotropy of the grains can bring about even
more severe stress conditions at a 2D junction.® Elastic an-
isotropy mismatch induces stress singularities at a junction of
the form o ~ r~*, where the order s depends on the degree of
anisotropy and relative orientations of the grains. In general,
this singularity is dominant and determines the stress varia-
tion in the immediate vicinity of the junction whether the
stress is due to thermal expansion mismatch or applied stress.
Elastic anisotropy and thermal expansion mismatches work-
ing together lower the critical grain size below the predictions
based on thermal expansion mismatch alone,

In this paper we produce and examine a number of special
solutions to 2D and 3D problems to gain insight into the
severily of stressing at 3D vertices vs 2D junctions. The fol-
lowing are brief statements of the findings in each section of
the paper.

Section [: Stressing is somewhat more severe at a junc-
tion than a vertex when the elastic moduli are isotropic and
homogeneous with stressing due only to thermal expansion
mismaich.

Section III: Stress singularities at a vertex are modeled
using axisymmetric conical geometries with elastic moduli
mismatch and elastic anisotropy mismatch. Generally, the
order of the singularity is significantly stronger at a vertex
than at the corresponding 2D junction. The possibility and
implications of super singularities, where the stresses at the
vertex are more singular than » %, are noted.

Section IV: The order 5 of the dominant stress singularity is
determined using a special numerical method for true 3D ver-
tices with elastic anisotropy mismatch, i.e., where grains of a
given anisotropy but differing orientation meet at a point.
Here, to0, the calculations suggest that a vertex is likely to be
more critical than a junction.

Section V- Energy release rates for microcrack flaws at
vertices and junctions are computed and compared. The cal-
culations are carried out on 2D and 3D geometries using a
finite-element. method. Thermal expansion mismatch and
elastic moduli mismatch or elastic anisotropy mismatch are
taken into account. Stressing due to temperature change and
applied overall load is considered with findings which are
consistent with the singularities found in Section IIT.

II. Thermal Expansion Mismatch with Homogeneous,
Isotropic Moduli

Evans? and Fredrich and Wong® have determined the resid-
ual stress distributions for several 2D, plane strain geometries
chosen to model grains in a polycrystal. Their examples dis-
play a logarithmic singularity in the stresses at the junction
where threc or more grains with identical isotropic elastic
moduli meet with mismatches in thermal expansion coeffi-
cients. Here we give two general asymptotic results for the
stress in the immediate vicinity of a junction and a vertex for
the single wedge geometries shown in Fig. 1.
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Fig. 1. Wedge geometries.

In each instance, the elasticity is isotropic and homoge-
neous with Young’s modulus E and Poisson’ ratic ». The
thermal expansion behavior is also taken to be isotropic and
homogeneous in each region. Let ¥ = AaAT be the trans-
formation strain deriving from the thermal expansion mis-
match Aa = a; — o, where regions 1 and 2 are shown in
Fig. 1. The equivalent transformation strain in region 1 is
‘&f = &"8;. Using well-known methods in elasticity theory,
one can derive an integral representation for the stresses in-
duced by the transformation strains. The singular behavior in
the vicinity of the junction or vertex can be extracted analyti-
cally. For the 2D single wedge geometry, the normal stress
acting on the plane extending from the wedge tip is given by
(y >0

T

1 E
ol0y) = — —

i 1
R sin 2w In {cL/y) (1)

where w is the half-angle of the wedge, L is a length quantity
(such as the size of the wedge or the grain size in a polycrys-
tal), and ¢ is a dimensionless numerical factor undetermined
by the asymptotic analysis. The corresponding result for the
3D single conical wedge is found to be

' 1 EeT
Uxx(Osy) = E 1—u

(cos @ — cos 3w) In (cLfy) 2)

For the 2D junction the maximum amplitude of the singular-
ity occurs when w = 45° and the associated numerical factor
multiplying [Ee” /(1 —»)] In (cL/y) in Eq. (1) is 1/(2). For the
3D vertex the maximum amplitude occurs when w = 55° with
a corresponding numerical factor 0.096 in Eq. (2). Thus, the
ratio of the 2D to 3D numerical factors is 1.65. The con-
stant ¢ will differ from the 2D to the 3D geometry, but the
dependence of the stresses on ¢ is weak by virtue of its ap-
pearance in the logarithm. Consequently, if these geometries
can be regarded as representative, it appears that, in the ab-
sence of elastic anisotropy mismatch, stress amplification
along a junction is more severe than at the vertex.

III. Elastic Meduli Mismatch and
Elastic Anisotropy Mismatch

In this section results are presented for the exponent of the
stress singularity at junctions and vertices where materials
come together with either different isotropic moduli or with a
given elastic anisotropy with different orientations. Attention
is directed to the geometries of Fig. 1. The 2D junction prob-
lems are analyzed as plane strain; the 3D vertex problems
have axial symmetry and the fields sought are limited to be
axisymmetric,
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In cach example considered here the dominant asymptotic
stress field in the vicinity of the junction or vertex is of the form

oy = kr ™', (6) 3

where r is the distance from the common point and 6 is either
the polar angle or the azimuthal angle. The exponent s and
the field &;(f) are the eigenvalue and the eigenfunction, re-
spectively, of an eigenvalue problem obtained from the field
equations and depending on the moduli and geometry. In the
examples presented below, s turns out to be real. Details of the
solution procedure will not be given here since they are fairly
standard. The numerical scheme employed is essentially iden-

tical to that outlined in an earlier paper on 2D problems.® For

the case of the 3D single wedge geometries with different
isotropic elastic moduli, we have checked our numerical re-
sults against previous results of this type.5’

First, consider examples of moduli mismatch where the ma-
terial in region 1 of Fig. 1 is isotropic with shear modulus u,,
and Poisson’s ratio v, while these quantities are #2 and v, in
region 2. The plots of 5 in Figs. 2 and 3 were computed with
vy = ¥; = 0.3 and @ = 30°. The double wedge geometry has
more singular stresses (i.e., larger s) than the single wedge
in all cases, The strongest singularities occur when g, > g,
and for each of the two geometries the vertex singularity is
stronger than the corresponding junction singularity. When
1 is sufficiently large compared to ., the double wedge ge-
ometry has an exponent larger than 1. Elastic moduli mis-
match in combination with special geometric configurations
can lead to super singularities at a wedge which are stronger
than the =" singularity at the tip of a crack.

Super singularities are potent sites for microcrack nuclea-
tion as can be seen from the following general form of the
energy release rate of a microcrack flaw emerging from the
vertex. Let &; in Eq. (3) be dimensionless so that £ has dimen-
sions of (stress) X (length)'. If & is the characteristic length of
a microcrack flaw emerging from the vertex and if the flaw is
sufficiently small such that it is embedded within the region
dominated by Eq. {3), then dimensional considerations re-
quire that the energy release rate at any point on the edge of
the microcrack be of the form

G o k2a1—z; (4)

Thus, if s > 14, % becomes unbounded asa — 0. In principle,
an arbitrarily small flaw will nucleate a microcrack, assuming
it can be treated within the continuum mechanical frame-
work. Further consequences will be discussed in subsequent
sections.

The results shown in Figs. 2 and 3 are not strongly depend-
ent on the wedge half-angle w. This can be seen in Fig. 4,
where the singuiarity exponent is plotted as a function of w
for two values of u,/u; for the double wedge vertex geometry.
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Fig. 2, Singularity exponent for 2D wedge junction geometries
with elastic meduli mismatch (& = 30°). )




1550 . Journal of the American Ceramic Society — Ghahremani et al.

s
8r
B
@
‘-\l\-_\
at
! L
]
@ .t
L 5 7 s
Ha /0y My g

Fig. 3. Singularity exponent for 3D wedge vertex geometries with
elastic moduli mismatch (w = 30°).

Now consider an example of elasfic anisotropy mismaich
where the elastic properties in regions 1 and 2 are identical
but the principal axes of anisotropy are oriented differently.
Specifically, consider the 3D vertex geometries of Fig. 1 and a
transversely isotropic material whose axis of symmetry is the
l-axis. The elastic moduli (oy = Lyusw) of a transversely
isotropic material can be specified in terms of five inde-
pendent parameters—a, B, 7, 8, and £ —such that in the axes
of transverse isotropy

Lyn=v
Lun=Lus=8
lom=Lyn=a+38
Lyn=a—8
Lyp=Lm=c¢
Loy =8 &)

where «, 8, &, and v ~ B*/a are all positive if the moduli are
positive definite. In the limit of isotropy

&=§+%g
2
ﬁ=§—§§
4
y=§¢+3¢
d=g=/{ (6)

where & = E/[3(t — 2)]and { = E/[2(1 + ¥)).
The moduli are oriented in a way which preserves axial
symmetry about the y axis. In region 1 the axis of transverse
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Fig. 4. Dependence of singularity exponent on vertex an-
gle o for 3D double wedge vertex.
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isotropy, the l-axis, is aligned parallel to the y axis. In
region 2 the 1-axis of the material is aligned at every point in
the planar-radial direction perpendicular to the y axis (i.e.,
in the R direction where R = (x* + 29", as depicted in the
insert in Fig. 5. Thus, in region 2 the orientation of the axis of
transverse isotropy varies with the circumferential angle to
preserve axial symmetry. In an approximate way, this elastic
anisotropy mismaich models a vertex where transversely
isotropic grains meet.

The example in Fig. 6 shows the dependence of the expo-
nent s of the dominant singularity on e« when 8, v, 8, and g are
held fixed. The reference values, used in the next example as
well, are taken as the isotropic limit Eq. (6) with » = 0.3 and
are denoted by &, B%, ¥4, &, and &% Thus in Fig. 6 only a is
varied. Note that both L, and Ly;; depend on a. The ab-
scissa in Fig. 5 is taken as Lyy,/L %, where Ly, is the ref-
erence value. The wedge angle is w = 45°. Two features of
this plot stand out. The singularity exponent s becomes
appreciable for relatively modest levels of anisotropy, with s
exceeding ¥ for values of Ly /L3, less than 0.63 or 0.58
depending on whether the vertex is a double or single wedge.
Secondly, unlike the results for the moduli mismatch, the de-
pendence of s on which of the two geometries is considered is
relatively weak with the double wedge vertex only slightly
more singular than the single wedge vertex.

The dependence of s on vy is shown in Fig. 5. In this case
only Ly varies with y when a, B, 8, and £ are held at their
reference values, and the abscissa in Fig. 5 is taken to be
Ly /LYy where L%, is the reference value from Eq. (6) with
v = 0.3. Only the range L,y /L %1 = 1is shown since then the
singularity is the strongest. As in the previous example, the
double wedge veriex is only slightly more singular than the
single wedge vertex. Additional calculations have been per-
formed with other values of @ and by varying other moduli
parameters. The variations of s shown in Figs. 5 and 6 are
representative.

IV. Exponents of Stress Singularities at Vertices of
Grains in Polycrystals

The dominant singular stress field at a true 3D vertex of a
polycrystal where homogeneous anisotropic grains of differ-
ent orientation come together is of the form

o5 = k?‘_sa'fj((ﬁ,e) (7)

where r, ¢, and # are spherical coordinates with r as the dis-
tance from the vertex and where s is the stress exponent,

DOUBLE
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Fig. 5. Singularity exponent for elastic anisotropy mismatch. See
text for description of moduli and mismatch.
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Fig. 6. Singularity exponent for elastic anisotropy mismatch. See
text for description of moduli and mismatch.

Each junction is taken to be a straight line emerging from the
vertex. If one imagines a sphere of radius r centered at the
vertex, a junction is a point (¢, #) on that sphere. The grain
boundaries are curves connecting junction points on the
sphere with each grain corresponding to a region on the sphere.

The equations of linear elasticity admit separated solutions
of the form of Eq. (7). The equations governing the solution
are a set of partial differential equations in ¢ and & covering
the sphere. The separated problem is a homogeneous eigen-
value problem with 5 as the eigenvalue. A numerical method
has been developed, with details which will be published
clsewhere, to solve for s and for the associated eigenfield
(¢, 8). The method is based on a variational principle origi-
nally formulated by Bazant® and makes use of a “natural”
finite-element grid covering the sphere; it has features in com-
mon with other methods developed to analyze 3D singulari-
ties.>!® The method is capable of solving for complex s. Fn most
of the cases presented in this paper the most singular fields of
interest are associated with an eigenvalue s which is real.

The examples considered in this section all involve grains
of cubic crystals. Let

f = 2C44/(C11 - Clz) ' (8)

be the standard measure of the anisotropy of the single crys-
tal. Let

e Cp/(Cu + Cp) 9

be the second nendimensional combination of the moduli
which coincides with Poisson’s ratio when f = 1 and, in gen-
eral, is —&;/&( for uniaxial stressing along the 1-direction of
the crystal. ‘

Attention will be confined to the classical vertex geometry
where four grains of equal spherical area meet at a point.!
The angle between the grain junction lines emerging from the
vertex for a given grain is approximately 109°. The basic ge-
ometry and our labeling conventions are shown in Fig. 7. The
graip junctions are_specified by the four vectors v =
V25— k v, = —V2i+ V& -k, vs = —V2i ~ V§j - k,
and v4 = k. Grain I has junctions (vy,¥,,v4); II has (vy,v2,v3); II1
has (v,,v3,v4); and TV has (v,,v3,v4).

(I} Basic Symmetry A

The first example is one in which the (1,1, 1) axis of each of
the single crystals is aligned with the central axis of its grain.
By central axis, we mean the line through the vertex which
makes equal angles with the three junction lines of the grain.
The crystal orientation in basic symmetry A is identical in
each grain relative to the grain as shown in Fig. 7. For f > 1
the stresses are bounded at the vertex (i.e., real 5 < Q) until f
is larger than about 15, which is beyond the range of interest.
The dependence of s on ffor f < 1 is shown in Fig, 8. The cal-
culations were made with ¥ = 0.3 but additional calculations
with other values of ¥ indicated that s is independent of 7.
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central oxis
of grain
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BASIC SYMMETRY A

BASIC SYMMETRY B

Fig. 7 Vertex geometry. The cubic crystals in basic symmetries A
and B have a (1,1,1) direction paraliel to the central axis of the
grain and their cube edges oriented relative to the grain as shown
when viewed along the central axis.

{2) Basic Symmetry B

In this case the (1,1,1) axis of the crystal in each grain is
also aligned with the central axis but now each grain is rotated
about the central axis by 60° relative to its orientation in basic
symmetry A, as shown in Fig. 7. For f > 1, the real part of s
is negative so that the stresses are bounded at the vertex. For
f < 1, the real part of s is positive, implying singular stresses,
but the imaginary part of 5 is of comparable magnitude to the
real part. Thus the singularity for this case is of the more
complicated oscillatory type.

(3) Example for Cubic ZrO, (f = 0.281,v = 0.164)

The result for the basic symmetry of Fig. § applies to ZrQ,
withf = 0.281, i.e., s = 0.22. Now suppose the basic symme-
try is broken by rotating the crystals in grains { and IV about
their (1,1, 1) axis which is aligned with the central grain axis.
Let the rotation of these crystals be # in the sense shown in
Fig. 9. By rotating the crystals in both grains I and IV in this
manner the symmetry of the problem with respect to the x—z
plane is preserved, and this symmetry is exploited in reducing
the size of the computation. The dependence of s on ¥ is shown
in Fig. 9. The most singular case is that of basic symmetry.

) CaseC

In this case the [001] direction of the crystal in each grain
coincides with the central axis. The [100] direction is taken to
be parallel to the x—y plane in each grain. This prescribes
the orientations for the crystals in grains I, III, and IV. In

0.6
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0.14

0.0

T T T T T T T T T 1
0001020304 0506 07 0.8 09 10
2C44/(C13“C12)

Fig. 8. Singularity exponent for four-grain vertex
with cubic crystals oriented with basic symmetry A.
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Fig. 9. Singularity exponent for four-grain vertex with cubic crys-
tals with anisotropy of ZrO,. With ¢ = 0, crystals have basic sym-
metry A. Grains I and I'V are rotated about the central axis in the
sense shown.

grain TI, the [100] direction is taken to be parallel to the y di-
rection. Symmetry with respect to the x—z plane exists for this
case too.

Now, the stresses arc bounded at the vertex when f <1
and unbounded when f > 1. A plot of s (which is real) vs 1/f
for f > 1 is shown in Fig. 10. The results are independent of
7. Included in Fig. 10 are the results of a 2D plane strain cal-
culation for a three-grain junction taken from Ref. 5* In the
2D calculation the [001] axis of the crystal bisects the facet
planes of each grain, as shown in the insert of Fig. 10, and the
[100] axis in each grain is aligned parallel to the 2D junction
line which is perpendicular to the plane of the figure. The 3D
vertex singularity is stronger than the 2D junction singularity,
although orientation of the crystals in the 2D junction does not
correspond precisely to any of the junctions of the 3D vertex.

(5 Rotation from Case C

With case C as reference, rotate the crystals in grains I and
1V about their [001] direction (i.e., about the central axis) by
an amount ¢ with the sense shown in the inserts in Fig. 11.
Symmetry with respect to the x—z plane is still preserved. The
variation of s and ¢ is shown in Fig. 11 for two values-of f,
including the extreme limit of anisotropy, f — o=. In this

*A different measure of elastic anisotropy of cubic single crystals was used

" in Ref. 5. The present choice of f, which is the standard measure, is much to

be preferred since s depends on f, independent of ¥. The choice in Ref. 3
resulted in s depending on the two nondimensional moduli measures.

0.5
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3D VERTEX
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0.0 1
0.0 0.2 0.4 0.6 0.8 1.

(C,Cpp 172G, ,

Fig. 10. Singularity exponents for four-grain
veriex, case C, and for three-grain, 2D junctions.
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Fig. 11. Singularity exponent for four-grain vertex where grains 1
and IV are rotated from their reference orientations in case C in
the sense shown.

example the dependence of s on 4 is not very strong. There is
a range of orientations where the most highly anisotropic
crystals give rise to s values greater than ¥. Thus, in prin-
ciple, super singularities are possible at some vertices of cubic
polycrystals. However, the present study suggests that singu-
larities that strong are not likely in cubic materials with mod-
erate levels of elastic anisotropy. It must be recognized that
the present study is far from being exhaustive in that it has
been limited to a single vertex geometry and to only a rela-
tively few orientation mismatches between cubic crystals. Con-
sideration of other geometries and crystal classes may produce
stronger singularities. .

V. Microcracking at a Vertex with Elastic Anisotropy and
Thermal Expansion Mismatches

Numerical calculations based on the finite-element method
have been used to compute the energy release rate § of a
microcrack emerging from a 3D veriex. The axisymmetric
geometry is shown in the insert in Fig. 12 along with its
transverse section. An axisymmetric conical crack of slant
length a lying on the interface between regions 1 and 2 exists
at the vertex. The moduli in each region have transverse
isotropy as specified by Egs. (5). The arrangement of an-
isotropy mismatch is identical to that in Section III with the
1-axis aligned with the axis of symmetry in region 1 and the
1-axis directed in the planar radial direction perpendicular to
the axis of symmetry in region 2. To mimic the behavior at a
typical vertex joining grains in a polycrystal, special cell
model boundary conditions are applied. The cylindrical sides
are free of shear traction but are constrained to remain
straight with zero net normal traction. The top and bottom
faces are also free of shear traction and are constrained to re-
main flat with net normal traction equal to the applied over-
all tensile stress &. When the model is stressed by thermal
expansion mismatch, the average normal traction on the ends
is required to vanish. Some details of the finite-element mod-
eling are discussed in the Appendix, including the methods
used to evaluate the energy release rate of the crack.

The first numerical example in Fig. 12 shows the effect of
overall stress @ on the energy release rate of the crack when
there is no thermal expansion mismatch. In this figure, the
nondimensional release rate, 4L%/(7%H), is plotted as a
function ‘of a/H for a number of different moduli correspond-
ing to varying « in Egs. (5) with 8, v, 8, and ¢ fixed at their
reference values in Egs. (6) with » = 0.3. The exponent of .
the stress singularity at the vertex in the absence of the
microcrack (a = 0) for this example was presented in Fig. 5
and the numerical values of s are included in Fig. 12. To the
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Fig. 12. Normalized energy release rate for a conical microcrack
emerging from a double wedge vertex (w = 45°). See text for speci-
fication of elastic anisotropy mismatch.

extent that the finite-element scheme can resolve the behav-
ior of the crack for very small a, the results of Fig. 12 display
the transition noted in connection with Eq. (4), where % is ei-
ther zero or unbounded as @ — 0, depending on whether s is
smaller or larger than 3. Moreover, the finite-element results
appear to be remarkably in accord with the vertex singularity
analysis in this respect with the transition occurring some-
where between ajay = 0.49 (s = 0.49) and afey = 0.47
(s = 0.51).

The second numerical example 1llustratcs the effect of

stressing due to-thermal expansion anisotropy mismatch in

" combination with elastic anisotropy mismatch with no overall
stressing (7 = 0). The elastic moduli are the same as those
used in the previous example. The nonzero coefficicnts of
thermal expansion in the principal axes of the material are
an and ax = a3 and we take Aa = (an — ay). The ther-
mal anisotropy mismatch is due to the differing orientations
from region 1 to region 2 (and to the circumferential variation
of the 1-axis in regionr 2). Curves of the normalized energy re-
lease rate 4/[AeAT)’L % H] are shown in Fig. 13, where AT is
the temperature drop measured from the zero stress state.
The transition between bounded and unbounded Y asa — 0
again correlates with the exponent s of the vertex singularity,
although the resolution of the behavior for small 4 is not suf-

- ficiently sharp when a/ery = 0.49. Clearly, the singularity as-
sociated with the elastic anisotropy mismatch dominates the
relatively weaker logarithmic singular behavior associated
with a purely thermal expansmn amsotropy mismatch. The
situation in 2D is similar in this respect.’

A comparison between the 3D model and the correspond-
ing 2D plane strain model is shown in Fig. 14. The 2D model
has the same type of cell model boundary conditions as the
3D model. The 1-axis of the moduli is aligned with the y axis
in region 1 and with the x axis in region 2. The examples in
Fig. 14 were computed with a/ay = 0.35 (corresponding to
(Lon/Ln = 0.679) and @ = 45°. The exponent for the
double wedge vertex is s = 0.41, only slightly below the tran-
sition. In this example the energy release rate for the vertex
crack increases much more rapidly than for the junction when
a is small, and the peak value of G for the vertex crack is more
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Fig. 13. Normalized energy release rate for a conical
microcrack emerging from a double wedge vertex
{(w = 45°). See text for specification of elastic anisotropy
and thermal expansion mismatches.

than twice that for the junction. Included as a dashed line
curve in Fig. 14 is the result of a computation for a doubly
conical crack which is symmetric with respect toy = 0. The
energy release rate for the symmetric crack is only slightly
smaller than that for the single conical crack.

V1. Discussion

Grain-boundary vertices and junctions become potent sites
for microcrack nucleation when elastic anisotropy is appreci-
able. Generally, vertices concentrate the stress more than
junctions. Under loading due to thermal expansion mismatch,
microcracks nucleated at vertices will tend to be highly stable
following nucleation with dimensions which are a very small
function of the grain diameter, as can be seen in Figs. 13 and
14, The greater the elastic anisotropy mismatch, the more

3
(a@ AT2 LG H

[

3D SINGLE
CONICAL CRACK

3D DOUBLE
CONICAL CRACK
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Fig. M. Comparison of normalized energy release rates for
microcracks emerging from a 3D vertex with that for a

- microcrack emerging from a 2D junction (w = 45°). See text
for specification of elastic amsotropy and thermal expan-
sion mismatches.
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sharply the drop in the energy release rate with crack advance
for a microcrack emerging from the vertex. In the exireme
when super singularities exist, stable microcracks are nucle-
ated by arbitrarily small flaws. When overall applied stress
is then superimposed onto the residual stresses due to ther-
mal expansion mismatch, the initial advance of the micro-
cracks is also more likely to be stable when the residual fields
are highly focused at the vertices at junctions. This is simply
because the crack driving force, which is made up of contri-
butions from the overall stress and the residual stress, will
only decrease with crack advance under constant overall
stress if the contribution due to the residual stress falls off
sharply. Thus, heterogeneity due to elastic anisotropy mis-
match in brittle polycrystalline solids promotes the nucleation
of stable microcracks. Such heterogeneity undoubtedly plays a
role in mechanisms of deformation and toughening involv-
ing microcracking. '

APPENDIX
Numerical Analysis for Grain-Boundary Microcracks

The analyses for a microcrack at a grain vertex are based
on the assumption of periodicity of the grain distribution, so
that symmetry conditions are prescribed at the edges of the
region analyzed (sec Fig. 12). Thus, at the ends the normal
displacements are constant and there are no shear stresses,
while the average normal stress 7 is prescribed. On the cylin-
drical surface (in the case of axisymmetry), the radial dis-
placements are constant with no shear stresses, and the
average transverse stress is prescribed to be zero.

An approximate solution is obtained by the finite-element
method. Eight noded isoparametric clements are used, and
the mesh is chosen such that no element crosses a grain
boundary. The mesh is strongly refined near the crack tip,
with several rings of small elements around the tip. The
10 elements in the first ring around the crack tip are wedge
shaped, so that one side is collapsed to a point, and the
21 nodes meeting at the crack tip are tied together as a
single node.

The energy release rate 9§ (per unit length of the crack
front) is determined by the stiffness derivative finite-element
technique.”? The expression for the derivative of the total po-
tential energy with respect to crack advance involves deriva-
tives of element stiffnesses and load term {e.g., load terms
resulting from thermal expansion), and these derivatives are
determined by a finite-difference approximation, based on
perturbations of the local mesh near the crack tip.
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Also, the Jintegral is evaluated on a number of contours
that follow the rings of elements around the crack tip. For
planar conditions the Jintegral is path independent, and.this
also applies to inhomogeneous materials as long the inhomo-
geneity is independent of the coordinate parallel with the
crack. For the axisymmetric crack configuration there is no
path independence, and the applicability of the Jintegral is
limited to contours of very small radius around the crack tip;
for isothermal conditions the actual strain energy density ex-
pression, accounting for thermal expansion, is used in the
Jintegral,

In the analyses carried out here the values of the energy
release rate obtained by the Jintegral agree with the values
determined by the stiffness derivative fechnique within 2%
to 3%.
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