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1. Introduction

The aim of this chapter is to pull together recent work on the fracture of
layered materials. Many modern materials and material systems are layered.
Interfaces are intrinsic to these materials, as are heterogeneities such as
residual stresses and discontinuities in thermal and elastic properties. The
structural performance of such materials and systems generally depends on
just these features. The potential applications of fracture mechanics of
layered materials ranges over a broad spectrum of problem areas. Included
are: protective coatings, multilayer capacitors, thin film/substrate systems
for electronic packages, layered structural composites of many varieties,
reaction product layers, and adhesive joints.

Attention is confined in this chapter to elastic fracture phenomena in
which the extent of the inelastic processes is small compared with the relevant
geometric length scales, such as layer thickness. For the most part, the
separate sections are designed so that they can be read independently. The
main exceptions are Section II, which presents the theory of mixed mode
interfacial fracture underlying many of the applications, and Section III,
which catalogues a number of basic elasticity solutions for layered systems
referred to throughout this chapter. Then follow sections on test specimens
for determining interfacial toughness, fracture modes in thin films under
either tension or compression, blister tests, and, lastly, failure modes of
adhesive joints. We believe that most of the important fracture concepts for
layered systems emerge in the analysis of these examples. One concept, in
particular, that plays a central role is the idea of steady-state cracking. In
almost every application considered here, a steady-state analysis provides a
simplified solution that is directly relevant to design against fracture.
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This chapter builds on earlier work by many researchers, but specifically
the contributions to the elasticity theory of cracks in layered materials of
Erdogan and coworkers in the 1970s, which comprised most of the available
solutions until recently. Special mention must also be made of the article on
thin films and coatings by Gille (1985), which gives a comprehensive treat-
ment of fracture modes without the insights from the recent developments
in interfacial fracture. It is especially these recent developments that have
transformed the subject. We have been fortunate to have been involved
with one of the groups (that centered at the University of California, Santa
Barbara) that have been concerned with the extension of both experimental
and theoretical aspects of fracture mechanics to interfaces. This involve-
ment is reflected in our approach as well as the topics that have been chosen
for presentation,

Structural reliability of multilayers is a fast growing field. An article
written at this point is most likely transitory work, although we have tried
to put various aspects into perspective, and we believe some of them are of
permanent nature. Like most review articles of this kind, subject matter
with various degrees of novelty that has not been published previously is
incorporated. Some fill gaps, others are ready extensions, and still others
are simply speculations. The writers sincerely urge the practitioners in the
related disciplines to use the article critically, so that the results can be
validated, expanded, or modified. A more consolidated version of the
article could then emerge on a later occasion.

II. Mixed Mode Fracture: Crack Tip Fields and Propagation Criteria

There is ample experimental evidence that cracks in brittle, isotropic,
homogeneous materials propagate such that pure mode I conditions are
maintained at the crack tip. This appears to be true for fatigue crack growth
and stress corrosion cracking as well as crack advance under monotonic
loading. An unloaded crack subsequently subject to a combination of
modes I and IT will initiate growth by kinking in a direction such that the
advancing tip is in mode I. A crack in a material with strongly orthotropic
fracture properties, or a crack in an interface with a fracture toughness that
is distinct from the materials joined across it, can experience either kinking
or straight-ahead propagation under mixed mode loading depending on a
number of factors, including the relative toughnesses associated with the
competing directions of advance. This section gives results from studies of
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crack tip fields for specifying criteria for straight-ahead propagation or
kinking under mixed mode loading. An assessment of the competition
between different directions of advance can also be made. Homogeneous
materials are considered first, starting with the isotropic case and going on
to orthotropic symmetry. Cracks on interfaces between dissimilar isotropic
elastic solids are dealt with last.

A. Isotropric ELasTiC SOLIDS

The stress fields at the tip of a crack in plane stress or plane strain for a
homogeneous, isotropic elastic solid have the well-known general form

o; = Ki2nn™%cl(0) + KuQnr) Y *6}}(0) + TS, 6,1, (2.1

1)

where J,; is the Kronecker delta and r and 6 are polar coordinates centered
at the tip as shown in Fig. 1. The f-variations are given in many texts on
fracture. They are the same for plane stress and plane strain, except 753,
which vanishes in plane stress and is given by v(g,; + 0,,) in plane strain,
where v is Poisson’s ratio. Mode I fields are symmetric with respect to the
crack line with g}, = 1 and o], = 0 on # = 0, while the mode II fields are
antisymmetric with g3 = 1 and g3, = 0 on § = 0. The higher order contri-
butions not included in (2.1) all vanish as r = 0. The T-stress, o, = T,
arises in discussions of crack stability and kinking. Thus, the singular
tractions on the line ahead of the crack tip (¢ = 0) have the mode I and II
stress intensity factors as amplitudes according to

0 = Ki@r~ %, 6y, = KnQRar)~2 (2.2)
The relative displacements of the crack faces behind the tip,

O =u(r,0 =m) — u(r, 0 = —m),

Fic. 1. Conventions at a crack tip and the geometry of a kinked crack.
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in the region dominated by the singular fields are given by

(8:,6)) = (K1, Kn)@®/E)[r/2m)]'"?, (2.3)
where
E=E/1 -v» (plane strain)

=F (plane stress) 2.4)

and E is Young’s modulus. Irwin’s relation between the energy release rate
G for straight-ahead quasi-static crack advance and the stress intensity
factors is

G = (K} + K})/E. 2.5

Next, consider a putative crack segment of length a kinking out the plane
of the crack at an angle Q with the sense shown in Fig. 1. When « is suffi-
ciently small compared with all in-plane geometric lengths, including the
crack length itself, there exists a relation between the stress intensity factors
K{ and K{; at the tip of the putative crack and the stress intensity factors K|
and Ky and the T-stress acting on the parent crack tip when ¢ = 0. The rela-
tion has the form

KIt = CIIKI + CIZKH + bl Tal/z, 2 6
(2.6)
KItl = CZIKI + CZZKII + szal/z.

The Q-dependences of the c’s are given by Hayashi and Nemat-Nasser
(1981) and by He and Hutchinson (1989b), while the Q-dependence of the
b’s is given by He et al. (1991).

The ratio of the energy release rate of the parent crack when it advances
straight-ahead to that of the kinked crack, G' = (K{*> + K{2)/E, is of the
form

G/G' = F(Q, w,n), 2.7

where F depends on the coefficients in (2.6). In addition, y is the measure
of mode IT to mode I loading acting on the parent crack defined by

tan™'(X;,/K7) (2.8)

W
and
Tla/(EG)'2. 2.9

n

The ratio (2.7) applies to both plane strain and planes stress.

With G}, denoting the value of G' maximized with respect to Q for a
given y, the ratio G/G,, is plotted as a function of y for various values of
n in Fig. 2, which was taken from He e al. (1991). The kinking angle Q at
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Fic. 2. Ratio of energy release rate for straight-ahead advance to maximum energy release
rate for a kinked crack as a function of ¥ = tan™'(K;/K;). Reproduced from He ef al. (1991).

which G' is maximized is plotted as a function of y in Fig. 3 for the limit
n = 0. The ratio in Fig. 2 corresponds to F(y, 1) = F(ﬁ, v, n). The kinking
angle that maximizes G' is nearly coincident with the kinking angle for
which K|y = 0, as can be seen in Fig. 3. Only for y greater than about 50°
is the difference more than one degree, and the difference between the
energy release rates for the two directions is numerically insignificant. Thus,

T T T T T T T T T
0
807 Kin=0~ = 7
=
A
() 60’ -
[+]
a0 kmaximizes T
L Gt i
20° -
[o52 A N N SR NN R !
o° 20°  40°  g0° W 80°

Fic. 3. Kink angle as predicted by two criteria.
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for all practical purposes, there is no distinction between a criterion for
kinking based on maximizing G"' or one based on propagation in the direc-
tion in which K;; = 0. With I’ = K./E denoting the mode I toughness,
kinking will initiate at a crack tip in a brittle material subject to monotonic
mixed mode loading when

G =F(y,n =0T, (2.10)

where F is the ratio in Fig. 2. Once initiated, the advancing tip will be
influenced by the T-stress through the n-dependence of F.

B. HoMoOGENEOUS, ORTHOTROPIC ELASTIC SOLIDS

Consideration will be restricted to plane cracks aligned with the principal
axes of orthotropy and crack advance that is either straight-ahead or kinked
at 90° parallel to the second in-plane orthotropy axis. With reference to
Fig. 1, let the orthotropy axes coincide with the x;-axes and take the plane
of the crack to be x, = 0 with its edge along the x;-axis. Introduce elastic
compliances of the solid in a standard way according to

6
&= Y 5,0, i=1to6, (2.11)
j=1

where
fei} = {11, €225 €33, 2623, 2813, 2813},

{0;) = {011,002, 033, 03,013, O13].

For the orthotropy assumed here, deformations in the (1, 2) plane satisfy
(Lekhnitskii, 1981)

&= Y byo, =126, (2.12)
i=1,2,6
where, for i,/ = 1,2, 6,

1
by = {Su (plane stress) (2.13)

S — $i38;3/833, (plane strain)

with only four independent elastic constants: by;, by, = byy, by,, and bgg
(brs = bys = 0).

For simply connected domains with traction boundary conditions, Suo
(1990c) has shown that the stresses depend on only the following two
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(rather than three) nondimensional elastic parameters:
A =by/by, P = (b + thee)/ (b1 b)) (2.14)

This particular choice of parameters is particularly useful for reasons that
will emerge shortly. When A = p = 1, the in-plane behavior is isotropic
(i.e., the material is transversely isotropic with respect to the x,-axis), and
when just A = 1, the material has cubic in-plane symmetry. Positive
definiteness of the strain energy density requires A > 0 and —1 < p < e,

The singular crack tip fields are contained in the work of Sih ez al. (1965).
Here, mode I and II stress intensity factors are defined such that (2.1) and
(2.2) remain in effect, where the functions &, and 6], now depend on 4 and
p as well as 8. The displacements of the crack faces behind the tip are

(62, 6,) = A7*Ky, A7V Ky)8nb i [r/Qu)]' 72, (2.15)

where n = [(1 + p)/2]"%. The energy release rate for straight-ahead crack

advance is
G = by n(A~¥*KE + A7VAKE) (2.16a)

or, equivalently, in a notation used in the composites literature, as G =
G, + Gy, where

Gy = by nd K2, Gy = by, nd "*K3. (2.16b)

A crack kinking analysis as extensive as that described for the isotropic
material has not been performed for orthotropic materials. Many such
materials have strongly orthotropic fracture properties, wood and lami-
nated composites being well-known examples. When kinking occurs, it
often does so at a right angle to the plane of the crack (ie., & = 90° in Fig. 1)
along the plane of the grain or a laminate. Suo et al. (1990b) have shown
that for Q = 90° the generalization of (2.6) is (neglecting T')

t
KII

I

enATYKy + e AT VRKy, @.17)

t -1/8 1/8
KII CZI)' KI + CZZ)' KlI'

The ¢’s depend on p, but this dependence is rather weak.
The energy release rate of the kinked crack tip, G, is related to Kj and
Kj; by an expression similar to (2.16), i.e.,

G' = byn(A¥*KP + AV4K), (2.18)
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Fic. 4. Normalized ratio of energy release rates for orthotropic material.

where A, n, and p remain defined as before. Thus, the ratio of the energy
release rates for the competing trajectories can be obtained from (2.16)-
(2.18) as

G _ 1/4|: 1+
G' (¢} + c3) + 2(cy 01 + 6160)0 + (ch + )

] , (2.19)

where { = A'*K,;/K,. This ratio is plotted in Fig. 4. Note that it depends on
the relative proportion of Kj; to K; but not on their magnitudes.

Suppose the main crack tip is subject to a mode I loading (K; > 0,
K = 0). Let I}, be the material toughness associated with straight-ahead
crack advance, and Iy, be that associated with crack advance by kinking
with Q = 90°. (Note from (2.17) that the tip of the kinked crack is subject
to mixed mode with K{;/K{ = 1**c,,/c,,. Thus Iy, must represent the
mixed mode toughness for cracking parallel to the x,-plane.) If

G I,

R > —,
G'" Ty
the crack will advance straight ahead since the condition G = T, will be

reached before G' = Iyy. The crack will advance by kinking at 90° if the
inequality is reversed. From Fig. 4, it can be seen that the condition on the
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toughness ratio for kinking is

20 < fon, (2.20)
0

where £(1) = 0.26, £(1/10) = 0.29, and £(10) = 0.16.

C. INTERFACE CRACKS

The emphasis of much of this chapter is on the mechanics of interfacial
fracture and applications. This section introduces some of the basic results
on the characterization of crack tip fields and on specification of interface
toughness. If an interface is a low-toughness fracture path through joined
solids, then one must be concerned with mixed mode crack propagation
since the crack is not free to evolve with pure mode 1 stressing at its tip, as
it would in an isotropic brittle solid. The asymmetry in the moduli with
respect to the interface, as well as possible nonsymmetric loading and
geometry, induces a mode 2 component. The competition between crack
advance within the interface and kinking out of the interface depends on the
relative toughness of the interface to that of the adjoining material. This
competition will be addressed at the end of this section, but first it is neces-
sary to consider how mixed mode conditions affect crack propagation in the
interface. The article will focus on isotropic materials. Extensions to
anisotropic materials are reviewed in Suo (1990a) and Wang ef al. (1990).

1. Crack Tip Fields

Consider two isotropic elastic solids joined along the x;-axis as indicated
in Fig. 5 with material 1 above the interface and material 2 below. Let y;,
E;, and v; (i = 1, 2) be the shear modulus, Young’s modulus, and Poisson’s
ratio of the respective materials, and let k; = 3 — 4v; for plane strain and
k; = (3 — v;)/(1 + v;) for plane stress.

Dundurs (1969) has observed that wide class of plane problems of
elasticity for bimaterials depend on only two (rather than three) nondimen-
sional combinations of the elastic moduli. With the convention set in Fig. 5,
the Dundurs’ elastic mismatch parameters are

_iky + 1) — (e + 1) and gk — 1) = (g — 1)

Tl + D)+ ey + 1) RN EGERN
2.21)
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Fic. 5. Geometry and conventions for an interface crack.

A more revealing expression for « is
x = (E_l —_ E_Z)/(E_l + E—z), (2.22)

where E; = E,/(1 — v?) in plane strain and E; = E, in plane stress. Thus, «
measures the mismatch in the plane tensile modulus across the interface. It
approaches +1 when material 1 is extremely stiff compared to material 2,
and approaches —1 when material 1 is extremely compliant. Both « and
vanish when there is no mismatch, and both change signs when the
materials are switched.

The parameter £ is a measure of the mismatch in the in-plane bulk
modulus. In plane strain,

_ 1#1(1 = 2v,) — (1 — 2vy)
2 (1 = v + p(l ~ vy)

B (2.23)

Thus, in plane strain, # vanishes when both materials are incompressible
(vi = v, =1/2), and f = «/4 when v; = v, = 1/3. In plane stress, § = a/3
when v, = v, = 1/3. When v; = v,, a is the same in plane strain and plane
stress.

In plane strain, the physical admissible values of « and g are restricted to
lie within a parallelogram enclosed by o« = +1 and o — 48 = %1 in the
(a, f) plane, assuming nonnegative Poisson’s ratios. The range of « and 8
in plane stress is somewhat more restricted. Representative material com-
binations are plotted for plane strain in Fig. 6, in every case with the stiffer
material as material 1 so that « is positive. This plot is similar to one given
by Suga er al. (1988). Note that most of the («, £) combinations in Fig. 6 fall
between B = 0 and B = «/4. Combinations that satisfy § = 0 give rise to
simpler crack tip fields than combinations with § # 0, and special attention
will be paid to this restricted family of bimaterials in a separate section
following this one.
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Fig. 6. Values of Dundurs’ parameters in plane strain for selected combinations of
materials.

Solutions to bimaterial interface crack problems were presented in the
earliest papers on the subject by Cherepanov (1962), England (1965),
Erdogan (1965), and Rice and Sih (1965). Williams (1959) investigated the
singular crack tip fields. Here, the notations and definitions of Rice (1988)
for the crack tip fields will be adopted since these reduce to the conventional
notation when the mismatch vanishes. Take the origin at the crack tip, as in
Fig 5, with the crack flanks lying along the negative x,-axis. The dominant
stress singularity for any plane problem in which zero tractions are
prescribed on a portion of the negative x;-axis ending at the origin is of the
form

0o = Re[Kr*12nr)~2aLs(6, €) + Im[Kr]2nr)~""*als(0, &), (2.24)
where i = v—1, r and @ are defined in Fig. 5, and

_ 1 (18
£=o 1n(1 S ﬂ>. (2.25)

The complex interface stress intensity factor K = K, + iK, has real and
imaginary parts K, and K, , respectively, which play similar roles to the con-
ventional mode I and Mode II intensity factors. The quantities oLz and aLg
are given by Rice ef al. (1990); they reduce to the corresponding quantities
in (2.1) when ¢ = 0.
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The singular fields are normalized so that the tractions on the interface
directly ahead of the tip are given by

04 + i0), = (K, + iK>)Q2nrr)~V?r (2.26a)
or
0, = Re[Kr*12nr) "%,  o&,, = Im[Kr12nr) V2>  (2.26b)

where r® = cos(eInr) + isin(eIn 7). This is a so-called oscillatory singu-
larity, which brings in some complications that are not present in the elastic
fracture mechanics of homogeneous solids, as will be discussed in detail
later. The associated crack flank displacements a distance r behind the tip,
6, =u(r,0 =mn) — u;(r,d = —m), are given by

_ 8 K, + iKy) [\,
8y + 6y = I\ e e
2101 = (T 2ig)cosh(ne)  E, <27r> o @)

where
1 1/1 1
—_— ==+ = 2.28
E, 2<E1+E2) @28

The energy release rate for crack advance in the interface is (Malyshev and
Salganik, 1965)
1 _ 2
6=L"F) k21 k), (2.29)
E,

which reduces to (2.5) in the absence of mismatch. Equations (2.27) and
(2.29) can be re-expressed using the connection 1 — 82 = 1/cosh?(ne).

To help motivate the application of the crack tip fields to characterize
interface toughness, it is useful to give two examples of stress intensity
factors for solved problems. The problem of the isolated crack of length 2a
lying on the interface between two remotely stressed semi-infinite blocks
(see Fig. 7a) was solved in the early papers cited previously. For the right
hand tip of the crack,

K, + iK, = (63 + io)(1 + 2ie)(na)*(2a)~*. (2.30)

This particular set of intensity factors depends on the elastic mismatch only
through ¢ and, by (2.25), is independent of «. The problem of the infinite
double cantilever beam (see Fig 7b) loaded with equal and opposite
moments (per unit thickness perpendicular to the (1, 2) plane) was solved by
Suo and Hutchinson (1990) as the special case of a more general solution
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#2 1 h

Fic. 7. Two basic interface crack problems.

presented in Section III. The solution is
K, + iK, = 2V3MR2 751 - g7y 2, (2.31)

where the function w*(«, f) is displayed in Fig. 8.

2. Crack Tip Fields and Interface Toughness with § = 0
When # = 0 (and thus € = 0 by (2.25)), (2.26) becomes
(022, 012) = (K1, K)Q2mr)™ "2, (2.32)
and (2.27) reduces to
(63, 81) = B/ENK,, Ky)[r/2m)]". (2.33)

The interface stress intensity factors K| and K, play precisely the same role
as their counterparts in elastic fracture mechanics for homogeneous, iso-
tropic solids. The mode 1 component K| is the amplitude of the singularity
of the normal stresses ahead of the tip and the associated normal separation
of the crack flanks, while the mode 2 component X, governs the shear stress
on the interface and the relative shearing displacement of the flanks.
When § # 0, the decoupling of the normal and shear components of
stress on the interface and associated displacements behind the tip within
the zone dominated by the singularity does not occur. When § # 0, the
notions of mode 1 and mode 2 require some modification. In addition, the
traction-free line crack solution for the displacements (2.27) implies that the
crack faces interpenetrate at some point behind the tip. Both of these
features have caused conceptual difficulties in the development of a
mechanics of interfaces. For this reason, we have chosen to introduce the
elastic fracture mechanics for bimaterial systems with § = 0, ¢ither exactly
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Fic. 8. Phase factor w* for the problem of Fig. 7b.

or as an approximation. The extension for systems with # = 0 will be given
in the following section, where it will also be argued that the effect of
nonzero f is often of secondary consequence.
When 8 = 0, take the measure of the relative amount of mode 2 to mode
1 at the crack tip to be
w = tan" Y (K,/K,). (2.39)

The finite crack in the infinite plane, (2.30), gives
w = tan~ Y (033/033), (2.35)

while the double cantilever beam loaded by equal and opposite moments,
(2.31), has
v = w¥(a, 0). (2.36)

The double cantilever has symmetric geometry and loading; the asymmetry
is due entirely to the elastic mismatch. Note from Fig. 8 that the specimen
is in mode 1 when « = 0, as it must by symmetry, but develops a substantial
mode 2 component when the elastic mismatch becomes significant.
Efforts to measure interfacial toughness under mixed mode conditions go
back some years (e.g., Trantina, 1972, and Anderson et al., 1974), as
reviewed by Liechti and Hanson (1988). Parallel efforts have also been
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underway to develop mixed mode fracture specimens designed to measure
the delamination toughness associated with ply separation in polymer-
matrix composites (e.g., Kinloch, 1987). A series of recent experiments
(Cao and Evans, 1989; Wang and Suo, 1990; and Liechti and Chai, 1990a)
have focussed on the interface between epoxy and glasses, metals and
plastics. Thouless (1990b) has carried out mixed mode toughness experi-
ments for crack propagation in the interface between a brittle wax and
glass. In all these systems, the interface toughness is not a single material
parameter, rather it is a function of the relative amount of mode 2 to
mode 1 acting on the interface.

The criterion for initiation of crack advance in the interface when the
crack tip is loaded in mixed mode characterized by vy is

G = T(y). (2.37)

The toughness of the interface, T'(y), can be thought of as an effective
surface energy that depends on the mode of loading. Condition (2.37) is
also assumed to hold for quasi-static crack advance when crack growth
resistance effects can be disregarded.

Data from Wang and Suo (1990) for a crack in a plexiglass/epoxy
interface is shown in Fig. 9. This data was obtained using a layer of epoxy
sandwiched between two halves of a Brazil nut specimen. The specimen,
which will be considered later in Section I'V.C.2, enables the experimentalist
to vary the mix of loading from pure mode 1 to pure mode 2 by varying the

o° 20° 40° 60° 80°

Fic. 9. Interface toughness function for a plexiglass (#1)/epoxy(#2) interface. Obtained
using a Brazil nut specimen by Wang and Suo (1990).
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angle # of the compression axis (see the insert in Fig. 9). For the plexiglass
(#1)/epoxy(#2) interface in plane strain,

a =-0.15, [ =-0.029, ¢ = 0.009. (2.38)

The error in taking § = 0 is negligible for this system as will be clear in the
next section. Note, for example, that the error in G in (2.29) from this
approximation is less than 0.1%.

3. Phenomenological Characterization of Interface Toughness

A micromechanics of interface toughness is not far advanced. An
overview of various mechanisms responsible for the strong dependence of
interfaced toughness on mode mixity is given by Evans et al. (1990). Two
primary mechanisms are asperity contact and plasticity. Asperities on the
fracture surfaces will tend to make contact for some distance behind the tip
when mode 2 is present along with mode 1. A micromechanics model of
shielding of the tip due to asperity interaction was presented by Evans and
Hutchinson (1989). That model led to a prediction of I'(y) in terms of a
nondimensional measure of fracture surface roughness. Crack tip plasticity
also depends on y, with the plastic zone in plane strain increasing in size as
|w| increases, with G held fixed (Shih and Asaro, 1988). When an interface
between a bimaterial system is actually a very thin layer of a third phase, the
details of the cracking morphology in the thin interface layer can also play
a role in determining the mixed mode toughness. Some aspects of cracking
at the scale of the interface layer itself will be discussed in the final section
of this chapter. The approach for the time being is that the interface has
zero thickness and is modeled by the toughness function I'(y) which, in
general, must be determined by experiment.

A simple, one parameter family of mixed mode fraction criteria that
captures the trend illustrated by the data in Fig. 9 is

E;\(K? + AKD) = Gf. (2.39)

The parameter A adjusts the influence of the mode 2 contribution in the
criterion. The limit A = 1 is the ‘‘ideally brittle’’ interface with initiation
occurring when G = Gy for all mode combinations. This limit coincides
with the classical surface energy criterion. When A = 0, crack advance only
depends on the mode 1 component. For any value of A, Gy is the pure
mode 1 toughness. The criterion can be cast in the form (2.37) where the
mixed mode toughness function is

T'y) = G{[1 + (A — 1)sin®y] . (2.40)
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Fig. 10. A family of interface toughness functions and comparison with data for a
plexiglass/epoxy interface (represented by the broken line).

The toughness is plotted as a function of y in Fig. 10 for various values of
A. Included in this figure is the data for the plexiglass/epoxy interface,
which is approximately represented by the choice A = 0.3. This particular
interface displays a toughness that is far removed from ideally brittle
behavior.

The family of criteria (2.39) was extended to include a mode 3 contribution
by Jensen et al. (1990). In a slightly different form, this family of criteria
has been used for some time to characterize interlaminar failure in fiber
reinforced composites (¢f. Kinloch, 1987)., When £ = 0, one can introduce
“‘components’’ of G according to

(G1, Gy = EJN(KT, KD), (2.41)

such that G = G, + G,." Alternatively, for a crack in a homogeneous
orthotropic material, G, and G, can be defined using (2.16). The criterion
(2.39) can be rewritten as

(G/GY) + (G,/G3) =1, (2.42)

where G5 = G/ has the interpretation as the pure mode 2 toughness.
Other phenomenological criteria have been proposed to characterize

mixed mode toughness data for interlaminate fracture (e.g., Kinloch, 1987).

Two alternatives to (2.40) are now given which have qualitative features

"The components can be regarded as the work of the normal and shear tractions on the
interface through their respective crack face displacements as the crack advances. This decom-
position does not exist when § = 0.
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Fig. 11. Alternative families of interface toughness functions.

that may more realistically reproduce data trends for interfacial fracture:

L(w) = Gf{1 + tan’[(1 — Ay} (2.43)
and
I'(w) = Gf[1 + (1 — A)tan®y]. (2.44)

These are plotted in Fig. 11. Both coincide with (2.40) in the limit A = 0,
i.e., they reduce to a criterion based on a critical value of X, , independent
of K,. Both are ideally brittle with A = 1. According to (2.43), the
toughness increases sharply as w — 90° (mode 2), as opposed to (2.40),
which has the toughness leveling off as v — 90°. Equation (2.44) models
the toughness as unbounded as y — 90° for all A < 1. While this feature
should not be taken literally, it did emerge in the simple model of mixed
mode interface toughness due to asperity contact of Evans and Hutchinson
(1989). Of the three formulas for I'(y), (2.44) most accurately reflects the
trends of that model.

All three of the interface toughness functions I'(y) are symmetric in y. In
general, symmetry of interface toughness with respect to w should not be
expected. Some evidence that I'(y) is asymmetric for an epoxy/glass inter-
face will be presented in the next section.

4. Interface Toughness with § # 0

When § # 0, the notion of a mode 1 or a mode 2 crack tip field must be
defined precisely, and the possibility of contact of the crack faces within the
region dominated by the near tip K-fields must be considered. As noted by
Rice (1988), a generalized interpretation of the mode measure is the most
important complication raised by the oscillatory singularity, and the
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approach recommended here follows largely along the lines of one of his
proposals. First, a definition of a measure of the combination of modes is
made that generalizes (2.34).

Let / be a reference length whose choice will be discussed later. Noting the
stress distribution (2.26b) on the interface from the K-field, define w as

[ Imxr®)
¥ = tan [7Re(Klie)} R (2.45)

where K = K| + iK, is the complex stress intensity factor. For a choice of
! within the zone of dominance of the K-field, (2.45) is equivalent to

(cf. (2.26b))
-1 G2
= —= } 2.46
v tan |:<022>r = l] ( )

Moreover, the definition reduces to (2.34) when 8 = 0, since / = 1 when
¢ = 0. When ¢ # 0, a mode 1 crack is one with zero shear traction on the
interface a distance / ahead of the tip, and a mode 2 crack has zero normal
traction at that point. The measure of the proportion of ““mode 2’ to
““mode 1”’ in the vicinity of the crack tip requires the specification of some
length quantity since the ratio of the shear traction to normal traction varies
(very slowly) with distance to the tip when 8 # 0.

The choice of reference length / is somewhat arbitrary, as will be made
clear in the following. It is useful to distinguish between a choice based on
an in-plane length L of the specimen geometry, such as crack length, and a
choice based on a material length scale, such as the size of the fracture
process zone or a plastic zone at fracture. The former is useful for discuss-
ing the mixed mode character of a bimaterial crack solution, independent of
material fracture behavior, while the latter is advantageous in interpreting
mixed mode fracture data, as will be discussed. When there is the need to
keep the two types of choices clearly distinct, the notation (i, /) will be used
for a choice based on the specimen geometry and (i, 7) will be reserved for
a material-based choice.

The solution for the complex stress intensity factor to any plane elasticity
problem for an interface crack will necessarily have the form

K = (applied stress) x FL'Y?7%, (2.47)

where L is some in-plane length, such as crack length or uncracked ligament
length, and F is a complex-valued, dimensionless function of dimensionless
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groups of moduli, and in-plane length quantities. Equations (2.30) and (2.31)
are two examples. The term K/* in the definition of w will therefore always
involve a dimensionless combination such as (//L)* = explie In(//L)]. For
example, the bimaterial double cantilever beam specimen (2.31) has

v = w¥Xa, f) + €ln(l//h), (2.48)

which generalizes (2.36).

The freedom in the choice of / in the definition of y is a consequence of
the simple transformation rule from one choice to another. Let y, be
associated with /;, and y, with /,. From the definition in (2.45) one can
readily show

vy = v, + €n(l,/1). (2.49)

Thus, as noted by Rice (1988), it is a simple matter to transform from one
choice to another. In particular, toughness data can readily be transformed,
as will be discussed in the following.

Let / denote a length characterizing the size of the fracture process zone
or, perhaps, the typical size of the plastic zone at fracture, and let { be asso-
ciated through (2.45). Since small-scale yielding or a small-scale fracture
process zone is assumed, 7 necessarily lies within the zone of dominance of
the K-field. Given the choice /, the criterion for interface cracking can again
be stated as (2.37), i.e.,

A

G=Tw,1, (2.50)

where the implicit dependence of the toughness function on I has been
noted. In words, T'(y, 1) is the critical value of the energy release rate needed
to advance the crack in the interface in the presence of a combination of
tractions whose relative proportion is measured by . By (2.49), change in
one choice of length in the definition of w to another only involves a shift
of the w-origin of T according to

T(yz, b) = Ty, + eln(l/1), 1), (2.51)

as depicted in Fig. 12. When ¢ is small, the shift will generally be negligible
even for changes of / of several orders of magnitude. This is the case for the
plexiglass/epoxy interface (2.38). An illustration for which the e-effect is
not negligible in reporting interface toughness is discussed shortly.

In discussing the mixed mode character of a given elasticity solution, it is
generally convenient to identify / with an in-plane length of the geometry,
such as L in (2.47). For example, if for the double cantilever beam specimen
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F1g. 12. Procedure for shifting toughness function from one choice of reference length to
another.

one picks / = A, then by (2.48),

v = o*a, )B)’ (252)

which is independent of the size of the specimen.’ This is necessarily a
feature of any choice of / that scales with an in-plane length. By contrast,
for a choice [ that is fixed at some microstructural length, § varies with
specimen size, e.g., for the double cantilever specimen,

¥ = w*(e, B) + €In{’h). (2.53)

This reflects the fact that the ratio of @,, to ¢,, at a fixed distance r = [
ahead of the tip varies as the specimen size changes. Standard arguments
underlying the mechanics of fracture, based on Irwin’s notion of
autonomous crack tip behavior, require that I'(i, 7) be independent of
specimen size (assuming, of course, that small scale processes are in effect),
while I'(y, /) will depend on specimen size if € # 0 when / scales with
specimen size. This property, together with the interpretation of mixity in
(2.45) in the vicinity of the fracture process zone, favors the choice of a
material-based / for presenting toughness data.

Liechti and Chai (1990a, b) have developed a bimaterial interfacial
fracture specimen that is capable of generating the interface toughness func-
tion I' over essentially the full range of . A schematic of their plane strain
specimen is shown in the insert in Fig. 13. The in-plane length of the
specimen is long compared to the thickness # of each layer. The bottom

TThe fact that / = A obviously lies outside the zone of dominance of the K-field is of no
consequence. The essential point is that any choice of / is acceptable as long as it is recorded
along with the result for y, and as long as one is cognizant of the transformation rule.
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FiG. 13. Data of Liechti and Chai (1990a) for an epoxy (#1)/glass(#2) interface: y, is based
on/, = 12.7 mm and §, on /, = 127 um. The solid curves are I'(i7,), where I is given by (2.44).

surface is rigidly held and the upper surface is attached to a rigid grip that
can impose a horizontal, U, and vertical, V, in-plane displacement. The
solution to the problem when the layers are infinitely long and the interface
crack is semi-infinite was used by Liechti and Chai to obtain the values of
K, and K, (and G and ) associated with the measured combinations of U
and V at which the crack propagated in the interface. For plane strain, the
solution is (see Section II1.C)

V2u, u V2% el (elV + jU)

, (2.54
0=y + 1)Lt = v + @ — o2’ 39

K, + iK, =

where w is a real quantity that depends on u,/u,, v,, and v, and

172
. { 20y + 1) } @55

11 = 2v,)/(1 — wy)] + ppl(1 — 2v)/(1 — vy)]

Let y measure the relative proportion of U to ¢V applied to the specimen,
and define it by

y = tan"[U/(cV)]. (2.56)
Then, with / as the reference length, (2.45) gives

v =y+w+ eln(/h). (2.57)
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The data for T'(i%, /) in Fig. 13 was measured by Liechti and Chai for an
epoxy(#1)/glass(#2) interface with the following properties for the system:
E, = 2.07GPa, E, = 68.9GPa, v, = 0.37, v, = 0.20, and A = 12.7 mm.
The plane strain Dundurs’ parameters and the oscillation index are

a=-0935, f=-0.188, and =0.060.  (2.58)

For this system w = 16° (see Section III.C). Liechti and Chai took
[ = 12.7mm in their definition of w, coinciding with the thickness 4 of
the layers.

Liechti and Chai recorded plastic zones in the epoxy to be approximately
on the order of 1 um when ¥ = 0° and 140 um when ¥ = 90°. If instead of
I=12.7mm, [ is chosen to be two orders of magnitude smaller (i.e.,
I = 127 um), the shift in the ¥-origin from (2.49) or (2.51) is —15.8°. This
choice seems somewhat more natural in terms of the interpretation given
earlier since now [ lies well within the zone of dominance of the K-field and
has a microstructural identity. This choice also places the origin of the
y-axis (i.e., ““mode 1°’ for this choice of /) at the approximate minimum of
I" and roughly centers the data, as can be seen in Fig. 13. Nevertheless, some
asymmetry in I with respect to  still persists. Included in this figure is the
toughness function I'(y) from (2.44) for two choices of A, with G chosen
to coincide with the measured value at ¥, = 0. Apart from the asymmetry
in the data, a A-value between 0 and 0.5 would seem to give an approximate
characterization of the data over the range of { shown. Other important
aspects of the mixed mode fracture behavior of this system have been
discussed by Liechti and Chai (1990a). These include possible correlation of
the strong increase in toughness with mode 2 with either fracture surface
roughness or plasticity, and the role of contact between crack faces when
the loading becomes dominantly mode 2.

When interpenetration of the crack faces is predicted on the basis of the
formulation for a traction-free line crack, the consequences of contact must
be taken into account in any application of the solution to fracture. The
bimaterial problem with # 0 is unusual in that interpenetration of the
faces always occurs according to (2.27). This feature of the interface crack
problem was noted in the earliest papers on the subject, and solutions to
specific problems posed with allowance for contact have been produced
(Comninou, 1977, and Comninou and Schmueser, 1979). Fortunately, under
most loadings likely to be of concern, the contact zone predicted by the
elasticity solution is tiny compared with relevant near tip physical features
such as the fracture process zone or the plastic zone. The larger the
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proportion of mode 2, the more likely is contact of the crack faces to be
an issue.’

To see this, a rough estimate of the size of the contact zone is obtained.
The estimate is that of Rice (1988), as elaborated on by Wang and Suo
(1990). Here, however, emphasis is placed on a definition of  in (2.45)
based on a microstructural scale length I.Forr < i, it will be assumed that
the fracture process or other inelastic effects supercede linear elasticity.
Using the definition of y in (2.45), one can readily show that the normal
crack face displacement in the near tip region from (2.27) is

0, = |6, + i6,| cos[ir + &In(r/]) — tan~'(2¢)]. (2.59)

Consider the condition for the crack to be open (d, > 0) for I<r<L/0.
The factor 1/10 is arbitrary, but the near tip fields should not be expected
to retain accuracy for r larger than some fraction of L. If contact occurs
outside the preceding range, it must be assessed using the full solution. If
€ > 0, the stated condition is met if

4 4 1 L
——+2 < —+2e—¢€ln|l—= 2.60
2+ 8<l//<2+8 an(lol), (2.60)

where tan~!(2¢) has been approximated by 2¢ since |¢| < 0.175. For ¢ < 0,
there will be no contact over the specified region as long as

n 1 L 7
- 4+ 2 - — = | <P <—+ 2. 2.61
) £ eln<101> V<3 £ (2.61)

The e-dependence of the above constraints is inconsequential for many
interface systems. For the epoxy/glass system (2.58), which has a relatively
large e-value, (2.60) becomes —83.1° < ¢ < 89.0° for L/[ = 100 and
~83.1° < < 73.2° for L/[ = 10*. The difference between the limits
obtained above and those derived by Rice (1988) and Wang and Suo (1990)
is due mainly to the use in the present work of the material-based definition
of , rather than y defined in terms of a length L characterizing the
specimen. The combination of the contact due to nonzero ¢ and the contact
arising from fracture surface asperities has not been modeled. The inter-
action between these two effects acting in concert should be important for
mixed mode loadings near the limits listed above.

"Now the contact is not due to asperity roughness on the crack faces generated by the
fracture process that was discussed earlier. Here, the crack faces are imagined to be smooth
and ‘‘just touching’’ in the unloaded state.
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N #2

Fic. 14. Conventions for a crack kinking out of an interface.

5. Kinking Out of the Interface

The analysis of kinking parallels that was discussed in Section A for the
isotropic elastic solid, and the results presented in what follows are taken
from He and Hutchinson (1989a) and He er al. (1991). As depicted in
Fig. 14, a semi-infinite crack lies along the interface with its tip at the origin.
Prior to kinking (@ = 0), the parent crack is loaded with a complex interface
stress intensity factor K = K, + iK, with mixity y defined by (2.45) relative
to some reference length /. For definiteness,  will be taken to be positive
with kinking down into material #2 as shown in Fig. 14. Negative -
loadings with upward kinking can be analyzed by exchanging the materials,
i.e., switching the signs on « and g.

As in the analysis for the isotropic solid, the energy release rate G for
straight-ahead advance in the interface is compared with the energy release
rate G' for a crack with a segment of length @ kinking at an angle Q to the
interface. The energy release rate G for advance in the interface is given by
(2.29). The conventional mode I and mode II stress intensity factors at the
tip of the kinked crack tip are related to X by

K, + iKy = cQ, o, BKa* + A, o, BKa™" + b(Q, a, B)Ta'?, (2.62)

where 7 is the nonsingular contribution to &, in material #2 at the parent
crack tip prior to kinking. The T-stress may arise from remote applied load
or it may be present as a residual stress. The functions ¢, d, and b are
complex-valued; ¢ and d are tabulated in He and Hutchinson (1989b), while
b is given in He et al. (1991).

The energy release rate at the kinked crack tip, G', is given by (2.5), and
the ratio of the two release rates has the form

G/G' = F(Q,y,n,a,p), (2.63)
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Fig. 15. Ratio of energy release rate for advance in the interface to the maximum energy
release rate for the kinked crack for various levels of elastic mismatch, all with g = 0.

o

where = T[a/(E,G)]V? and
¥ =y + eln(a/l). (2.64)

The complete expression for F is given by He et al. (1991). The a-dependence
of this ratio appears through 7, and weakly through 7.

The ratio G/G ., is plotted against y in Fig. 15 for various values of «,
in each case for # = 0 and n = 0. Here, G, is the maximum of G' with
respect to kink angle Q for a given y. As in the case of the homogeneous
isotropic kinking problem, there is very little difference between the kink
angle that maximizes G and that which is associated with X; = 0. The only
exception occurs when material 2 is very stiff compared with material 1
(ax < —0.67). Then, there exists a range of w for which the maximum G'
occurs at small kink angles while the kink angle associated with K;; = 0 is
near 45° (He and Hutchinson, 1989a). With I'() denoting the toughness
function of the interface and I', denoting the mode I toughness of material
2, kinking will be favored over continued interface cracking if

G/GL,, < T(w)/L., (2.65)
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and conversely. Thus, the curves of G/GL,, in Fig. 15 also give the
transition value of interface to substrate toughness, I'(y)/T,, separating the
tendency for kinking over interface cracking.

The effect of # on the ratio in (2.63) is relatively weak, as discussed by He
and Hutchinson (1989a). The dependence on a through  in (2.63) can be
interpreted as a shift in the phase of the mode of loading on the interface
crack. The influence of #n is given by He et al. (1991), and is qualitatively
similar to that shown in Fig. 2 for the isotropic case.

111, Elasticity Solutions for Cracks in Multilayers

In studying cracks in multilayers, it is found that the crack driving force
for many situations is essentially independent of the crack size. This steady-
state concept and its implications are elucidated with two examples.
Heuristic conclusions thus drawn allow emphasis to be placed on various
steady-state problems. Several elasticity solutions for mixed mode cracks in
multilayers are gathered in this chapter. The geometries can be found in the
figures in this chapter. These solutions were obtained in recent years by
analytical and numerical methods, and have been used to calibrate fracture
specimens and assess technically representative structures. Details of appli-
cations will be given in the subsequent chapters. We will omit several
classical exact solutions of interface crack problems obtained in 1965 by
Erdogan, England, Rice and Sih. These solutions and some extensions have
been reviewed by Suo (1989, 1990a).

A. CONCEPT OF STEADY-STATE CRACKING

For applications to be discussed in the following chapters, the concept of
steady-state cracking results in a significant simplification. The purpose of
this section is to discuss the concept and its implications using two examples:
tunneling in adhesives and delamination in unidirectional composites. We
try to convey that the steady-state solutions developed in later sections,
although highly idealized, can be used to model real-world phenomena.

1. Tunneling in Adhesives

Consider residual stress cracks in adhesives as illustrated in Fig. 16. A
thin, brittle adhesive layer is bonded between two substrates. Biaxial
residual stresses usually develop in the adhesive layer during the bonding
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Fig. 16. A thin adhesive layer bonded between two substrates is under biaxial tensile
stress. A crack is tunneling through the layer. The substrate on the top is removed for better
visualization.

process. In glaze bonding, for example, the ceramic parts are coated with a
glass; the parts are placed in contact and heated above the melting tem-
perature of the glass, and then cooled down to the room temperature. For
such inorganic adhesives, a major source of the residual stress is thermal
expansion mismatch. The residual stress is tensile when the adhesive has
larger thermal expansion coefficient than the substrates, which causes
cracks to tunnel through the adhesive. Similar cracks are observed in hybrid
laminates consisting of alternate tough and brittle sheets, and in coatings or
reaction product layers between reinforcements and in matrices in brittle
composites. Cracks may penetrate into substrates if the latter are brittle.
Debonding is also possible at the intersection of the interfaces and cracks.

Illustrated in Fig. 16 is a crack, nucleated from a flaw, tunneling through
the layer. Substrate penetration and interface debonding are assumed not to
occur. Crack nucleation is a rather complicated process: A gas bubble
would behave differently from a crack-like defect in activating a tunnel.
However, as a crack grows long compared with layer thickness, the problem
becomes much better defined. A steady-state is reached: The tunnel front
maintains its shape as it advances, and the energy released per unit advance
no longer depends on the tunnel length, nor on the initial flaw geometry.
The steady-state problem is still three-dimensional in nature, since the shape
of the front should be determined so that the same mode I stress intensity
factor is reached at every point along the front. However, this stress intensity
factor itself can be calculated without knowing the shape of the front by
using a two-dimensional elasticity solution. This attractive possibility
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follows from the fact that the energy released per unit length of tunneling
equals the energy released to form a plane strain crack traversing the layer,
per unit width of crack For adhesive and substrates with identical elastic
constants, the solution (Suo 1990b)

K = ‘/;m/ﬁ =~ 0.890Vh  (a/h — ). (3.1

As indicated, the result is valid for the steady-state, that is, when the tunnel
is long compared with the thickness of the adhesive layer.

Another limiting case with readily available exact solution is a penny-
shaped crack of diameter 4. The stress intensity factor along the entire
circular front is the same (so it may be thought of as an incipient tunnel),
having the value (Tada e al. 1985)

K, =2/novh =~ 0.80aVh  (a/h = 1). (3.2)

Observe that the two results just cited are not very different, suggesting only
a mild dependence on a/h. The steady state is practically attained after the
tunnel length exceeds a few times adhesive thickness. If the penny-shaped
crack is representative of initial flaws, the critical stress needed for the
steady-state propagation is only about 10% below the stress to initiate
unstable growth from the flaw.

Several implications follow. The tunneling, once activated, would never
arrest until it meets another crack or other obstacles, Consequently, under
a biaxial stress, a connected tunnel network would emerge, surrounding
islands of intact adhesive materials; see Zdaniewski er al. (1987) for
micrographs. Another implication is that the transient dependence on a/#,
which can only be obtained from a complicated three-dimensional analysis,
would be unnecessary for most practical purposes. Instead, the steady-state
solution provides a conservative, yet still quite tight, design limit. For
example, given the substrate and adhesive materials (so the toughness and
mismatch stress are fixed), (3.1) would predict the thickest adhesive that can
be used with no tunneling cracks, More details of this problem are given in
Section VIIIL.

2. Delamination near a Surface Flaw

As a second example, consider the delamination near a surface notch in
a unidirectional composite; see the insert in Fig. 17. The incipient delamina-
tion is not well characterized for two reasons. First, the driving force
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F1G. 17. The insert shows a delamination nucleated from a surface notch and driven by a
longitudinal tension. The normalized energy release rate is plotted against the effective
delamination length 1“a/h for several values of notch size A/H. The energy release rate
attains the steady-state as soon as A'g/h > 1.5.

depends on the notch geometry. Secondly, composites usually exhibit R-
curve behavior: Fracture resistance increases as the crack extends. This can
be caused by bridging fibers or matrix ligaments in the wake. However,
once the delamination is sufficiently long, a steady state should be reached:
Both driving force and toughness become independent of the delamination
length and initial flaw geometry. The following example establishes the
transient zone size for the driving force. The R-curve behavior will be
discussed in Section IV.D.

Figure 17 shows a delamination crack nucleated from a sharp notch and
driven by an axial tension. Similar problems have been studied by several
authors (e.g., O’Brien, 1984, Thouless et al., 1989). The solution that
follows is taken from Suo ef al. (1990b). The delamination is mixed mode.
The energy release rate takes the dimensionless form

E G e H
—g(142 = .
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where E; = 1/b,, is the effective Young’s modulus in the longitudinal
direction, A and p are orthotropy parameters, all defined in Section II.B.
The dimensionless function g depends on the indicated variables. Notice
that A and a/h affect the final results only through the product A"“a/h,
as identified in the original paper using orthotropy rescaling. This detail
turns out to be important in understanding the orthotropy effects, as will
be seen shortly. Figure 17 plots the solution obtained by finite elements,
with p = 1.

Observe that the energy release rate becomes independent of A*a/h
when the delamination is sufficiently long. An inspection of Fig. 17 suggests
that the transient-zone size is given by A*a/h = 1.5, or

a’h = 1.5(E,/Ep)"*, (3.4)

where E; = 1/b,, is the effective Young’s modulus transverse to the fiber
direction. For most polymer composites and woods, (E; /E1)'"* = 2. Con-
sequently, a split longer than about three times the notch depth is subject to
a constant driving force. Equation (3.4) also reveals that elastic orthotropy
tends to prolong the transient zone by a factor of (£, /Ey)"/*, as compared
with the isotropic counterpart. Finite element calculations (not shown here)
also indicate that the size of the transient zone is not significantly affected
by p within the practical range, so that (3.4) remains valid for general
orthotropic materials.

An accurate approximation for the steady-state mixed mode energy
release rates at the delamination tip in Fig. 17 is (Suo 1990c)

2
h
[Gy, Gyl = -2‘-’E?(1 + 47 + 67 + 3n%)[cos*w, sin’ @],
- 3.5)
w = 52.1° — 3°y, n=h/H.

This steady-state solution G = G; + Gy, is indicated in Fig. 17.

In conclusion, the steady-state condition can usually be easily attained in
practice. These steady-state solutions are of unique significance considering
the variety of uncertainties associated with the transient state. Mathemati-
cally, the steady-state concept allows one to bypass some messy intermediate
calculations. Although an accurate estimate of the transient-zone size may
not be available for each steady-state solution described in the rest of the
section, we feel that, in conjunction with some heuristic judgment, these
solutions can be used to assess technical structures.
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Fic. 18. Cross-section of an infinite layer with a half-plane crack. Axial forces and
moments, per unit width, are applied along the three edges.

B. CrACKS IN LAYERS LOADED ALONG EDGES

The problems to be disussed in this section are sketched in Fig. 18. The
layer can be of one material or bimaterial, the material isotropic or ortho-
tropic, the crack along the interface or in the substrate. The relation is
sought between the applied loads and the mixed mode stress intensity
factors.

1. A Homogeneous, Isotropic Layer

Depicted in Fig. 18 is the cross-section of an infinite layer containing a
half-plane crack. The geometry is fully specified by # and H, the thicknesses
of the two separated arms. The layer is isotropic, homogeneous and linearly
elastic, and is subject, uniformly along the three edges, to axial forces and
moments per unit width P, and A;. The problem at various levels of
generality has been considered by several authors (Tada er al., 1985;
Williams, 1988; Suo and Hutchinson, 1989b; Schapery and Davidson,
1990). The results in the first two of these references contain conceptual
errors. The complete solution presented below is taken from Suo (1990c).

a. General Solution

The near-tip stresses are consistent with the mixed mode crack tip field,
with stress intensity factors K and Kj; to be determined. Far from the tip,
the three edges are characterized by the linear strain distributions for
elementary beams. The energy release rate equals the difference of the strain
energy per unit length per unit width stored in the edges far behind and far
ahead of the crack tip. Thus,

1[})12 M: P M} P} M? ] 3.6)

= — |2+ 2= +=2+122 - - 12
2E | h nw o H H® h+H (h + H)
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where E is the effective Young’s modutus defined in (2.4). This result may be
derived alternatively by using the J-integral (Rice, 1968; Cherepanov, 1979).

The preceding energy accounting does not separate the opening and
shearing components. The partition is simplified by linearity and dimen-
sionality, coupled with the Irwin relation (2.5). Consequently, the stress
intensity factors take the form

P M
K; = ——cos w + ———sin(w + ),
Y V2nu NI % y

3.7

P M
K = ——=sinw — ——=cos(w + y).
U 2nU 2RV y

All the preceding quantities except w are determined by elementary con-
siderations. Specifically, P and M are linear combinations of the applied
loads:

P:Pl—clpg_CZMg,/h, M=Ml—C3M3,

1 6/n 1 (3.8)
C,t=——, & =———, C;=————= n=h/H;
YUl T Wnry Ty !
and the geometric factors are functions of r:
1 1 sin y
—=1+4+4n+6n*+3n°, —=120+7n%), —==6n’(1+n).
T n+ 6n o5 1+ n) N (1+n)

(3.9)

Accurate determination of w, which depends only on #, is nontrivial.
The elasticity problem was solved rigorously (with the help of numerical
solutions of an integral equation). The extracted w varies slowly with 7 in
the entire range 0 < n < 1, in accordance with an approximate formula

w = 52.1° = 3°. (3.10)

This is a linear fit of the numerical solution, and the error is believed to be
within one percent.

b. A Mixed Mode Double Cantilever Beam

Several special cases are discussed here to illustrate the richness of the
solution. First consider a double cantilever beam as in Fig. 19. The
specimen is mode I if the crack lies on the mid-plane, but mixed mode if the
crack is off the mid-plane. This has been used recently to study mixed mode
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Fi1c. 19. The insert shows a double cantiliver beam with a crack off the mid-plane. The
mode mixity y = tan~'(K;;/K;) is plotted against the offset y/b.

fracture of an adhesive layer by Thouless (1990b). On Fig. 19, the mode
mixity, w = tan""(K;;/Ky) = w + ¥ — n/2, is plotted against the offset
y/b. Focus here is on the configurational stability of an homogeneous
specimen when the crack is slightly off the mid-plane as positioned, for
example, in the fabrication of the specimen. As indicated by the sign of K ;
near y/b = 0, a crack off the mid-plane will be driven further away from
the mid-plane. The mid-plane crack is thus configurationally unstable.
Crack path stability will be further discussed in Section VIII.

¢. Exact Solutions for the Case H = h

Next consider the crack on the mid-plane and subjected to the general
edge loads. The crack path selection is seldom an issue in the composite
testing since cracks are usually confined to run along the fiber direction.
The exact solution for w can be obtained for this case by considering a
special loading M, = M, = M and all others being zero., By symmetry,




98 J. W. Hutchinson and Z. Suo

Specimen @ gi
M
( - 12M 2 0
a) ( %-h—— ELhS
M

Eph3 4E h3

h ap? 2
d p - > p i

4E h E.h

Fig. 20. Several exact solutions: (a) a pure mode I specimen (double cantilever beam);
(b) a pure mode II specimen (end-loaded split); (c) a mixed mode specimen (four-point bend);
(d) a mixed mode specimen (crack-lap shear).

Ky, = 0, which, substituted into (3.7), gives @ = cos™'V(3/7) = 49.1°. The
full solution (3.7) can therefore be specialized to

K, =V3Ph'? + 2V3MH™*?, K, =2Ph"'?,
P=P — P, - iMy/h, M=M, - iM,.

Several useful edge loads are illustrated in Fig. 20. The mixed mode energy
release rates listed are valid for an orthotropic material layer with a prin-
cipal material axis coincident with the longitudinal direction. Geometries a
and b are pure mode I and pure mode II, respectively. Geometries ¢ and d
are mixed mode.

(3.11)

d. Surface Layer Spalling

As the last example, consider a sub-surface crack in a semi-infinite plate
(n = 0) as illustrated in Fig. 21. The problem was solved by Thouless et al.
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Fic. 21. Spalling of a surface layer due to edge loads.

(1987) in a study of impact spalling of ice sheets. The complete solution is

1
K, = \/—E[Ph‘”z cos @ + 2V3IMh™*?sin w],
(3.12)
1
Ky = =[Ph "*sinw — 2V3Mh™3/% cos w],

)

where w = 52.07°. Contrary to one’s intuition, a significant amount of
mode IT component is caused by pure bending. The solution will be used in
Section V to study decohesion of pre-tensioned films and thermal shock
spalling.

2. A Homogeneous, Orthotropic Layer

The same geometry in Fig. 18 was also analyzed for orthotropic solids
(Suo, 1990c). The layer lies in a principal material plane and the crack runs in
principal axis-1 of the solid. The energy release rate expression (3.6) remains
valid but the longitudinal tensile modulus E; should be used, namely,

G 1 [ il cosw + M sin{w + )]2 (3.13a)
= —— | —==— w —— , .
! 2B | VU VRV Y

1

G [ P i M cos(w + y) i
== | —/—=S W — ——— S{w >
Y N IV y

where P, M, U, V, and y are given by (3.8) and (3.9). The quantity w
depends on » and p, but not A. An integral equation method was used to
determine w, and the results indicate that the influence of p within its entire
practical range is below one percent, so that (3.10) is an excellent approxi-
mation for orthotropic materials. When the stress intensity factors are

(3.13b)
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needed, the Irwin-type relation appropriate for orthotropic materials (2.16)
must be used.

Notice that all the quantities in the brackets of (3.13) except for w do not
depend on material parameters. Further, @ may be approximated by (3.10),
which is also independent of any material parameters. Consequently, the
energy release rates of the two modes are essentially the same as their
isotropic counterparts, except that the longitudinal tensile modulus should
be used.

3. A Symmetric Tilt Strip

Imagine two identical layers cut from an orthotropic solid at an angle ¢
to principal material axis-1 (Fig. 22). The thickness of the two layers are
equal, designated as A. The compliances s,,, S5, 512, and 44 are referred to
the principal material axes. The two layers are bonded to form a symmetric
tilt boundary, with a semi-infinite crack lying along the interface. The tilt
angle is ¢ and the tilt axis, or the crack front, is one of the principal axes of
the orthotropic solid. The general edge loads are applied.

The stress field around the crack tip is square root singular. The stress
intensity factors are defined such that, asymptotically, traction on the grain
boundary varies with the distance r from the crack tip according to

g, = QnnVK, 15 = Qa Ky (3.14)

The Irwin-type relation for a crack on the symmetric tilt grain boundary is
(Wang et al., 1990)

G, = [b11b22(1 + p)/2)V (A7 cos? ¢ + A'* sin® 9)KT,

(3.15)
Gy = [b11byn(1 + p)/2]Y* (A7 *sin’¢ + A" cos’¢]K},

where the compliances are referred to the principal axes; see Section II.B.

pt
770, T
N

A
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FiG. 22, Two identical grains of an orthotropic crystal form a symmetric tilt boundary,
with the principal crystal axis at an angle ¢ from the interface. The sample is under general
edge loads.
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F1G. 23. A bilayer with a half-plane interface crack. The neutral axis of the composite layer
is indicated.

The analytical solution is found for the problem. Expressed in energy
release rates, it is

G, = 3b%,(P + 2M/h)*/h, Gn = 4b} P*/h,

(3.16)
P=P1_%P3‘%M3/ha M=M1‘%M3-

Here, b}, is the compliance in the x direction, which is related to the
principal compliances by

b¥ = (b;1by) " (A cos*d + 2p cos’e sin*o + A% sin'e). (3.17)

Notice that the energy release rates are identical to the corresponding homo-
geneous, isotropic results, except that the compliance must be reinterpreted.

4. An Interfacial Crack in a Bilayer

Figure 23 is a cross-section of an infinite bilayer with a half-plane crack
on the interface. Each layer is taken to be homogeneous, isotropic, and
linearly elastic. The uncracked interface is perfectly bonded with con-
tinuous displacements and tractions. The bilayer is loaded uniformly along
the three edges with forces and moments per unit width. The problem has
been studied by Suo and Hutchinson (1990), and the numerical solution has
been presented in the entire parameter range. The generality of the edge
loads allows the solution to be used to model a variety of delamination
processes. A special loading case (a splitting cantilever bilayer) is discussed
in Section I1.C.4. The solution will be used to calibrate interfacial fracture
specimens in Section IV.B.1, and to assess decohesion of pre-tensioned thin
films in Section V.D. Focus here is on the presentation of the elasticity
solution.
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Far ahead of the crack tip the bilayer may be regarded as a composite
beam. The neutral axis lies a distance AA above the bottom of the beam,
with A being

1+ 2%n + Xn?
e e (3.18)
2n(1 + Xn)
where
E—l 1+0€ h
Y =—= = —. .19
5 1-a =g (3.19)

The composite layer is in a state of pure stretch combined with pure bending.
The only nonzero in-plane stress component is g,. The corresponding strain
is linear with the distance from the neutral axis, y, according to

1 (P M,
&=~ g <hA + h31y>. (3.20)

The dimensionless cross-section 4 and moment of inertia I are

1 1\ 1 1 A 1 1
actin (s (s D) e A ey L
n n n 3 n n 3n

The energy release rate can be calculated in close form:

1 [P} M? 1 [P} M; P; M}
= (2L + 12—~ — ([Z2+12=2-2_22). @.
2E1< + 2, (3.22)

G h n H H> An W

The energy release rate specifies the magnitude of the near-tip singularity
but does not specify the mode mixity. The information is completed by the
complex stress intensity factor K, which, to be consistent with linearity,
dimensionality and the Irwin-type relation (2.29), takes the form

{1 —a 1/2< P M ) .
K=Hn" — e —— |e', 3.23
<1 - ﬂ2> V2hU 2RV (3-23)

where i = V-1, and P and M are linear combinations of the edge loads:

P =P, — C\P, — C;My/h, M=M,— C,M,. (3.24)

The geometric factors are given by
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Fia. 24. Calculated values of the function w(a, £, 77), which appeared in Eq. (3.23).

and by

1 1 sin y

— =1+ In@+ 61+ 3nH, = =121 + nd), = 61 + 7).
o n( 3, ( 7% NI (1 + 1)

(3.26)
All these formulae are derived from the classical beam theory.

The angle w is a function of the Dundurs’ parameters «, § and relative
height n. This function was determined by solving the elasticity problem
numerically; the computed values are plotted in Fig, 24, and an extensive
tabulation can be found in Suo and Hutchinson (1990).

5. A Substrate Crack in a Bilayer

Depicted in Fig. 25 is an infinite bilayer with a semi-infinite crack parallel
to the interface. Each layer is isotropic and homogeneous. There are two
length ratios: £, = H,/h and ¢ = H/h. The problem was solved by Suo and
Hutchinson (1989b) in the context of substrate spalling of a residual stressed
thin film. The details of the application can be found in Section V.C.2, and
here we will focus on the solution of the elasticity problem.

Of the three edges, one is a homogeneous beam and the other two are
composite beams. The positions of neutral axes for the two composite
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FiG. 25. A bilayer with a crack off the interface. The neutral axes for the two composite
layers are indicated.

beams are given by

8+ X+ X A+ I+ X

S D) 3-27)

The three beams may be described by a linear variation like (3.20). The
effective cross-section and moment of inertia of the two composite beams
are given by

A=¢+4+ L, I=X[A - & — (A= &)+ 1/3]
+ ALA - &) + &3,
(3.28)
Ay =& + L, I = Z[(A, ~ 51)2 - (A — &) + 1/3]
+ AE(A - &)+ E173.
The energy release rate can be calculated in closed form:
1 [ Pf  M? P 12M7% P M3
== |+ + 252 2 (329
2E, {hA, KL, K& -&) RHE-&) hA RBI
The stress intensity factors are
K, P cosw + M sin{cw + y)
= _ w s
' \Va2nu NI 7% y
(3.30)
K P sin @ M cos(w + y)
= _——_— w s
R NeY% Y
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where P and M are linear combinations of edge loads:

P:P] _C1P3_C2M3/h, M=M1_C3M3,

A 4 I (3.31)
Ci=~, G=7IE-d-G-a) G=7.
and the geometric factors are
1 1 1 [A, + (& — &)/2P 1 1 12
— == 12 , =
U4 - & - &) v LT E- &)
siny _ At €- 62 (3.32)

Jov o ¢-¢&

The angle w as a function of «, B8, &, and ¢, is extracted from a numerical
solution, and is tabulated in Suo and Hutchinson (1989b).

C. A BiLAveErR HELD BETWEEN RicID GRIPs

Figure 26 shows a bilayer with thickness # and H constrained between
grips. Each layer is taken to be isotropic. The constraint is assumed to be
perfectly rigid so that no separation nor sliding take place between the
bilayer and grips. Both layers may be subject to residual stress in the layer
direction, but it will not affect the singular field, and will therefore be
ignored. An interface crack is driven by the relative translation, U and V,
of the two grips. The problem of a homogeneous layer with a crack running
on the mid-plane, i.e., # = H, has been solved analytically (Rice, 1968). A
gripped epoxy/glass bilayer has recently been used by Liechti and Chai
(1990b) to study mixed mode interfacial fracture resistance; see also Section
I1.C.4. The specimen calibration for a wide range of bimaterials are
described in the following.

The debonded layers far behind the crack tip are stress-free, while the
bonded layer far ahead is under a wuniform strain state. An energetic
accounting shows that

y? <h H)“ U? ( h H>1
G=—|l=+=}) +=—(—+—=) , 3.33
2 \E, E 2 \uy  uy 333

where E = 2u(1 — v)/(1 — 2v) for plane strain, and E = 2u/(1 — v) for
plane stress.
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Fic. 26. The insert shows a bilayer held between two rigid grips, and the crack is driven by
the relative translation of the two grips. The numerical solution of the angle w in Eq. (3.34)
is plotted.

The mode mixity may be controlled by the relative proportion of the two
grip translations. More precisely, the interfacial stress intensity factor is
given by

e iof Ex N[V (h HYY? U(lh H\'?
K = hitgie * — =+ = +i={—+—= . (3.34
¢ <1—ﬂ2> [\5<E E:) ’f2<u1 u:) ] -39

This is derived using (3.33) and the Irwin-type relation (2.29). All quantities
in the equation have been defined previously except for the angle w, which
is a function of u,/u,, v, v,, and A/H. The problem contains displacement
boundary conditions, so that in principle the two Dundurs’ parameters are
insufficient to characterize the bimaterial. However, it has been confirmed
numerically (Beuth, 1991) that, once the Dundurs’ parameters are fixed, the
solution is almost independent of the third free variable. Finite element cal-
culations are done for the case H = 4 and the results are plotted in Fig. 26.
Linear interpolation is recommended for values between f = 0 and 8 = «/4.
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D. SMALL-ScALE FEATURES

Scales play a fundamental role in the development of the fracture
mechanics, as in any branch of continuum science. Classical examples are the
notions of small-scale yielding, homogenization of composites or damage
response. Here, we try to demonstrate, by a concrete example, how inter-
face fracture mechanics may be applied at different scales. Consider two
blocks of substrates joined by a thin adhesive layer. One is asked to study
the toughness of the assembly. The problem may be tackled at two scales.

At a relatively macroscopic level, one may think of this as an interface
fracture process between the two substrates, treating the adhesive as a small
scale feature. At such a level, the two substrates explicitly enter the scheme
of interface fracture, but the role of the adhesive, as well as damage
processes in it, is contained in the macroscopically measured toughness.
This evaluation process has been used in the adhesion community for years,
except that the two substrates are usually identical, so that only the mixed
mode fracture mechanics of homogeneous materials need be invoked.
Obviously interface fracture mechanics is ideally suited to study the
adhesion of different substrates.

At a more microscopic level, one may study the cracking along the
interface between the adhesive and one of the substrates. Interface fracture-
mechanics can be used provided the crack stays along the interface and
other damage processes are confined in a crack tip core region that is small
compared with the thickness of the adhesive. These requirements can be
realized if the interface is brittle enough. Mathematically, some well-
defined small-scale features may be analyzed using a boundary layer
approach. A few examples related to multilayers are collected in this
section. Applications will be discussed in Section VIII.

1. A Sub-interface Crack

Consider a crack running near an interface (Fig. 27). The distance
between the interface and crack, A, is small compared to all other in-plane
lengths. The overall geometry, viewed at a scale much larger than h, can be
regarded as an interface crack, so that the actual load and geometry can be
represented by the complex stress intensity factor K appropriate for an
interface crack. Near the crack tip, the stress field is that of a mixed mode
crack in a homogeneous material, parameterized by K; and K;;. Hutchinson
et al. (1987) provided a connection between the two sets of the stress
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F1g. 27. A sub-interface crack. The spacing h is much smaller than the overall specimen
dimension. The remote and local stress intensity factors are connected by Eq. (3.36), and the
phase shift ¢, is plotted.

intensity factors, and used it to study the existence of mode I trajectory
paralleling the interface.
The local and global energy release rates are identical, namely

_/;2

%k

K[> (3.35)

1 1
G=E-2~(KIZ+KIZI)=

This relation gives the energy release rate at the crack tip, provided the
remote K is known. Observe that the magnitudes of the two sets of stress
intensity factors, K; + iKy and K, are directly related by (3.35). They can
differ only by a phase shift, designated as ¢y, so that

1 — ﬁl 172 o
K, + iKy = ( ) Khice#n, (3.36)

1+«

The phase shift ¢y, ranging from —15° to 5°, is a function of the Dundurs’
parameters. The numerical solution is plotted in Fig. 27, and a more
extensive tabulation can be found in the original paper.

2. An Interfacial Crack in a Sandwich

Any homogeneous fracture specimen may be converted to measure
interface toughness by sandwiching a thin layer of second material. The
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Fic. 28. An interface crack in a sandwich. The remote and local stress intensity factors are
connected by Eq. (3.38), and the phase shift w is plotted.

generic set-up is depicted in Fig. 28. An interlayer of material 2 is embedded
in a homogeneous body of material 1, with a pre-existing crack lying along
one of the interfaces (upper interface here). Each material is taken to
be isotropic and linearly elastic. A solution described in the following,
obtained by Suo and Hutchinson (1989a), provides the basis for a variety of
sandwich specimens; an example, a Brazil-nut sandwich, will be discussed in
Section IV.C.

The problem is asymptotic in that the reference homogeneous specimen is
infinite and the crack is semi-infinite, as is appropriate when the layer
thickness 4 is very small compared with all other in-plane length scales. The
crack tip field of the homogeneous problem (without the layer) is prescribed
as the far field in the asymptotic problem. Thus, the far field is character-
ized by K| and Kj;, induced by the loads on the reference homogeneous
specimen. The interface crack tip field is characterized by the (complex)
interfacial stress intensity factor K. A relation is developed in what follows
that connects these two sets of stress intensity factors, allowing conversion
of any homogeneous specimen to a sandwich without further calibration.

The global and local energy release rates are the same:

1 - B2
E,

1
G =5 (K + KD = K [2. (3.37)
1
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Considerations similar to those of the previous subsection give

/1 — a2 )
K= h"‘(l — ﬁ2> (K[ + iKpe'™, (3.38)
From numerical calculations, the angle shift w, which is due exclusively to
the moduli dissimilarity, ranges between 5° to —15°, depending on « and S.
The solution is plotted in Fig. 28; other cases are tabulated in Suo and
Hutchinson (1989a).

3. Parallel Debond

When a sandwich layer is under substantial residual compression, debond
may take place along the fwo interfaces. The phenomenon was observed in
preparing Al,0;—SiC—Al,O; laminate (private communication with A. G.
Evans). The laminate was diffusion bonded at an elevated temperature, but
debonded into three layers in the cool-down. Parallel cracks under uniaxial
loads have been observed in laminates with center notches or matrix cracks.
The solution obtained by Suo (1990b) is given in the following.

It can be shown with the Eshelby cut-and-paste technique that, as far as
the stress intensity is concerned, the residual compression is equivalent to a
mechanical load of layer pull-out. Depicted in Fig. 29 is a slightly general-
ized situation in which an opening load represented by K;° is included, in
addition to the pull-out stress . It is envisioned that the pull-out stress itself

K

KI ’ KII

oL 200 0 In

K®
F1G. 29. Parallel debond of a sandwich layer, driven by the pull-out stress ¢ and the remote
opening load K[~.
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may not be high enough to trigger debonding, but the structure debonds
with an additional remote mode-I load.

To gain insight into this setup, we ignore the moduli difference in this
preliminary treatment. By an energetic argument, one obtains the energy
release rate at each tip under combined loads ¢ and K™:

1 /Ki?  o*h

Hence, the interfacial fracture energy can be inferred if one measures ¢ and
the critical K|° that trigger the debond.

Recall the Irwin formula (2.5) is applicable for each crack tip. Comparing
the two energy release-rate expressions, and keeping the linearity of the
elasticity problem in mind, one obtains the local stress intensity factors

1 1
K= ﬁKf" cos ¢ + Ea\/ﬁsin o,
(3.40)

Ky = —\/l—zK{‘ sin ¢ + %a\/ﬁcos b.
The angle ¢ has to be determined by solving the full elasticity problem. An
integral equation approach was used and the solution was found to be
¢ = 17.5°.

Consider the case when K;° = 0. The above solution indicates that the
pull-out stress induces a significant amount of crack face opening, along
with the predominant sliding. By contrast, residual tension (equivalent to a
push-in mechanical stress) induces a negative K;, suggesting that debonding
will be a pure mode-II sliding against friction. Therefore, parallel debond-
ing will more likely take place for adhesives in residual compression than in
tension, provided other conditions are the the same.

The solution can be generalized to orthotropic materials using the
concept of orthotropy rescaling. Suppose the entire material is orthotropic
and homogeneous. Two cracks run in the principal axis 1. Using orthotropy
rescaling, (3.40) becomes

3/8

KI = %KI«)COSQ‘) + ma\/zSin (l‘),

-1/4 1/8

Ky = —'TK;QSin(].‘) + md’ hcos ¢,

(3.41)
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TABLE 1

¢(p) (1IN DEGREES) FOR PARALLEL DEBOND

p —0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9
¢ 22.9 21.6 20.6 19.9 19.2 18.7 18.2 17.8
p 1 2 3 4 5 6 7 8

¢ 17.5 15.9 14.9 14.1 13.4 12.9 12.5 12.1

where n = [(1 + p)/2]"2. Now the phase shift ¢ depends on p. An integral
equation is solved numerically, and the results are listed in Table 1.

IV. Laminate Fracture Test

Interlaminar fracture resistance of multilayers is usually measured using
beam-type specimens. Fracture mode mixity, ranging from opening, mixed
mode, to shearing, can be controlled by the loading configuration. A
catalog of such specimens is presented, for application to both orthotropic
materials and bimaterials. Most of these specimens have been used by the
composite community for decades. Yet rigorous, general calibrations are
available only recently. Delamination resistance can be enhanced by a
variety of bridging mechanisms. A prevailing issue is that the bridging-zone
size is usually several times the lamina thickness, so that delamination resist-
ance is no longer a material property independent of specimen size and
geometry. The implications will be studied using the Dugdale model.

A. DELAMINATION BEAMS

Beam-type fracture specimens are most frequently used for composites,
adhesive joints, and other laminated materials. Small scale features such as
fiber/matrix inhomogeneity are typically not explicitly taken into account.
For example, homogenized elastic constants are used for composites. The
Irwin-Kies compliance calibration is still in use for lack of elasticity solu-
tions. Empirical calibrations obtained this way should be valid only for the
materials being tested, since they typically depend on elastic constants.
Finite element calibration has been used by many authors, and previous
literature on the subject may be found in a volume edited by Friedrich (1989).
Guided by an orthotropy rescaling concept, Suo (1990c) and Bao et al. (1990)
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have analyzed many commonly used specimens, using either integral
equations or finite elements. Included were notched bars loaded in various
configurations, delamination beams, and hybrid sandwiches. The work of
Suo (1990¢) has been summarized in Section III.B.2, which is applicable
for unidirectional composites under steady-state loading configurations.
Several other delamination beams analyzed by Bao et al. (1990) will be
described in the following.

1. Double Cantiler Beams

Illustrated in Fig. 30 is a double cantilever beam made of a unidirectional
composite with fibers along the beam axis. The specimen is pure mode I,
and energy release rate is

(Pa)*

_ ~1/4 2
G =12 W, (1 + YA"""h/a), “4.1)

where P is force per unit width, 2/ beam thickness, a crack length,
E, = /by, is the effective Young’s modulus in fiber direction, and A and p
are dimensionless orthotropic parameters. These material constants are
defined in Section II.B. The dimensionless factor Y is approximated by

Y(p) = 0.677 + 0.149(p — 1) — 0.013(p — 1)%. 4.2)

These formulae are valid for both plane stress and plane strain, for generally
orthotropic materials within the entire practical range, AY“a/h > 1 and
0 < p < 5, and the error is within 1%. In particular, the preceding result is
valid for isotropic materials when p = A = 1.

This calibration is obtained using finite elements, together with several
analytic considerations. The first term in the bracket in (4.1) reproduces the
exact elasticity asymptote as a/h — o, which may be obtained from the

O

FiG. 30. A mode I delamination specimen (double cantilever beam (DCB)).
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Fic. 31. Two mode II delamination beams: (a) end-loaded split (ELS); (b) end-notched
flexure (ENF).

classical beam theory. The second term in the bracket is the first order
correction in A/a. As a consequence of the orthotropy rescaling, the
consistent correction, including the elastic constants A and p, is of the form
(4.1), where Y depends on p only; see Suo ef al. (1990b).

2. End-Loaded Split and End-Notched Flexure

Figure 31 shows two designs of mode II specimens. The calibration for
ELS is
_ 9(Pa)’
T 4R’E,
Y(p) =0.206 + 0.078(p — 1) — 0.008(p — 1)%. 4.4)

G (1 + YA Y*n/a)?, @.3)

All comments in the last subsection are valid here. To a high accuracy, the
calibration for ENF is identical to the preceding, as independently confirmed
by He and Evans (1990b).

3. Steady-State Mixed Mode Specimens

It is relatively difficult to design a mixed mode fracture specimen having
a fixed mode mixity as the crack grows. Two such specimens are depicted in
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Fig. 20. As the crack length exceeds about three times the notch depth A,
both the driving force and mode mixity become essentially independent of
the delamination length. The calibrations are listed in the figure. It is not
necessary to measure crack size in a fracture test with such steady-state
specimens. Steady-state delamination beams of other edge load combina-
tions and/or of dissimilar arm thicknesses can be specialized from the
general solution in Section II1.B.2.

4. Other Mixed Mode Delamination Beams

Recall that stress intensity factors are linearly additive. One may use the
basic solutions presented in the preceding to obtain calibrations for other
specimens. Two examples are illustrated in Figs. 32 and 33. The specimen in
Fig. 32a is mixed mode, and can be solved by a superposition of DCB and
ELS. Note that both the magnitude of G and the mode mixity change as the
crack advances. The three-point bend in Fig. 33 is a superposition of the
four-point flexure specimen and the specimen in Fig. 32a.

% Mixed Mode
;
P

T P/2

DCB

l P/2

P/2

ELS

l p/2

Fic. 32. The mixed mode end-notched split is the superposition of the DCB and ELS.
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¥
& Three-Point Bend
i

M ( M=PL Four-Point Bend
) (see Fig. 20c)

P/2

M <T (see Fig. 32a)

p/2

Fic. 33. A superposition scheme for three-point shear,

B. INTERFACIAL FRACTURE SPECIMENS

As discussed in Section II.C, the fracture resistance of an interface
generally depends on the mode mixity. Thus, a toughness curve, I'(i%), must
be determined experimentally to fully characterize a given interface. Two
strategies have been used in practice to vary the mode mixity: multiloads or
multispecimens. The bilayer held between rigid grips discussed in Section
II1.C.4 and Section III.C is an example of multiload specimens. In this
section, several other specimens are described.

1. Four-Point Flexure of a Bilayer

Figure 34 shows a specimen consisting of roughly the same amount of
opening and sliding. The specimen was first analyzed by Charalambides et
al. (1989), and is a special edge load combination of the general problem in
Section II1.B.4. Evans and coworkers at the University of California, Santa
Barbara have used this configuration to test bimaterial interfaces (Cao and
Evans, 1989), ceramic composite laminates (Sbaizero et al., 1990), metallic
adhesive joints (Reimanis and Evans, 1990), and thin films (Hu and Evans,




Mixed Mode Cracking in Layered Materials 117

65

P
(O

®
£

et

60

55

VY (in degrees)

Fic. 34. The insert shows the UCSB four-point flexure of a bilayer. The mode mixity is
plotted.

1989). The setups have been collectively referred to as the UCSB four-point
flexure specimens.

When the crack exceeds a few times the thickness of the notched layer, A,
it can be considered as semi-infinite. The energy release rate is obtained in

closed form:
2 1
c=-M (6;13 _ —), @4.5)

where M = Pl is the moment per unit width, and the dimensionless moment
of inertia 7 is given in (3.21). The loading phase y is defined by (2.45) with
h as the reference length, such that the stress intensity factor is

K = |K|h™% exp(iy). (4.6)

It is plotted in Fig. 34 with g = 0.

Charalambides ef al. (1990) carried out a thorough analysis of several com-
plexities of the four-point flexure. One complication concerns the residual
stress in bilayers induced in fabrication, which would affect both energy
release rate and loading phase. Observe that the complex stress intensity
factors due to the bending moment and residual stress can be linearly
superimposed, and both are the special cases of the general problem in
Section I11.B.4, The latter case will also be treated explicitly in Section V.D.

2. Edge-Notched Bend

A predominantly opening specimen is depicted in Fig, 35. Without loss of
generality, one can choose material 1 to be relatively rigid, so that the




118 J. W. Hutchinson and Z. Suo

Geometry Factor Y

Geometry Factor ¥

oluaslon by s b1

0.1 0.2 0.3 04 05 0.6
Relative Crack Depth a/W

Fi1G. 35. Calibration of the edge-notched bend of a bimaterial bar.

Dundurs parameter satisfies o« > 0. With y defined by (2.45) with / = q, the
stress intensity factor is calibrated by

K = YTVaa " e". 4.7

Here, T is the nominal bending stress, related to the moment per unit width
M by
T = 6M/W?, 4.8)

and Y is the real, positive calibration factor.

Both Y and y are dimensionless functions of «, £, and a/W. The finite
element results are plotted in Fig. 35 (O’Dowd ef al., 1990). Observe that
the magnitude factor Y is nearly independent of elastic mismatch. The
loading phase w varies between 0° to 10°, depending on the elastic
mismatch.
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3. Edge-Notched Shear

Calibration is also available for the specimen shown in Fig. 36 (O’Dowd
et al., 1990). The loading phase is controlled by the offset s/W. The stress
intensity factor is

K = YTVaa *e", 4.9)
where y is again defined by (2.45) with / = a, and

_ (A-BP

The dimensionless functions Y and y are plotted in Fig. 36.
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FiGg. 36. Calibration of the edge-notched shear of a bimaterial bar.
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C. BRAZIL-NUT SANDWICHES

Any homogeneous specimen can be converted to an interfacial specimen
by sandwiching a thin layer of a second material between split halves of the
specimen. The general setup is analyzed in Section IT1.D.2. As an example,
here we sandwich the Brazil nut with a layer of second material, and a crack
is left on one of the interfaces (Fig. 37). The specimen has been developed
to determine interfacial toughness by Wang and Suo (1990).

A remarkable feature common to all thin-layer sandwiches is that the
residual stress in the layer does not drive the crack, because the strain energy
stored in the layer due to residual stress is not released in the process of
cracking. Thus, one does not have to measure the residual stress to deter-
mine toughness. On the other hand, as discussed in Section VIII, excessive

-
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FiG. 37. Driving force and mode mixity of the Brazil-nut sandwich.
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residual stress may cause complications such as crack tunneling and
kinking, so it should be avoided.

1. Homogeneous Brazil Nuts

A homogeneous Brazil nut is a disk of radius a, with a center crack of
length 2/ (as illustrated in Fig. 37 but without the interlayer), which has
been used for mixed mode testing of brittle solids for years. The loading
phase is controlled by the compression angle 8: It is mode I when 8 = 0°,
and mode Il when 8 = 25°. The stress intensity factors are

Ky = fiPa™* = Ky = tfyPa™'?, (4.11)

where the plus sign is for tip 4, and minus for B. The nondimensional
calibration factors f; and fj; are functions of @ and //a, and available in
fitting polynomial forms in Atkinson et al. (1982).

Using the Irwin relation (2.5), the energy release rate is

G = (f2 + fA)P*/aEy, (4.12)

where Eg is plane strain tensile modulus for the substrate. The loading
phases at tips A and B are

tan™'(Ky/Ky) = £tan~'(f/f), (4.13)

respectively. Equations (4.12) and (4.13) are plotted in Fig. 37.

2. Sandwiched Brazil Nuts

A sandwich is made by bonding two halves with a thin layer of a second
material. Nonsticking mask is supplied on the prospective crack surface
prior to bonding. When the layer thickness # is much smaller than other
in-plane macroscopic lengths, the energy release rate can still be calculated
from (4.12). This is true because of the conservation of the J-integral, and
because the perturbation due to the thin layer is vanishingly small in the far
field.

The mode mixity #, defined by (2.45) with [ as the reference length, is
shifted from that for the homogeneous specimen, in accordance with

¥ = +tan~"(fy/fy) + @ + eIn(i/h). (4.14)

Here, w, plotted in Fig. 28, is the shift due to elastic mismatch (3.38), and
the last term is the shift due to the oscillation index &, (2.49).
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D. DELAMINATION R-CURVES

1. Large-Scale Bridging

Over the last decade, it has become increasingly evident that the
toughness of brittle materials can be enhanced by a variety of bridging
mechanisms. The mechanics language that describes this is resistance curve
behavior (R-curves): Toughness increases as crack grows. Attention here is
focussed on the delamination of unidirectional or laminated composites,
where cracks nominally propagate in planes parallel to fibers. A comparative
literature study shows that for both polymer and ceramic matrix com-
posites, bridging is usually due to intact fibers left behind the crack front,
while the crack switches from one fiber-matrix interface to another as it
propagates. Additional resistance for polymer matrix composites comes
from damage in the form of voids, craze, or micro-cracks. Three-
dimensional architecture of threading fibers may also give rise to substantial
fracture resistance.

As the prerequisite for these bridging mechanisms, significant damage
must accumulate ahead of the pre-cut tip as an additional energy dissipater.
In laminates, for example, the length over which fibers bridge the crack is
typically several times lamina thickness. The significance of an R-curve as
a material property becomes ambiguous, since the R-curve now depends on
specimen size and geometry. The intent of this section is to describe several
generic features unique to delamination R-curves, as identified in Suo et al.
(1990a); references on the subject can be found in the original paper.

2. Essential Features of Delamination R-curves

Consider a beam with a pre-cut, loaded at the edges by moments (Fig. 38).
The damage zone size L can be comparable to or larger than beam thickness
h, but the beam and pre-cut are much longer, so that the geometry is fully

2h

Fic. 38. A mode I delamination beam, with a damage zone as an additional energy
dissipater. The geometry is specified by L/h.
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Fic. 39. Two generic features of delamination R-curves. The plateau G, is independent of
the beam thickness 4. The steady-state damage zone L size increases with 4.

characterized by the ratio /4. The material is assumed to be elastically
isotropic and homogeneous, and plane strain conditions prevail. The
nominal, or global, energy release rate is defined as the J-integral over the
external boundary as given by Rice (1968):

G = CM?, C = 12(1 — v3/ER’. 4.15)

Here, M is the applied moment per unit width, C the beam compliance, 24
the thickness, £ the Young’s modulus, and v the Poisson’s ratio. The
specimen has a steady-state calibration: The global energy release rate does
not depend on crack size, nor does it depend on any information of the
damage zone (size, constitutive law, etc.).

Phenomenological delamination R-curve behaviors are shown schemati-
cally in Fig. 39. First, focus on a R-curve measured using a beam of a given
thickness, say, f, in the figure. The specimen can sustain the increasing
moment, without appreciable damage at the pre-cut front, up to a critical
point corresponding to G,. Subsequently, the damage zone size L increases
with the applied moment, leading to an increasing curve of resistance Gg.
The damage zone may attain a steady-state: It maintains a self-similar
opening profile and a constant length L, translating in the beam, leaving
behind the crack faces free of traction. Correspondingly, a plateau G
would appear on the R-curve,

To proceed further, the Dugdale (1960) model is invoked, which, in its
generalized form, simulates the homogenized damage reponse with an array
of continuously distributed, nonlinear springs. Specifically, at each point in
the damage strip, the closure traction ¢ depends locally on the separation
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according to
g = a(d). 4.16)

The functional form is related to the nature of damage, but is assumed to
be identical for every point in the damage strip, and independent of the
specimen geometry, A maximum separation d, is specified, beyond which
the closure traction vanishes. The spring laws may be measured or modeled
using simplified systems. They may also be inferred from experimental
R-curves, as will be discussed.

For an arbitrary spring law, the following energy balance is due to the
J-integral conservation (Rice, 1968):

&
G=G,+ S a(d) do, 4.17)
0
where &, referred to as the end-opening of the damage zone, is the separa-
tion at the pre-cut tip. Here and later, we will not distinguish the driving
force G and the resistance Gy, as they can be judged from the context. The
two energy release rates G and G, will be referred to as global and local,
respectively. The global energy release rate represents the supplied energy,
which is related to the applied moment via (4.15); the local one is the energy
dissipated at the damage front. The difference given by (4.17) is the energy
to create the damage.

The steady-state resistance G is attained when the end-opening reaches
the critical separation, & = J,. Thus, from (4.17), G, equals the sum of G,
and the area under the spring law. The physical significance is that the
plateau G, does not depend on the beam thickness, and is therefore a
property for a given composite laminate. However, it is not yet clear how
long the damage strip will be before the steady state is attained. The steady-
state damage-zone size L indicates the ‘‘quality’’ of a bridging mechanism:
Toughness gained from too long a damage zone may not be useful in
practice. Qualitatively, a thicker, stiffer, beam is more constrained for
deflection, and thus exhibits larger L. These essential features of the
delamination R-curves are indicated in Fig. 39.

Equation (4.17) suggests a way to determine the damage response. By
continuously measuring the end-opening 8, and by using the experimentally
determined R-curve, the spring law can be inferred by differentiating (4.17):

a(d) = dGg/d4. 4.18)

The intrinsic resistance G, is assumed to be independent of the damage




Mixed Mode Cracking in Layered Materials 125

accumulation. This simple method, which bypasses the complexities of
large-scale bridging, is one of the advantages of specimens with steady-state
calibrations. Large-scale bridging may be used as an experimental probe to
study localized (planar) damage response such as polymer craze and inter-
face separation, as uniform separation over a sample may be difficult to
accomplish in reality because of the instabilities triggered by inhomogeneities
or edge effects.

3. Rigid Plastic Damage Response

To gain some quantitative feel, consider a two-parameter damage
response: The closure traction is g, when d < d,, and vanishes when
d > J,. The steady-state toughness is

Gss = GO + (7050. (4.19)
The end-opening and crack tip stress intensity factor are given by
2
§ = al>\CG - %L"Cao, (4.20a)
VG = VG, + g\/ELzao, (4.20b)

where the dimensionless number a depends on L/A only, and the finite
element results are listed in Table 2.

The R-curve defined by Eq. (4.20b) is plotted on Fig. 40 in a dimension-
less form. The plateau G, in (4.19) should be a horizontal line independent
of A and L (not shown in the figure). From material characterization point
of view, an inverse problem is of much more interest: how to infer the
model parameters from a given experimental R-curve. The quantities G,
G, and L can usually be read off from the R-curve. Using these, the
model parameters g, and J, can be inferred from (4.20).

A family of damage responses including softening and hardening have
been analyzed in Suo et al. (1990a). The effect of mode mixity has also been
discussed. A parallel experimental investigation has been carried out by

TABLE 2
a(L/h)

L/h 0.5 1.0 1.5 2.0 3.0 3.5 4.0 10.0 ©
a 4.89 2.60 2.01 1.74 1.58 1.48 1.35 1.14 1.00
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Fig. 40. Dimensionless R-curves predicted using the rigid plastic damage response
(mode I).

Spearing and Evans (1990) with a unidirectional ceramic composite. The
experimental data and the model show very similar behavior, suggesting that
the model incorporates the controlling features of the toughening mechanism.

V. Crackilig of Pre-tensioned Films

Thin films of metals, ceramics and polymers, are typically subject to
appreciable residual stress, which for ceramic systems can be on the order
of a giga-pascal. Such stress can cause cracking of the films. Films under
residual tension and compression will be considered in this and the next
sections, respectively. In this section, commonly observed fracture patterns
in pre-tensioned films are first reviewed, together with a discussion of the
governing parameters. These crack patterns are then analyzed in subsequent
subsections, with cracking in films, substrates, and along interfaces treated
independently. The values of a nondimensional driving force Z will be
documented to assist the practitioners of the field. The last subsection
presents a speculative analysis of thermal shock spalling.
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F1. 41. A pre-tensioned film is deposited on a substrate.

A. CONTROLLING QUANTITIES AND FAILURE MODES

Illustrated in Fig. 41 is a film of thickness /# on a substrate. Both materials
are taken to be isotropic and linearly elastic, with elastic moduli and
thermal expansion coefficients (E;, v;, o;) and (E,, v,, o), 1espectively.
Elasticity mismatch may be characterized by the two Dundurs parameters o
and B defined in (2.21); « > 0 when film is stiffer than substrate. A crack
will grow as the driving force G attains the fracture resistances Iy, I, I3,
depending on whether the crack is propagating in the film, substrate, or
along the interface. The mode I fracture resistance is usually appropriate
for films and substrates, but mixed mode resistance must be used for
interfaces.

1. Driving Force Number and Critical Film Thickness

To help visualize the cracking progression, the residual stress is assumed
to be due entirely to thermal mismatch. However, with proper interpreta-
tion, most of our results would be valid for stress due to other sources. The
film-substrate is stress-free at a high temperature 7. Upon cooling to the
room temperature 7;, the contraction strains in the film and substrate, were
they unbonded, would differ by (o; — o )(Ty — T;). A biaxial misfit stress is
defined accordingly:

g = (ar — a.)(Tp — THE/(1 — vp). (.1

Notice ¢ > 0 when o; > «. This stress is large: Typically, Ee = 1 MPa/K
for most materials. For example, the stress would be of order 1 GPa if the
temperature drops 1000 K (this is common in processing ceramic systems).
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FiG. 42. An Eshelby-type superposition to treat a residually stressed film decohering from
a substrate.

The thermal stress field can be evaluated by an Eshelby-type superposition.
As an example, consider a thin film decohering from a substrate, driven by
a biaxial misfit strain (Fig. 42). Problem (a) is trivial: the misfit strain is
negated by a mechanical strain corresponding to the tensile stress g; the film
is under a uniform biaxial stress, and the substrate is stress-free. In problem
(b), a pressure of magnitude ¢ is applied on the edge of the film, but no
misfit strain is present. The superposition recovers the original problem,
with misfit strain but without edge load. Since no stress singularity is
present in (a), the crack driving force is entirely due to (b). The latter is a
standard elasticity problem, which requires numerical analysis.

A unifying dimensionless number Z is defined such that the energy release
rate for a crack is

G = Zo’h/E;. (5.2

Note that the elastic strain energy stored in a unit area of the film is
(1 — v))o?h/E;. The number Z is a dimensionless driving force, or order
unity, depending on the cracking pattern and elastic mismatch. The prac-
tical significance of this dimensionless number was first documented by
Evans et al. (1988). Common cracking patterns are sketched in Fig. 43,
together with their Z-values, where the film-substrate system is taken to be
elastically homogeneous, and the substrate semi-infinite.

Equation (5.2) provides a design limit. Given the mechanical properties
and misfit stress, a specific cracking pattern is inhibited if the film is thinner
than a critical thickness, given by

h. = TE;/Za?, (5.3)

where I is the relevant fracture resistance. The following example illustrates
a routine application using the information gathered in this section.
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Cracking Patterns G = ZG?h/E;

Surface Crack

Channeling

Z=1.976

— Yy ] Substrate Damage
$ s Z =3.951
= ] Spalling
Y& S Z =0.343
Debond
1.028 (initiation)
Z=

0.5 (steady - state)

Fic. 43. Commonly observed cracking patterns. The dimensionless driving force for each
pattern is listed, assuming that the film-substrate is elastically homogeneous, and the substrate
is infinitely thick.
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Consider channeling cracks in a glass film coated on a thick SiO, substrate.
Suppose It = 7J/m?, E; = 70 GPa, ¢ = 50 MPa. One reads from Fig. 43
that Z = 1,976, which is appropriate since glass and SiO, have similar elastic
moduli. The critical film thickness computed from (5.3) is A. = 100 um.
The channel network is not anticipated if the film is thinner than 100 ym.

2. Cracking Patterns

Let us go through Fig. 43 to define the various cracking modes. A surface
crack is nucleated from a flaw, and arrested by the interface. Yet the stress
is not high enough for the crack to channel through the film. Since flaws are
necessarily isolated, one would see stabilized, unconnected slits. The driving
force available for surface cracks is high, as indicated by the large value of
Z. Isolated cracks are detrimental for some applications, such as corrosion
protection coatings, but tolerable for others.

The channeling process is unstable: Once activated, it would never arrest
until it encounters another channel or an edge. Consequently, a connected
channel network would emerge, surrounding islands of the intact film. Such
cracking may not be acceptable for most applications, but, for example, is
common in glaze on fine pottery, and in pavement of roads.

Cracks in a film can propagate further to cause substrate damage. This
Z-value is the largest on the list. Such a crack may be stabilized at a certain
depth, since the misfit stress is localized in the film. However, the crack may
divert to run parallel to the interface, leading to the next cracking pattern.

Substrate spalling is an intriguing phenomenon: The crack selects a path
at a certain depth parallel to the interface, governed by K;; = 0. This is not
a localized failure pattern in that extensive flakes can be spalled off.
Fortunately, the Z-value for spalling is quite low. If a small amount of
substrate damage is acceptable, one gains substantial flexibility in design.

Debonding may initiate from edge defects or channel bottoms. The latter
can be stable: The driving force for initiation is higher than that for the long
debond. This fact is exploited to introduce pre-cracks for certain types of
fracture specimens, such as the UCSB four-point flexure specimen.

In the following sections, these failure modes will be examined in some
detail. Emphasis is placed on the relevant elasticity problems that lead to
estimates of the driving force number Z. Experimental efforts will be cited
in passing. The writers hope this catalog will be used critically by experi-
mentalists in various disciplines, thereby allowing the catalog to be
validated or modified.
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B. CRACKING IN FILMS$

Imagine a process with increasing tensile stress in the film, for example,
the cooling process. As illustrated in Fig. 43, a surface flaw is activated by
the tensile stress, grows towards the interface, and then arrests if the
substrate and interface are tough. With further stress increase, the crack
may channel through the film. The two stages will be treated separately in
the following.

1. Surface Cracks

We model the situation by a plane strain crack; see the insert in Fig. 45.
This is appropriate for an initial surface flaw of length several times A, but
may not be valid for an equiaxial flaw. The latter is studied by He and
Evans (1990a) but is omitted here. The plane strain problem has been solved
by Gecit (1979) and Beuth (1990). The following paragraph is a digression
to a few mathematical considerations that capture the main features of the
solution, and which may be skipped without discontinuity in the content.

The dimensionless stress intensity factor K/aVh depends only on the
relative crack depth a/h and Dundurs’ parameters o and 8. For small a/h,
regardless of the elastic mismatch, the stress intensity factor merges to that
of an edge crack in a semi-infinite space, i.e., K — 1.1215Vrac asa/h — 0.
Asymptotic behavior for another limiting case, a/h — 1, can be obtained by
invoking the Zak-Williams singularity: the stress singularity for a crack per-
pendicular to, and with the tip on, the interface. Instead of the square root
singularity, the stresses near such a crack tip behave like g;; ~ I?r‘sf,-j(ﬁ),
where (r, ) is the polar coordinate centered at the tip, and the f}; are dimen-
sionless angular distributions. The scaling factor K plays a part analogous
to the regular stress intensity factor, but having different dimensions:
[stress][length]®. The singularity exponent s (0 < s < 1) depends on elastic
mismatch, and is the root to

2

cos(sm) — 2%(1 — 52+ ‘;‘ - ﬁﬁz = 0. (5.4)
The numerical solution of s is plotted in Fig. 44. For a crack that penetrates
the film, K ~ gh®, with the pre-factor dependent on o and £ only. As
a/h — 1 but with the crack tip still within the film, the stress field away
from the small ligament (4 — a) would not feel such a detail, and behaves
as if the crack tip were just on the interface, governed by K. Dimensional
considerations require the stress intensity factor K to be related to the far
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Fig. 44. (a) Zak-Williams singularity. (b) A curve fitting parameter.




Mixed Mode Cracking in Layered Materials 133

20 T T T T T T T T T T T 7 Y T T T T

o VA

. L“’EEQ s

EG/C

L 0.5 ]

r B=ou/4 =0
-05

L -0.99

a/h

FiG. 45. Driving force available for an edge crack at various depths a/h.

field K according to K ~ K(h — @)"/>*. Combination of the preceding
gives K/avh ~ (1 — a/h)"*™* as a — h.
Motivated by these considerations, Beuth fitted his numerical solution
with
K/ovVh = 1.1215Vr(a/m)"*(1 — a/m)"*7*(1 + Aa/h), (5.5)

where A is taken to be independent of a/h, and is chosen such that the
formula agrees with the full numerical solution at a/h = 0.98; the results
are plotted in Fig. 44b. The error of (5.5) is within a few percent for
intermediate a/h. Equation (5.5) is plotted in Fig. 45 in terms of the dimen-
sionless energy release rate. The energy release rate starts from zero for
shallow flaws. As the crack approaches the interface, it drops to zero for
relatively compliant films (o < 0), but diverges to infinity for stiffer films
(a > 0).

One needs a priori knowledge of flaw size to predict a failure stress or the
maximum tolerable film thickness. In practice, a plausible flaw depth may
be assumed according to the ‘“quality’’ of the film. Taking, say, a/h = 0.8,
one can obtain the nondimensional driving force Z from Fig. 45 for a
known elastic mismatch. The flaws will not be activated if the dimensionless
fracture resistance satisfies [ Ey/a*h > Z.
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Observe that for relatively compliant films, the driving force attains a
maximum at an intermediate depth. The practical significance is that no
flaws, regardless of initial depth, can be activated, provided the dimen-
sionless resistance I;E;/c*h is greater than the maximum. Such a
maximum, depending on the elastic mismatch « and S, provides a fail-safe
bound for relatively compliant films.

2. Cracks Channeling through a Film

Figure 46 shows a crack channeling through the film. Complications such
as substrate penetration, interface debond, and channel interaction are
assumed not to occur for the time being. At each instant of the growth, the
channel front self-adjusts to a curved shape, such that energy release rate at
every point on the front is the same. The elasticity problem is three-
dimensional in nature, and an accurate solution would require iteration of
the front shape. After the length exceeds a few times the film thickness, the
channel asymptotically approaches a steady-state: the entire front maintains
its shape as it advances; so does d(z), the cross-section profile in the wake,
which attains the shape of a plane strain through-crack. The steady-state
cracking is analogous to that discussed in Section ITI.A.1.
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FiG. 46. The insert shows a crack channeling across the film, driven by the tensile stress in
the film. The available energy at the channel front is plotted for various elastic mismatch.
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In the steady state, the energy release rate at the channel front can be
evaluated using two plane problems—that is, by subtracting the strain
energy stored in a unit slice far behind of the front, from that far ahead.
The calculation does not require the knowledge of the front shape.
Alternative formulae have been developed with this idea. One is

h

1
G, = 7 L ()o(z) dz. (5.6)

Two plane problems are involved: the stress distribution on the prospective
crack plane before cracking, d(z), which, for the present situation, equals
the uniform misfit stress o, and the displacement profile for a plane strain
crack, &(z). This is particularly convenient for numerical computation.

A second formula is

h
G,, = 1§ G(a) da, (5.7)
h Jo

where G(@) is the energy release rate of a plane strain crack of depth a in
Fig. 45. A mathematical interpretation is that G, is the average of energy
release rates for through-cracks at various depths. Both formulae are valid
for films and substrates with dissimilar elastic moduli.

As an example, suppose the film-substrate is elastically homogeneous,
and the substrate occupies a semi-infinite space. The corresponding plane
strain problem is an edge crack in a half plane, with energy release rate
G(a) = 3.9520%a/E (Tada et al., 1985). The integral (5.7) gives G, =
1.97606*h/E. This pre-factor is listed in Fig. 43.

Beuth (1990) carried out an analysis of a thin film on a semi-infinite
substrate with dissimilar elastic moduli. The result is reproduced in Fig. 46.
If the dimensionless toughness I;E;/c%h is below the curve, a channel
network is expected. Observe that a compliant substrate (a > 0) provides
less constraint, inducing higher driving force for channeling.

The channeling cracks were studied analytically by Gille (1985) using the
numerical solutions available at that time, and subsequently by Hu and Evans
(1988) with a combination of calculations and experiments. The concept has
been extended as a fail-safe bound for cracking in multilayers (Suo, 1990b; Ho
and Suo, 1990; Ye and Suo, 1990; Beuth, 1990). Applications include thin
films, reaction product layers, adhesive joints, and hybrid laminates.

3. Multiple Channeling

The preceding technique can be extended to study interaction among
channels. Suppose the biaxial stress is biased so that parallel channels
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Fic. 47. Interaction of multiple channels.

develop in one direction; see the inserts in Fig. 47. For simplicity, attention
is restricted to an elastically homogeneous system with a semi-infinite
substrate.

Consider a periodic set of edge cracks of depth a, spacing L, and subject
to an opening stress o. The energy release rate at each crack tip, G(a), is
found in Tada ef al. (1985) in a graphic form, which is then fitted by a
polynomial. Based on this information, energetic accounting gives the
driving force for cracks channeling in the film.

The strain energy, per crack, gained in creating a set of cracks of depth 4 is

h
U= j G(a) da = fo*h*/E, (5.8)
0

where the dimensionless factor f depends on the crack density h/L. The
results obtained by a numerical integration are plotted in Fig. 47. If these
cracks are equally extended in the channeling direction, the energy release
rate at each front is G, = U/h = fo*h/E. Thus, f is the dimensionless
driving force for this situation. Thouless (1990a) has employed this solution
in his discussion of crack spacing in thin films.

Next, consider the situation in Fig. 47 where, at a certain stage of loading,
the cracks of spacing 2L have already channeled across the film, and the
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tensile stress in the film has therefore been partially relieved. With further
increase of the loading, a new set of cracks are nucleated and grow half-way
between the existing channels. The energy release rate at the front of the
growing cracks should be computed from

G,, = QU; — Uy)/h = [2f(h/L) — f(h/2L)1a*h/E. (5.9)

This is derived from the strain energy difference far behind and far ahead
of the channeling fronts.

The result is also plotted in Fig. 47. Given the mechanical properiies and
with the identification G, = I}, the plot may be viewed as a relation
between the stress level and the channel density. Notice we have assumed
that new cracks can always be readily nucleated half-way between existing
channels. This might overestimate the crack density for a given stress level.
An analysis with aspects similar to the preceding has also been carried out
independently by Delannay and Warren (1991).

C. SUBSTRATE CRACKING

Substrate damage may originate from edges or existing channel cracks in
the film. The two substrate cracking patterns in Fig. 43 are studied in this
section. Observe that the Z-values for the two patterns differ by an order of
magnitude.

1. Substrate Damage Caused by Cracks in Films

Suppose the channel cracks in the film have developed at some stage
during the cooling but have not yet grown into the substrate, either because
the substrate is much tougher or because sufficiently large substrate surface
defects are not readily available. The issue is whether these cracks would
propagate into the substrate upon further cooling. The problem has been
studied by Ye and Suo (1990), and the main results are summarized here.

The driving force for a plane strain crack into a substrate was analyzed
using finite elements, and the results are plotted in Fig. 48. Observe that the
driving force decays for deep cracks, implying stable propagation. For
relative compliant films (a < 0), the driving force starts from zero at the
interface, and attains a maximum at very small depths. It is difficult for
finite elements to resolve these details, so the trend is sketched by dashed
lines.
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Fic. 48. Energy release rate for a plane strain crack with the tip in the substrate.

The plane strain model is not quite correct, since cracks must be re-
nucleated, in a three-dimensional fashion, from a surface flaw on substrate.
The insert of Fig. 49 shows a crack growing laterally under an existing
channel in the film. The crack arrests at a certain depth because of the decay
of the available driving force. The energy release rate at the growing front
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F1c. 49. Energy release rate for a crack propagating under a channel in the film.




Mixed Mode Cracking in Layered Materials 139

may be computed from

G, = ;S G(a')da'. (5.10)
— h A

Again, this is derived from energy accounting. The integral is evaluated
using the preceding plane strain results, and the results are summarized in
Fig. 49. The plot may be used as a damage tolerance map: Given a damage
tolerance a/h, one can read the design number Z. Take the curve for
a/h = 1.2 as an example. Provided the dimensionless substrate toughness
l"sEf/ha2 is above the curve, no channel with depth a/k > 1.2 is antici-
pated. This holds true even if the initial flaws are deeper than 1.2, as long
as they are not channels themselves. Observe that the elastic mismatch plays
a significant role. A relatively compliant substrate would provide less
constraint, leading to larger driving force,

The so-called T-stress in (2.1) has also been computed by Ye and Suo and
is found to be positive, unless the film is much stiffer than the substrate and
the crack depth is small. As shown by Cotterell and Rice (1980), a positive
T-stress results in a tendency for a straight mode I crack to veer off to one
side or the other. Further discussion of crack path stability in a related
context is given in Section VIII.C. Here, we simply note that the substrate
crack will have a strong tendency to branch into a path parallel to the
interface, a cracking pattern to be discussed next.

2. Spalling of Substrates

Cracks, originating from either defects in the film or at the edge, have a
strong tendency to divert into the substrate, should the latter be brittle, and
follow a trajectory parallel to the interface; see Fig. 43. The key insight was
provided by Thouless et al. (1987) in a coordinated experimental and
theoretical investigation. Their initial intent was to model the impact of ice
sheets on offshore structures. The experiments were conducted with PMMA
and glass plates, loaded on the edges. Spalling cracks were found to follow
a trajectory parallel to the surface, with depth governed by the criterion
Kj; = 0. (See also Thouless and Evans, 1990.)

These authors remarked to the effect that this mechanism would operate
in the edge spalling of pre-tensioned films, previously observed by Cannon
et al. (1986). As schematically shown in Fig. 43, the crack initiates at the
edge, extends along the interface for typically about two times film
thickness, then kinks into the substrate, and finally runs parallel to the
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interface at a depth of a few times the film thickness. In this case, the under-
lying mechanics is the same for giant ice sheets as for micro-electronic films.

Thorough investigations on pre-tensioned films have been conducted,
experimentally and analytically, by Hu er a/. (1988), Hu and Evans (1988),
Drory et al. (1989), Suo and Hutchinson (1989b), and Chiao and Clarke
(1990). Focus here is on the steady-state spalling, with the transient stage
ignored, since the former provides a well-defined design limit. In the follow-
ing, the essential mechanics will be elucidated using a simple system, and
results will be cited for more general cases. The analysis is arranged
separately for spalling originating from edges or channel cracks (planar
geometry), and from holes.

a. Planar Geometry

Inserted in Fig. 50 is a long crack at a depth d in the substrate, driven by
the residual tension in the film. Plane strain conditions are assumed. The
film is attached to a semi-infinite substrate with the same elastic moduli.
Results without these restrictions will be cited later. The equivalent edge
force and moment due to ¢ are

P=ch, M= gh(d— h)7/2. .11

tan - (K n /K 1) ()

d/h

des /h=3.67

FiG. 50. The insert shows a spalling crack. The plot is the mode mixity for crack at various
depths.
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Specialized from (3.12), the stress intensity factors are
Ky/avh = (h/2d)*[cos w + V3 (1 — h/d) sin 0], (5.12)
Ky/avh = (h/2d)*[sinw — V3(1 — h/d) cos w]. (5.13)

where @ = 52.07°. The mode mixity y = tan '(K;;/K;) is plotted as a
function of crack depth in Fig. 50. Notice Kj; > 0 for small depth, but
K < 0 for large depth and, consequently, a pure mode I trajectory exists
at an intermediate depth.
This steady-state spalling depth d , is determined from (5.13) with
K = 0. Thus,
d,, = 3.86h. (5.14)

The steady-state, mode I energy release rate can now be readily evaluated
from (5.12), which gives

G,, = 0.343¢°h/E. (5.15)

This pre-factor was cited in Fig. 43.

Suo and Hutchinson (1989b) carried out an extensive analysis to include
elastic mismatch and finite thickness of the substrate. The general solution
for arbitrary edge loads is summarized in Section IT1.B.5. The results for
spalling cracks caused by the residual stress in the film are reproduced in
Fig. 51. Observe that the spalling depth depends strongly on both elastic
mismatch and substrate thickness. However, the dimensionless stress
intensity factor is insensitive to the substrate thickness as long as H/h > 10.

There has been no formal proof that the spalling trajectory is configura-
tionally stable. One heuristic explanation, as shown in Fig. 51, is that
K > 0 when d < d,,, implying that a crack above d,, would be driven
down. Analogously, a crack below d,, would be driven up.

b. Spalling from Circular-Cut

Figure 52 shows an axial-section of a spalling crack emanating from the
edge of a circular-cut in the film, driven by residual tensile stress in the film.
In general, a hole in a pre-tensioned film acts like a stress raiser. However,
it differs from an open hole in a plate in that, for the former, cracking is
usually confined within a few times hole radius. Other cracking modes
around holes include channel cracks in films and decohesion of interfaces.
The latter will be treated in the next section,

As indicated in Fig. 52, the hole radius is by, and the crack extends to a
radius b. For simplicity, the elastic moduli for the film and substrate are
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Spalling results for film-substrate of dissimilar elastic constants and finite
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FI1G. 52. An axial-section of spalling from the edge of a circular-cut.
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taken to be the same, and the substrate semi-infinite. The equivalent edge
force P and moment M, per unit length, are still given by (5.11). The stress
state in the annulus between b, and b can be determined by the classical
plate theory, with the outer boundary clamped. The analysis shows that the
moment and force at the crack front are modified by a factor:

M) = M/k, P(b) = P/k, (5.16)
where
k=300 +v) + (1 — v)(b/by)’]. (5.17)

These loads are indicated in Fig. 52.

The results of Section III.B.1.d are applicable with moment and force
M(b) and P(b) used. In particular, the energy release rate is modified by
factor k2, i.e.,

1 /M? P?
G = (_*

1 _ _
%\ +A)’ 1=EEd3, A = Ed. (5.18)

This result can also be derived by an energetic accounting, i.e.,
G = Qrb)~' aU/ab,

where U is the strain energy stored in the clamped circular plate. From this
latter approach, it would be clear that the solution is the exact asymptote as
(b — by)/h — .

The stress intensity factors (5.12) and (5.13) are modified accordingly by
a factor of k. Thus, the steady-state depth d,, is independent of b/b,, and
is identical to the plane strain result (5.14). The mode I driving force for
spalling now becomes

2
= ——0'3:32 h (5.19)

Since k increases with b/b,, the spalling crack from a circular-cut would
usually arrest.

D. INTERFACE DEBOND

Pre-tensioned films are susceptible to decohesion or, more precisely,
de-adhesion, from substrates. Flaw geometry plays an important role:
Debonding emanating from an edge defect, a hole, or a through-cut would
behave differently. Analytical results for the first two geometries will be
summarized, and the third can be found in Jensen ef al. (1990).
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Fic. 53. Mode mixity and energy release rate for a debonding crack.

1. Decohesion from Edges or Channels

Figure 53 illustrates a pre-tensioned film debonding from a substrate. The
edge load is a special combination of that studied in Section I11.B.4, and the
notation there is followed. The misfit stress is equivalent to the mechanical
loads (see Fig. 26):

P, =P,=agh, M;=(~1/2+1/n—- ANch?®, M,=0. (520)
Specialized from Eq. (3.22), the energy release rate is

_a’h 1_2_)2(1/2+1/n—A)2
- 2F; A I '

G (5.21)
The loading phase y is defined by K = |K|h *exp(iy), as is consistent
with the convention in (2.45) with / = h. Both the driving force and mode
mixity are plotted in Fig. 53. Observe that the decohesion process is
inherently mixed mode, consisting of somewhat more sliding than opening.




Mixed Mode Cracking in Layered Materials 145

The effect of the substrate thickness on the driving force is significant when
the film is stiff.

Argon et al. (1989) have used the residual stress as a driving force to
measure interface toughness. The result in this section can also be used to
calibrate the residual stress effect on some interface fracture specimens,
e.g., the UCSB four-point flexure specimen. The complex interfacial stress
intensity factor is a superposition of the contribution from residual stress
and that from mechanical load.

2. Decohesion from a Hole

Figure 54 illustrates a decohesion crack emanating from the edge of a
hole in a pre-tensioned film. Results developed in Section C.2.b for
substrate spalling are still valid here. In particular, the energy release rate is
given by

2
G- Z"E—‘:kz (5.22)
where k is given by Eq. (5.17). The result is now valid for films and
substrates with dissimilar elastic constants, but the substrate is still assumed
to be much thicker than the film. The mode mixity is independent of 5/5,
when (b — by)/h is sufficiently large, and is identical to the plane strain
results (Fig. 53, hi/H = 0).

Decohesion from a circular-cut is stable and has been used to determine
interface toughness by Farris and Bauer (1988) and Jensen et al. (1990).
This is particularly feasible when the film is transparent, so that the
decohesion radius b can be readily measured.

Qr .

&

F1G. 54. An axial-section of a decohesion annulus originated from an edge of a circular-cut.
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Fi1G. 55. A model for thermal shock spalling.

E. THERMAL SHOCK SPALLING

1. An Idealized Model

Consider a block of brittle material with a thin, pre-tensioned, surface
layer. Spalling is possible if the residual stress has a negative gradient with
depth. An example is depicted in Fig. 55. A semi-infinite body is initially
immersed in a heat bath of temperature 7;, so that a uniform temperature
is established in the body. Upon the removal of the block from the bath, the
surface temperature is assumed to drop instantaneously to the room
temperature 7. A biaxial tensile residual stress thus develops in a surface
layer, as shown schematically in Fig. 55. The equivalent edge force and
moment are also indicated. The stress profile changes with the time, and so
does the ratio M/P.

The problem features a dimensionless number

& = h/\Ntap, (5.23)

where & is the depth of the crack parallel to the surface, o the thermal
diffusivity, and ¢ the time elapsed after the removal of the heat source. At
any given time, a mode I crack path parallel to the surface is available—that
is, a number &, exists where K;; = 0. However, for small ¢, the depth # is
correspondingly small, and therefore the strain energy stored in such a thin
layer is insufficient to drive the spalling. Consequently, a certain time elapse
is needed before spalling. The following is an attempt to quantify these
considerations.

2. Spalling Depth and Time Elapse

Consider first the temperature and stress field prior to cracking. At a
given time ¢ after the removal from the heat bath, the temperature at a
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depth z is
T(z,t) = Ty + (T, — Ty) erfc(z/2Vtap). (5.24)

The biaxial, tensile, thermal stress field varies with the depth and time, in
accordance with

o, = g, = a(z, t) = oy erfc(z/2Vtag), (5.25)
where

g0 = ag(To — THE/(1 = V), (5-26)

and oy is the thermal expansion coefficient. These are classical solutions,
which may be extracted from standard textbooks.

Next consider the half space with a spalling crack (Fig. 55). The resultant
force and moment can be expressed as

P = Ioyh, M= GI - o h, (5.27)
where
1 (¢ 1 [*
I(¢) = Ej erfc(u/2) du, J(&) = ?j uerfc(u/2)du. (5.28)
0 0

The stress intensity factors can be calculated from Section I11.B.1.d.

The number ¢ corresponding to a mode 1 trajectory is determined by
enforcing K;; = 0. The problem involves a nonlinear algebraic equation,
and the numerical solution gives

h, = 6.82Vtap. (5.29)
The corresponding mode I stress intensity factor is
KI = 0.19000 VhSS' (5.30)

Given the toughness and stress level, the depth s, may be predicted from
(5.30), and the time elapse for spalling can then be estimated from (5.29).
Observe that the spalling depth is independent of the thermal diffusivity, as
a feature of this idealized model. As an example, consider a glass with
K. = 0.7MPam'?, g, = 100MPa, ap = 0.7 X 107*m?/s. The predicted
crack depth is A, = 1.4 mm, and the time to spalling is f = 6 x 10725,
This tiny time elapse is possibly an outcome of the idealized temperature
boundary condition that has been adopted.

VI. Buckle-Driven Delamination of Thin Films

In many film/substrate systems, the film is in a state of biaxial compres-
sion. Residual compression has been observed in thin films that have been
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FiG. 56. The photograph on the left from Argon et al. (1989) shows a SiC film on a Si
substrate delaminating as a wavy circular blister. On the right is a photograph supplied by
M. D. Thouless, which shows examples of the straight-sided blister and the telephone cord
blister occurring in a multilayered film delaminating from a glass substrate.

sputtered or vapor deposited and it can arise from thermal expansion mis-
match. Some remarkable failure modes of such systems have been observed,
examples of which are shown in Fig. 56. These pictures reveal regions where
the film has been buckled away from the substrate. Various shapes of the
buckled regions evolve, including long straight-sided blisters, circular blisters
with and without wavy edges, and the so-called telephone cord blister, which
is perhaps the most common morphology. The failure entails the film first
buckling away from the substrate in some small region where adhesion was
poor or nonexistent. Buckling then loads the edge of the interface crack
between the film and the substrate, causing it to spread. The failure
phenomenon couples buckling and interfacial crack propagation. The
straight-sided blister grows at one of its ends. The telephone cord blister
grows at its end as if a worm were tunneling beneath the film.

This section presents an analysis of the straight-sided and circular blisters
and concludes with some speculation about the origin of the telephone cord
morphology. It will be seen that a key aspect of the phenomena is the mixed
mode fracture behavior of the interface, wherein I'(y) increases sharply
with increasing mode 2.

Formulas relating the energy release rate of the interface crack to the
buckling parameters were derived for one-dimensional ply buckles on the
surface of laminated composites by Chai ef al. (1981). Essentially identical
results were obtained by Evans and Hutchinson (1984) and Gille (1985) for
the thin-film problem. The energy release rate for the circular blister in
biaxially compressed films was given by Evans and Hutchinson (1984) and
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Yin (1985). The significance of the mixed mode character of the interface
crack tip was apparently first appreciated by Whitcomb (1986), who showed
that the crack tip becomes predominately mode 2 as a one-dimensional ply
buckle spreads. His observation was essential to explain why the buckles do
not keep spreading along their edges under constant overall load—that is,
why the buckles have a characteristic width. Whitcomb was concerned with
compressive failure modes in layered composites. Here, the concern will be
with thin films under equi-biaxial compression, but a number of the results
and conclusions carry over directly to ply delamination. Storakers (1988)
and Rothschilds e al, (1988) deal with various aspects of buckling and
delamination in composites, and these authors cite relevant literature in the
composites arena.

This section starts with a one-dimensional analysis of the infintely long
straight-sided blister, closely paralleling the analysis of Whitcomb (1986).
Given the availability in Section III.B.4 of the relationships between the
interface stress intensity factors and the moment and resultant force change
at the edge of the buckle, the one-dimensional analysis can be carried out in
closed form. The analysis of the circular blister, which requires some
numerical work, is presented next. The two sets of results are then com-
bined in an analysis of steady-state propagation of a straight-sided blister.
The steady-state problem gives perhaps the sharpest insights into design
constraints on compressed films.

A. THE ONE-DIMENSIONAL BLISTER

Consider an x-independent segment of the straight-sided blister shown in
Fig. 57. The film is taken to be elastic and isotropic with Young’s modulus
E,, Poisson’s ratio v, and thickness z. The substrate is also assumed to be
isotropic but with modulus E, and Poisson’s ratio v,. The substrate is
modeled as being infinitely deep. The film is assumed to be unattached to
the substrate in the strip region —b = y < b. A plane strain interface crack
of width 2b exists between the film and the substrate.

The unbuckled film is assumed to be subject to a uniform, equi-biaxial
compressive in-plane stress, g,, = 6,, = —0¢. In the unbuckled state, the
stress intensity factors at the crack tips vanish. Only when the film buckles
away from the substrate are nonzero stress intensity factors induced. Under
the assumption that 4 < b, the film is represented by a wide, clamped Euler
column of width 2b. The complex stress intensity factor K at the right-hand
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tip is related to the moment M and to the change in resultant stress AN at
the right-hand end of the column by the relationships given for the 2-layer
problem in Section III.B.4. Use of the 2-layer solution to characterize the
crack tip field is justified if 4/b < 1, which is, in any case, the condition for
the validity of the Euler theory. In what follows, the 2-layer solution is first
specialized for the present applications. This solution is also used in the
analysis of the blister test discussed in Section VII, and should have fairly
wide applicability. Then, the Euler solution is presented and is coupled to
the 2-layer solution.

1. General Loading of an Edge Crack on the Interface
between a Thin Film and Substrate

Let M and AN be defined with the sign convention in Fig. 57. These
quantities will be identified with the moment/unit length and the change in
resultant stress at the right end of the wide Euler column. Specializing the
solution of Section I11.B.4 to the limit of the infinitely deep substrate, one
finds for the interface crack:

G = 6(1 — vVHE['h3(M? + h* AN?/12), 6.1

. 6(1 — a)|"? _3/2[hAN .
Kh® = | —>| & — + iM%, 6.2
[ 1- /32} iz ! 6.2)

_ Im(Kh*)  V12Mcosw + hANsinw

tan iy = -~ = . 6.3

Y= Re®n®) ~ _VT2Msinw + h ANcos @ (6.3)
h z
4 ! ~°
Y 7 A—>Y
W7/ /67777 M h

UNBUCKLED A N<—C #1
#2

LOCAL LOADING OF
INTERFACE CRACK

BUCKLED

Fig. 57. Geometry of the one-dimensional blister, and conventions for the elasticity
solution characterizing conditions near the tip of an interface crack between a thin film and an
infinitely thick substrate. Top left: unbuckled; bottom left: buckled; right: local loading of
interface crack.
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Fic. 58. Phase factor w(a, #) in (6.2) and (6.3).

Here, o = w(a, B, ~/H = 0), which is plotted in Fig. 58 for # = 0 and
B = «a/4. The mode mixity parameter  is defined using the film thickness
h as the reference length /.

2. Euler Column Solution and Coupling
to Interface Edge Crack Solution

The one-dimensional deformation of the wide column in Fig. 57 is
characterized by the y- and z-displacements, V(y) and W(y). These are
defined to be zero in the unbuckled state with pre-stress a,, = 0,, = —a.
The wide column is taken to be characterized by von Karman nonlinear
plate theory with fully clamped conditions at its edges, i.e.,

V=W=W,y=0 aty = +b. (6.4)

The change in the y-component of the stretching strain measured from the
unbuckled state is
& =V,y + W,y (6.5)

while the bending strain is W, yy. With N, and N, as the resultant stresses
and with AN, = N, + oh and AN, = N, + oh as the changes in the
resultant stresses from the unbuckled state, the strain component g, is
related to AN, by

g, = (1 — v} AN,/(E,h). (6.6)

Since ¢, = 0, AN, = v; AN, . The bending moment is related to the bending
strain by M, = DW, yy, where D = E, h*/[12(1 — v?)] is the bending stiff-
ness. In-plane equilibrium requires AN,, y = 0. Therefore, AN, can be
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taken to be the value at the end of the beam, AN. Moment equilibrium
requires
DW,yyyy — (AN — ch)W,yy = 0. ©6.7)

The solution to the preceding system of equations is given in (6.8)-(6.12):

W = L&n[l + cos(ny/b)], 6.8)
n* Dh
M = M) = E) Ff, 6.9
_3*D ,
AN == -5 (6.10)

The amplitude of the buckling deflection, &, has been defined such that
W(0) = &h. 1t is related to the residual stress by

172
e e

2 2 2
nD =n E, h
_Th_ ay 12
T YR 120 - ) (b) 6.12)

Here, o, is the classical buckling stress of a clamped-clamped wide plate.
The residual compression in the film, ¢, must exceed o, if the film is to
buckle away from the substrate for a given interface crack length 2b. The
nondimensional ‘‘loading parameter’’ is o/0.. Since o, decreases as b
increases, o/g, increases as b increases.

The energy release rate is determined by substituting the expressions for
M and AN in (6.9) and (6.10) into (6.1), with the result

where

G = [(1 - v)h/QE)I(o — 0.)(@ + 30.). (6.13)

This result is in agreement with Chai ef a/. (1981), Evans and Hutchinson
(1984), and Gille (1985). Substitution of the same expressions into (6.3)
gives

4cosw + V3¢sinw
—4sinw + V3&cosw '

tan y = (6.19)

Recall that i is defined relative to the reference length / = A, and is given
here for the crack tip at y = +b.
For large o/6,, G asymptotically approaches

G, = [(1 - vHr/QE)]a>. (6.15)
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F1G. 59. Energy release rate and buckling deflection for one-dimensional blister.

This is just the strain energy per unit area in the film, which is available
when released subject to the plane strain constraint ¢, = 0." The normalized

energy release rate is
G
g <1 —$><1 +35’—°>, (6.16)
G, G c

which is plotted in Fig. 59 together with the buckling deflection amplitude
from (6.11). The interface crack length 2b enters the expression for G
through o in (6.12). For a given pre-stress g, G approaches G, as b — oo;
it vanishes when g, = o; and it attains its peak value 4G,/3 at o/, = 3.
The fact that G exceeds G, is not a violation of energy conservation. The
total energy released per unit length of buckle (i.e., the integral of 2G with
respect to b) is always less than 2Gy b, and only approaches 2G b as b — .
The explicit expression is given later in (6.35).

"The strain energy per unit area stored in the film is [(1 — vl)h/Ellaz. Reducing N, to zero
subject to &, = O releases (6.15) when negligible bending energy remains in the film. The results
in (6.8)-(6.16) are valid for residual stresses for any o, as long as o, = —a. They apply not only
to the thin film problem but also to the x-independent mode of delamination for a surface ply
on a thick composite plate.
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FiG. 60. Phase of loading y at the right-hand crack tip for the one-dimensional blister.

Curves of the mode mixity measure y at the right-hand crack tip are
shown as a function of a/0, in Fig. 60 for several values of «, all with
£ = 0. Elastic mismatch affects y only through w in (6.14). Since w is
relatively insensitive to mismatch when f = «a/4 (see Fig. 58), plots of
versus o/0, have not been displayed for this case. For a/0 slightly above
unity, and thus small £, (6.14) gives

tan ¥ = —cot w, or yv=—((n/2) - w). 6.17)

In the absence of elastic mismatch, w = 52.1° and  starts at —37.9°. As
o/a. increases and as ¢ increases, the relative proportion of mode 2 to
mode 1 increases. The value of ¢/ at which the crack tip loading becomes
pure mode 2 (i.e., ¥ = —90°) can be obtained from (6.11) and (6.14).

o/0. = 1 + 4tan’ w, 6.18)

which is attained when ¢ = (4/V3) tan w. Note that this point where all
mode 1 is lost is a fairly strong function of elastic mismatch. For no
mismatch, o/0. = 7.55. The strong increase in mode mixity as the buckle
spreads has important implications for buckle-driven decohesion, as will be
discussed with the aid of several interface toughness functions in the next
subsection.

Before applying the results of this section, we note in passing that the von
Karman nonlinear plate equations accurately represent the buckling behavior
as long as /b < 1 and rotations satisfy (W, y)* < 1. Comparison of the
predictions from von Karman theory with the more accurate elastica, for
example, reveals that the present predictions retain reasonable accuracy for
buckling deflections W (0) that do not exceed b/3. Note from Fig. 59 or (6.11)
that W(0) = 3.46# when o/0, = 10. Thus, for example, if #/b is less than
about 1/10, the above predictions retain accuracy for o/, as large as 10.
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3. Extent of Interface Decohesion:
The One-dimensional Blister as a Model

There is often some rate dependence associated with buckling-driven
decohesion, due most likely to species in the air gaining access to the inter-
face crack tip, a process akin to corrosion assisted crack growth. The
discussion that follows will neglect any rate dependence. It will be assumed
that interface crack advance occurs when the condition G = () is reached.

Consider first the consequences of assuming an ideally brittle interface
where the critical energy release rate is mode-independent, i.e., G = G{. To
facilitate the discussion, assume an initial decohered region of width 2b;
exists on the interface, and imagine a scenario in which biaxial compressive
stress in the film o is increased, due, for instance, to temperature change
when there exists a thermal expansion mismatch between the film and
substrate. For a given set of parameters of the system, plot curves of G/Gy
versus b at various levels of ¢ using the normalized curve in Fig. 59. Such
curves are sketched in Fig. 61a, where the lowest curve corresponds to the
value of ¢ at which the buckling starts with » = b;. Denote by g, the value
of ¢ associated with the curve that intersects the fracture criterion,
G/Gi = 1, at b = b;. In the scenario in which ¢ is increased, one would
observe buckling without decohesion for o between (g.); and o,. At oy,
crack advance would be initiated and would necessarily be unstable since
G/Gi exceeds 1 as b increases. The blister would spread dynamically
without arrest.

Alternatively, suppose a level of o exists below o, say ¢ = g, in Fig. 6la,
and suppose an external agent forces the decohered region to expand until
b reaches the point where G/G; = 1. As in the previous scenario, the crack
would expand unstably from that point onward. In some previous work
(e.g., Gille, 1985), it has been argued that the combination of Gy, b, and ¢
lies on the decreasing portion of the G versus b curve, thereby allowing
stable crack growth. Although this is a possibility, this argument seems
implausible as a general explanation because the drop from the peak to the
asymptote for b — o is small. In fact, G increases monotonically with
increasing blister radius in the case of the circular blister discussed in the
next subsection; thus, there is no drop and there would be no arrest for that
geometry.

The qualitative influence of the mode dependence of interface toughness
on the arrest of blister spreading can be anticipated from the relation
between y and ¢/a0, in Fig. 60. Neglect for the moment any consideration
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Fic. 61. Schematic of instability analysis of one-dimensional blister. a) based on an ideally
brittle interface with propagation condition G = Gy. b) Based on G = I'(y), where T increases
with increasing [y/|.

of f-effects in the elastic mismatch, and suppose that the toughness function
I'(w) increases with increasing | /| as discussed in Section 11. Then, curves of
G/T'(w) versus b at various levels of ¢ would display the trends shown in
Fig. 61b. Given an initially decohered region of width 25,, the blister would
spread dynamically when ¢ attains g,, and would arrest at b = b,,. With
further increase of o, the blister would spread stably with the condition
G = T'(w) maintained. Whether it would spread beyond the point where (6.18)
is attained depends on the condition governing pure mode 2 crack growth.

A quantitative prediction requires the specification of a specific functional
form for T'(yw). The discussion that follows will use the forms (2.40) and
(2.44), which are plotted in Figs. 10 and 11, for the purpose of illustration.
They will be used again in the analyses of the circular blister and the steady-
state growth of the straight-sided blister. For either form, let

T(w) = Gif(w), (6.19)
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Fic. 62. Mode-adjusted crack driving force for the one-dimensional blister for two families
of interface toughness functions. No elastic mismatch.

where
fw) =11+ @A — Dsin®y]™! for (2.40), (6.20)

fw) =11 + (1 — A)tan*y] for (2.44). (6.21)

Then, G/f(w) can be regarded as a mode-adjusted crack driving force in the
sense that the criterion for crack advance is G/f(w) = G;. Curves of
normalized crack driving force are plotted in Fig. 62 for various choices of
A for each of the two families of toughness functions. The curves are
obtained directly using (6.16) and (6.14), and are shown for the case of no
elastic mismatch (o = # = 0). Recall that in each case the choice A =1
reduces to the ideally brittle criterion G = Gy, while A = 0 coincides with
the criterion K, = K7 = (E,G{)">.

The two families of interface toughness functions (6.20) and (6.21) prob-
ably bracket toughness trends for a class of material combinations, such as
those discussed in Section II, in the sense that (6.20) most likely
underestimates the rate of increase of I'(y) with respect to w near mode 2
while (6.21) probably overestimates that rate of increase. Depending on A
and the other parameters of the system, either arrest or unarrested
spreading of the blister can occur according to (6.20). Arrest will always
occur according to (6.21), assuming A < 1.

The effect of elastic mismatch on the normalized driving force is shown
in Fig. 63 for one choice of A for each of the two toughness functions, in
each case for various « with § = 0. A stiff film on a compliant substrate
(« > 0) enhances the peak crack driving force and accentuates its fall-off
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Fic. 63. Effect of elastic mismatch on the mode-adjusted crack driving force for the
one-dimensional blister: (a) based on (6.20); and (b) based on (6.21).

with increasing b. When g # 0, the approach is similar to that just
described except that now the criterion for advance is G/f(#%) = G7, where
¥ is associated with some material-based length 7 through (2.45). Since  in
(6.14) is defined for the choice / = kA, one must take into account the
relation (2.49) between w and ¥ in determining the crack driving force.

B. THE CIRCULAR BLISTER

In this section, the axisymmetric counterpart to the one-dimensional
blister is considered. An analysis along similar lines to that presented here
was given by Chai (1990) for the special case where no elastic mismatch
exists between the film and the substrate. The geometry for the circular
blister is similar to that in Fig. 57 except that the radius of the buckled
region is taken to be R. The analysis again couples a buckled plate repre-
senting the circular decohered region of the film with the elastic solution for
a semi-infinite edge crack on an interface, as depicted in Fig. 57 and as
presented in Section VI.A.1. For the axisymmetric geometry, the nonlinear
von Karman plate equations cannot be solved in closed form, except asymp-
totically for sufficiently small buckling amplitudes. Numerical methods
must be used to solve the equations for the buckled plate.

1. Governing Equations

The von Karman nonlinear plate equations for axisymmetric deforma-
tions of a completely clamped circular plate of radius R, thickness A, and
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subject to an equi-biaxial compressive stress o in the unbuckled state are as
follows. Let r be the distance from the center of the plate normalized by R,
N,(r) the resultant radial in-plane stress, AN,(r) = N,(r) + oh the change in
this component from its value in the unbuckled state, and let W(r) be the
vertical displacement component. With
aw
o(r) = [6(1 — vDI"*h™! —— (6.22)
ar
as a measure of the rotation, the two equations of equilibrium can be
written in nondimensional form as

i (rd_(b) - r_1¢) + r¢(@ — AN,) = 0, (6.23)
dar\ dr

d ;d AN, 2

4 (, dAR, ) et =0, (6.24)

where @ = 6hR*/Dand AN, = AN,R?*/D. As before, D = E, i*/[12(1 — v})]
is the bending stiffness. The conditions at » = 0 are ¢ = 0 and d AN,/dr = 0.
The fully clamped conditions at » = 1 require

=0, %(r AN,) — v, AN, = 0. (6.25)

The energy release rate, interface stress intensity factors, and mode mixity
parameter in (6.1)-(6.3) are evaluated using the bending moment and the
change in resultant stress at the edge of the plate, which are given by

M = DhR™Y6(1 — v))] V*(dp/dr), .,
AN = DR™¥(AN), _,.

(6.26)

2. Asymptotic Solution for Small Buckling Deflections

Evans and Hutchinson (1984) derived a formula for the energy release
rate using an asymptotically valid solution to the preceding system of
equations for small buckling deflections. That result will be reproduced
here without derivation along with a new companion result for the mode
mixity parameter .

The classical buckling stress of a clamped circular plate is

2 2
«_HD _ _E (h
o; = n 1.2235l — vf <R , (6.27)
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Where u = 3.8317 is the first nontrivial zero of J,(x), the Bessel function of
the first kind of order one. The associated axisymmetric mode is

Wi(r) = [0.2871 + 0.7129J,(ur))h, (6.28)

where Jy(x) is the Bessel function of the first kind of order zero. The mode
is normalized such that W;(0) = A.

The asymptotic solution is obtained by developing an expansion of the
buckling deflection (and other quantities) in the form

W) =EW, + EWy + -, (6.29)

where £ is the buckling amplitude. To lowest order, & = d/h, where J is the
deflection at the center of the plate. The asymptotic relation between ¢ and

/Gt is
1 172
&= [-— (% - 1)] , (6.30)
Cl oc

where ¢; = 0.2473(1 + v,) + 0.2231(1 — v?). The asymptotic result for the

energy release rate is
G o¥\?
i (@], 6

where ¢, = [1 + 0.9021(1 — v))]~! and
G} = (1 — v))ha*/E, (6.32)

is the strain energy per unit area stored in the unbuckled film." The asymp-
totic relation between the mode mixity parameter for the interface crack
and the buckling deflection is

cos w + 0.2486(1 + v,)¢sin w
—sinw + 0.2486(1 + v,)écosw

tan y = (6.33)

For sufficiently small &, y approaches (6.17), just as in the case of the one-
dimensional blister. The asymptotic results are shown in Figs. 64 and 65,

where they are compared with the results of an accurate numerical analysis
described next.

" The expression for c, given here corrects the coefficient given by Evans and Hutchinson
(1984). Their derivation made use of a result for the initial post-buckling behavior of a clamped
circular plate given in the text by Thompson and Hunt (1973), which does not correctly account
for the Poisson’s ratio dependence. The present result incorporates the corrected solution. The
difference between ¢, and the earlier result of Evans and Hutchinson is less than 1% for
v, = 0.3.
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Fi1G. 64. Energy release rate and edge loading ratio for the circular blister.
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Phase of loading y at interface crack tip for the circular blister for three levels of
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F16. 66. Mode-adjusted crack driving force for the circular blister: a) based on (6.20); and
b) based on (6.21).

3. Numerical Solution for Arbitrarily Large Buckling Deflections

An accurate finite difference method was used to solve the coupled
ordinary differential equations (6.23) and (6.24), subject to the stated
boundary conditions. Newton iteration was used to obtain a converged
solution for each specified value of a/a¥. All calculations were carried out
with v; = 1/3. The results for the quantities of interest are shown in Figs.
64-66. The results for G are in agreement with calculated results of Yin
(1985) and Chai (1990), while the present results for y for the case of no
elastic mismatch are in accord with the trends of G, and G, presented by
Chai. Note that the curve for # AN/(V12M) in Fig. 64 permits y to be
computed using (6.3) for any elastic mismatch.

The energy release rate of the interface crack increases monotonically
with increasing R (decreasing o) for the circular blister, as can be seen in
Fig. 64. Its approach to G§ is very slow. At g/a¥ = 50, G/G§ = 0.85 (not
shown in plot). The asymptotic formula (6.31) is reasonably accurate for
o/a¥ up to about 3. The asymptotic formula (6.30) for 8/ retains its
accuracy to surprisingly large values of a/a¥. A plot of &/k is not shown,
but, with & = §/h, (6.30) overestimates the accurate numerical result at
o/a¥ = 10 by only 7%. As in the case of the one-dimensional blister,
buckling deflections that are large compared to the film thickness imply
residual stresses that are many times the classical buckling stress o} of the
corresponding plate of film. The asymptotic formula (6.33) for y is also
valid for values of a/¢¥ up to about 2 or 3, as can be seen in Fig. 65.
However, y does not vary as strongly with a/c¢¥ for the circular blister as
for the one-dimensional blister (¢f. Fig. 60), a feature also emphasized by
Chai (1990). In particular, the interface crack of the circular blister does not
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attain pure mode 2 in the range of ¢/¢F shown, as its one-dimensional
counterpart does. Even for g/a¥ as large as 50, some mode 1 persists with
w = —84° for a = B = 0. This feature may be at the heart of why growth
of the blisters is favored along a curved front rather than a straight one.
Plots of the normalized crack driving force G/[G§f(w)] are shown in
Fig. 66 for the same two interface toughness functions, (6.20) and (6.21),
used to construct the plots for the one-dimensional blister in Fig. 62. For
reasons noted previously, the crack driving force does not fall off nearly as
rapidly as the blister spreads as for the one-dimensional blister. The fact
that circular blisters have been observed for some systems is indirect
evidence for an interface toughness function that increases sharply with
increasing mode 2, such as that used in constructing the curves in Fig. 66b.

4. Tendency toward Spalling as the Blister Spreads

Circular spalls are observed in some systems where the film is brittle.
Evidently, the radius of the blister increases until it reaches a point where
the crack kinks out of the interface into the film, spalling out a circular
patch of film. The mixed mode conditions at the tip of the interface crack
derived in the previous sections contribute to the likelihood of this type of
spalling in two ways. First, with reference to the kinking solution in Section
I1.C.5, one notes that kinking upward into the film is favored energetically
as  becomes more negative, with the largest value of G..,/G attained at
w = —60°. Secondly, as the blister spreads and as |y| increases, the G
needed to advance the interface crack increases, assuming I'(y) increases
with increasing |w|. Thus, as the blister spreads, the maximum energy
release rate available for a crack kinking into the film, G} ,,, increases,
Kinking, and spalling, is to be expected if G}, attains the fracture
toughness of the film.

C. CONDITIONS FOR STEADY-STATE PROPAGATION
OF A STRAIGHT-SIDED BLISTER

An example of the straight-sided blister is shown in Fig. 56 and is
sketched in Fig. 67b. Under steady-state conditions, the width of the blister
remains fixed and the growth occurs by interface crack advance along the
more-or-less circular end of the blister. An approximate analysis of the
conditions for steady-state blister propagation is given.
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F16. 67. a) Condition for steady-state propagation of straight-sided blister for the interface

toughness function (6.21). b) Mode-adjusted crack driving force on the sides of the straight-
sided blister. The condition that the sides are in an arrested state is G/T'(y) < 1.

Under steady-state conditions, the total energy released per unit advance
of the blister is precisely the energy released by a unit length of the one-
dimensional blister of Section B.2 in spreading from the smallest width for
which the buckle has nonzero amplitude, 2b, = 27[D/(gh)]'?, to 2b. Thus,
the average steady-state energy release rate of the advancing end is

b
G, = b‘lg G db, (6.34)
b
where G is given by (6.16). Noting that g, depends on b according to (6.12),
one readily obtains
2
UC
G, = <1 - —) G,. (6.35)
o
It is also useful to note that by/b = (a./0)"2.

An exact propagation condition would require that G, be equal to the
average of the interface toughness I'() across the propagating end of the
blister. This, in turn, would require knowledge of the precise distribution of
w across the end of the blister. As an approximation, take

G, = I'(v*), (6.36)
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where y* is the mode mixity parameter for a full circular blister of radius
b subject to the same biaxial stress o. To see how this generates specific
predictions, again represent the interface toughness function as

[(w) = Gif(w), (6.37)

and rewrite the propagation condition (6.36), using (6.35) and (6.15), as

G, (1 -vHeh AN
The right-hand side of this equation is a function of g/0, since w* is a
function of a/0¥ (¢f. Fig. 65) and ¢}/, = 1.4876.

The right-hand side of (6.38) is plotted in Fig. 67a for a choice of f(v)
used previously, (6.21), for several values of A. These curves were computed
using the solid line curve for w* versus ¢/¢¥ in Fig. 6.10 for the case
o = B =0 with v; = 1/3. Recall that A = 0 corresponds to the interface
fracture criterion K; = K7, while A =1 corresponds to the Griffith
criterion G = Gy. To interpret these curves, it is helpful to present results
that display whether or not the parallel sides are in a state consistent with
interface crack arrest. For this purpose, the ratio G/I'(y) holding on the
sides is plotted as a function of a/0, in Fig. 67b, where G is given by (6.16)
and  is given by (6.14) for the straight-sided blister. The combination of
(6.16) and (6.38) gives

G _ <1 - ﬁ>1(1 + 3ﬁ> UChl (6.39)

L'(w) g a) fw)
which is the expression used in plotting the curves in Fig. 67b. The fact that
G/T'(w) —~ 0 at /0, = 7.55 for all A < 1 is a consequence of unbounded
mode 2 toughness assumed in connection with the choice (6.21) for f(y).

Consider the curves in Fig 67 for one of the A-values such that A < 1.

Note that [G/T(¥)]saes < 1 for all values of o/, greater than or equal to
its value at the minimum of (1 — v})a*h/(2E,G¢). Thus, the sides of the
blister are in a state consistent with interface crack arrest everywhere to the
right of the minimum in Fig. 67a. By contrast, [G/T()]qes €Xceeds unity
for nearly all /g, to the left of the minimum, implying a lack of con-
sistency with arrest of the sides. One concludes that the relevant branch of
each of the curves for 4 < 1in Fig. 67a is that to the right of the minimum.
(The transition G/I'(y) so near the minimum may be somewhat fortuitous
since the solution is not exact.)
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For a particular 4 (A < 1), the smallest value g consistent with steady-
state propagation is given by

1 - v)e?h
= = (), 6.40
2E.GF c(A) (6.40)
where ¢(1) denotes the value of the ordinate in Fig. 67a at the minimum.
Equivalently, if o is regarded as prescribed, (6.40) gives the smallest value
of film thickness 4 consistent with steady-state propagation. The half-width
of the blister associated with (6.40) is

1/2 1/4
b_ = { d@) } [ Eh } , (6.41)

23 (201725 | (1 = vAGS

where d(1) is the value of /g, at the minimum.

For film stresses ¢ larger than the minimum in (6.40), or for film thick-
nesses A larger than the minimum, solutions exist on the branch to the right
of the minimum of the curves in Fig. 67a. The associated width of the blister
increases with increasing ¢. Equation (6.41) continues to apply with (d, ¢)
denoting a point on the curve in Fig. 67a. From a practical standpoint, the
minimum is probably of the most interest. For a film stress less than the
minimum (or a film thickness less than the minimum), extensive propaga-
tion of an initial blister can be avoided.

The behavior associated with the interface fracture criterion G = Gy
(i.e., A = 1) must be discussed separately. From Fig. 67a, one notes that
there exists a propagation solution for all values of (1 — v?)a2h/(2E,GY)
greater than unity. But, from Fig. 67b, one sees that these solutions are
inconsistent with arrest of the interface crack along the sides. Thus, it must
be concluded that there exist no steady-state straight-sided blister solutions
when the classical criterion G = Gy is presumed to hold.

The particular interface toughness function, (6.37) with (6.21), was
invoked to illustrate the calculation procedures for steady-state blister
propagation and to bring out some of its qualitative features. The example
reveals that steady-state blister propagation, as opposed to complete
decohesion of the film, is innately tied to the property of the toughness
function wherein it increases with increasing proportion of mode 2.
Details of the propagation of the straight-sided blister do depend on the
specifics of f(y). For example, the previous calculations were repeated
using (6.20) rather than (6.21). The function f(y) in (6.20) levels off as
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[w| approaches m/2 as opposed to (6.21), which increases sharply as the
mixity approaches pure mode 2. Only for a fairly small range of A
(i.e., 0 = A < 0.15) does there exist a steady-state solution satisfying the
conditions discussed in the preceding. For A in the range 0.15 <41 =<1,
no solutions exist consistent with interface crack arrest along the straight
sides. Whether solutions exist in this range that are characteristic of the
telephone cord morphology (¢f. Fig. 56) is not known, The answer to this
question would obviously shed light on the nature of the interface
toughness function.

We end this section with some additional speculation on the possible
origin of the telephone cord morphology of blister propagation. The
approximate solution for the straight-sided blister does not address the issue
of the stability of the configuration. For example, is the symmetric con-
figuration (symmetric with respect to the line parallel to, and centered
between, the straight sides) stable with respect to nonsymmetric perturba-
tions of the interface crack front? One possibility is that, at sufficiently
large values of (1 — vi)o?h/(QE,G}), the steady-state straight-sided con-
figuration becomes unstable, Partial support for this speculation comes
from stability results for the circular blister (unpublished work in progress).
The circular blister becomes unstable to nonaxisymmetric perturbations of
the interface crack front at sufficiently large o. The value of ¢/¢? at which
this instability occurs depends on the choice of T'(y), but is typically at or
above the value associated with the minimum of (1 — v})e?4/(QE,GY) in
the steady-state problem.

VII. Blister Tests

The blister test is used to measure interface toughness for a crack on the
interface between a film and a substrate. The test avoids edge effects of
various kinds and is highly stable. Although mixed mode conditions prevail
at the tip of the interface crack, most approaches to the subject have
concentrated on the relation between the energy release rate and the various
parameters of the test (Liechti, 1985; and Storakers, 1988). Recent work by
Chai (1990) and Jensen (1990) has elucidated the mixed mode character of
the test using an approach similar to that described in the previous section.
The separated blister is treated by plate theory and is coupled to the 2-layer
edge crack solution of Section VI.A.l to give G and w. The results that
follow are taken from Jensen (1990).
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A. PRESSURE LOADING

A circular blister loaded by a pressure p acting between the film and
substrate is depicted in cross-section in the insert in Fig. 68. The film is
modeled as a clamped plate of radius R subject to lateral pressure p. At
small deflections, within the linear range, the moment at the edge of the
plate is

M = +pR?, (7.1

and the deflection J at the center of the plate is
d = &pR*/D. (7.2)

The resultant in-plane stress N is of order p2. Thus, for sufficiently small p,
by (6.1) and (7.1),

33a-v 2pt 8 E W%

_ _8 B0 7.3
2 en? 31 = VR (7.3)

and, by (6.3),
tany = —cotw = yw=—-((n/2) - w). (7.4)

This is the same combination of mode 1 and 2 that exists for the buckled
blisters at small buckling deflections. As in those problems, y is defined
here with / = A, Equation (7.4) is valid for sufficiently small p even in
the presence of an initial pre-stress in the film since the change in mem-
brane stress, AN, at the edge of the plate is of order p®. However, the
range of applicability of the formula will depend on the residual stress
level.
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F1G. 68. Energy release rate and ratio of edge loads for a blister under uniform pressure.
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There are only a few results in the literature based on rigorous 3-D
elasticity solutions that permit a direct assessment of the approximate
procedure that couples the plate solution to the 2-layer edge crack solu-
tion. Kamada and Higashida (1979) present results for K; and K, for the
case of no elastic mismatch, based on a full elasticity solution to the
circular blister loaded by uniform pressure. They find that v = —30° for
R/h=35 and w = —37° for R/h = 10. This can be compared with
w = —37.9° from (7.4) when « = 8 = 0. Thus, their results suggest that
the approximate procedure is accurate for R/# as small as 10. Erdégan
and Arin (1972) have presented results for a penny-shaped blister crack
on an interface between materials with the mismatch characteristic of
epoxy and aluminum, but a numerical comparison with the present
results is not meaningful since the largest value of R/h for which they
have reported results is 2.5.

Calculations for G and y at large deflections have been carried out by
Chai (1990) and Jensen (1990) using the nonlinear von Karman plate
equations for the case of no residual pre-stress. Results from Jensen are
given in Fig. 68 as plots of a nondimensional G and Nk/M versus p/py,
where N is the resultant in-plane radial stress at the edge of the plate and

16 E, [(hr\
=——"11=). 7.5
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Fic. 69. Phase of loading of interface crack tip for several levels of elastic mismatch for a
blister under uniform pressure.
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FiG. 70. Deflection-pressure relation for a blister under uniform pressure.

The ratio Nh/M is the basic information needed in (6.3) (with AN = N) to
generate y for any elastic mismatch between the film and substrate. The
curves of y versus p/p, are plotted in Fig. 69 for various « with g = 0.
As p increases, the ratio NA/M increases giving rise to an increasing
proportion of mode 2 to mode 1. The increase only entails a change of y of
about 15°. For completeness, curves of d/h versus p/p, are shown in
Fig. 70. The curves in these figures were computed with v, = 1/3, but they
are only weakly dependent on v, .
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Fic. 71.  Energy release rate and ratio of edge loads for a blister under point load.
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B. PoinT LOADING

The theoretical predictions for a circular blister loaded by a concentrated
load P at its center (see insert in Fig. 71) have also been computed by
Jensen (1990). In the linear range, the moment at the edge of the clamped
plate is

1

M=— 7.
g (7.6)

and the center deflection is

1 — v)PR?
= 3(_‘%# 7.7
4nE h
Then, by (6.1),
2E, h36%

C=30- V)R’

(7.8)
and  is again given by (7.4). Curves of a nondimensional G and Nh/M
versus 6/ h for arbitrarily large §/h are shown in Fig. 71. Curves of y versus
d/h are given in Fig. 72 for various o with § = 0. The mode dependence is
similar to that for the pressurized blister, except with a somewhat larger
change in y as the deformation becomes nonlinear. The dependence of 6/h
on P is plotted in Fig. 73. All these results were computed with v, = 1/3,
and initial residual stress is not included.
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Fic. 72. Phase of loading of interface crack tip for several levels of elastic mismatch for a
blister under point load.
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Fig. 73. Deflection-load relation for a blister under point load.

VIII. Failure Modes of Brittle Adhesive Joints and Sandwich Layers

This final section focuses down to a finer scale than has hitherto been
addressed in most of this chapter. Attention is directed to modes of crack-
ing of a thin, brittle adhesive layer joining two identical bulk solids. The
discussion also has bearing on sandwich specimens, such as those discussed
in Section IV.C, which are designed to measure toughness of the interface
between the thin layer material and the adjoining material comprising the
bulk of the specimen. Figure 74 shows one such sandwich specimen. Below
it, at higher magnification, are depicted some of the multitude of cracking
morphologies that have been observed in brittle systems. A test series
carried out using any such sandwich specimen provides the macroscopic, or
effective, interface toughness function I'(y) characterizing the joint. In
assessing the effectiveness of a joint or in making engineering applications,
one need not necessarily be concerned with the local cracking morphology.
On the other hand, I'(w) itself may be a strong function of the cracking
morphology, and, if so, it is essential to understand what controls the local
cracking morphology in any attempt to improve the quality of the joint.
Similarly, attempts to measure the interface toughness I'(y) between two
materials using a sandwich specimen can be defeated by tendencies for an
interface crack to misbehave in one of the other modes of cracking.
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Fic. 74. Modes of cracking in a thin, brittle adhesive layer: (a) straight crack within layer;
(b) interface crack; (¢) alternating crack; (d) wavy crack.

This section addresses some of the many issues surrounding local cracking
morphology. The discussion is restricted to brittle systems for which any
inelastic behavior occurs on a scale that is small compared with the layer
thickness /. The layer thickness is assumed to be very small compared with
the in-plane dimensions of the joint or of the sandwich specimen. At the
macroscopic level, the tip of a crack along the joint or layer is characterized
by macroscopic, or applied, stress intensity factors K{° and Kji. As
discussed in Section IV, these are determined from a standard analysis that
ignores the existence of the thin layer. The macroscopic energy release rate is

G® = ETYKT? + KiP), 8.1)

where the numbering for the materials is shown in Fig. 74. The effective
toughness function of the joint as determined in a test is identified with the
critical value of the overall energy release rate at crack advance according to

Ly™) = G7, (8.2)

where y® = tan"Y(K3/K7).
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A. Basic RESULTS FOR STRAIGHT CRACKS

1. Straight Crack within the Layer (Fig. 74a)

A simple energy argument or application of the J-integral establishes the
equality of G* and the local energy release rate at the tip, G. With K; and
K,y as the local stress intensity factors, G = E; (K} + K#). The condition
G = G=, together with (8.1) and linearity in the relation between stresses,
allows one to write the connection between the local and applied stress
intensity factors such as

. l -« 2 % crrooy _id(c/h, o
(Ky + iKyp) = (m) (K7 + iIKR)e e/, (8.3)

Here, ¢ = ¢ — w™ is the shift in the phase angle between the local and
applied intensities. Fleck et al. (1991) have carried out calculations for ¢;
they give the approximation

h c 1\
¢ = eln(; — 1) + 2(5 - 5)(#(04,,8), 8.9

where ¢ is plotted in Fig. 75. This result is unaffected by the presence of a
residual stress ,, = gy in the layer.

If the macroscopic specimen is loaded in mode I (K = 0) and if the
crack does propagate down the centerline of the layer (¢f. discussion in next
subsection), then (8.3) gives K;; = 0 and

1 -« 172
= K. .
K- (15 “) ki 8.5)
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F1G. 75. Phase factor ¢(a, f) in (8.4).
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This result, which was obtained originally by Wang er al. (1978), reveals
that a crack within a compliant layer (a > 0) is shielded. With K. as the
intensity toughness of the layer material, the apparent toughness measured
using the sandwich specimen is

1+ 172
K;;:( "‘) K. (8.6)

] —«w

An equivalent statement concerning the elastic shielding is that the load
needed to fracture the sandwich specimen differs from that needed to frac-
ture a geometrically similar specimen made entirely from the layer material
by the factor [(1 + «)/(1 — «)]'/2. This factor can be quite large when a
stiff material is joined by a compliant adhesive, as is the case when, for
example, metal of ceramic parts are joined by a polymer adhesive, If the
strength of a joint is controlled by crack-like flaws that are on the order of
the adhesive thickness or somewhat larger, then this same magnification
factor will apply to the strength of the joint compared to the strength of the
bulk adhesive with flaws of similar size. If the controlling flaws are much
smaller than the layer thickness, the magnification effect is lost.

3. Crack along the Interface (Fig. 74b)

The relation G® = G also holds for this case, where G is related to the
interfacial stress intensity factors K and K, by (2.29). The equation relating
K, and X, to K"and K} is (3.38) with K; = K{° and K;; = KJ. With y for
the tip on the interface defined by (2.45) with / = h, the w-quantity in (3.38)
is w — w™. This shift in phase is generally small and even for the largest
elastic mismatches never more than about 15°.

As discussed in Section I1V.C, sandwich specimens are attractive for
measuring interface toughness. Assuming the crack does advance in the
interface, the equation for the interfaces toughness function is simply

Ty, =h) =TWy"), (8.7)
where ¥ = = + w. Conversion of T'(y, h) to T(iy, ) where i is defined

using a material-based length Iis readily carried out as specified by (2.51).
B. CRACK TRAPPING IN A COMPLIANT LAYER UNDER NONZERO K|}

Equation (8.3) predicts a strong trapping effect due to elastic mismatch
between the layer and the adjoining blocks. When Kij is not too large
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F16. 76. Location of trapped crack in a compliant sandwich layer.

compared to K77, (8.3) reveals the existence of a straight, mode I crack path
within the layer. The condition for K;; = 0 from (8.3) gives the relation
between the location of the crack, ¢/A, and ™ as

o(c/h, o, f) = —w™. (8.8)

Since ¢ vanishes when the elastic mismatch vanishes, there can be no
straight crack paths within the layer unless * = 0 under this circumstance.
A plot of the solution to (8.8) is shown in Fig. 76 for several levels of
mismatch, all with § = /4. When there is significant mismatch, a mode I
path well within the layer can exist for |Ky;| as large as 10% of K;°. Such
paths exist whether the layer is compliant or stiff, but generally a straight crack
in a stiff layer will be configurationally unstable, as will now be discussed.

C. CONFIGURATIONAL STABILITY OF A STRAIGHT CRACK
WITHIN THE LAYER

Given the existence of a straight mode I path within the layer, the issue
now addressed is whether the path will be insensitive to small perturbations,
returning to the straight trajectory, or will be deflected into the interface or
possibly into a wavy morphology. Consider a loading with Kj} = 0 such
that the center line through the layer is a mode I crack trajectory. Two
results are presented that indicate whether or not the centerline path is
configurationally stable.

First, suppose at the start of propagation the crack lies off the centerline
(.c., ¢/h # 1/2 in Fig. 74a). From (8.3), with K7 = 0,

Ky =[(1 — &)/(1 — )]"*sin ¢ K7 (8.9)
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The offset crack will kink foward the centerline if K; > 0 when ¢/h > 1/2,
and if Kj; < 0 when ¢/h < 1/2. The function ¢ given by (8.4) is odd with
respect to the centerline at ¢/h = 1/2. For a compliant layer (o > 0) with
p = a/4, ¢ is positive when ¢/ha > 1/2, implying by (8.9) that the crack will
kink toward the centerline. By contrast, when the layer is stiff (o« < 0), ¢ is
negative when ¢/k > 1/2 and the crack will kink away from the centerline.
A compliant layer with # = 0 has a small negative ¢ when ¢/A > 1/2 and
would also cause the offset crack to kink away from the centerline. This
particular test of configurational stability requires both o and f be positive.
This same test has been used in Section II1.B.1.b for the double cantilever
beam, and in Section V.C.2.a for substrate spalling driven by residual
tension in the film.

Another insight is provided by the condition for stability of a straight,
mode I crack path to small perturbations derived by Cotterell and Rice
(1980). Their necessary condition for straight cracking is 7 < 0, where T is
the second-order term in the crack tip expansion (2.1). Fleck et al. (1991)
have solved for T for the crack problem of Fig. 74a. For the centerline
crack (¢/h = 1/2) under K| = 0, they give

T=1[0- )/ + )T+ ag + cle, HKTH 2. (8.10)

Here, T is the T-stress for the homogeneous specimen in the absence of the
layer, oy is the residual stress in the layer acting parallel to the centerline,
and ¢y is tabulated by Fleck e al. and presented here in Fig. 77. Residual
compression parallel to the crack plane contributes to stability, as does a
compliant mismatch of the layer relative to the rest of the specimen through
the last term in (8.10). The last term in (8.10) is destablizing when the film
is stiff. Note that the residual stress o has no effect on the existence of a
mode I path in the layer, just on its stability.

When there is significant elastic mismatch, the first term in (8.10) will
usually be insignificant compared to the third term, since T* is typically on
the order of K{°L™'/%, where L is a length characterizing an overall dimen-
sion of the specimen, which is assumed to be large compared to 4. When
this is the case, the T-stress at fracture is

T =og + [0 + )/ — )] K h™V2, (8.11)

where, by (8.6), K|, is the intensity toughness of the layer material. The
requirement 7 < O will always be met for a compliant layer supporting a
compressive (or zero) residual stress. When the residual stress is tensile, the
sign of T depends on which of the preceding terms is larger. Note that the
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1+a1/2
(1-u) CI

Fic. 77. Coefficient ¢; in (8.10).

second term in (8.11), which is always negative for a compliant layer,
increases in magnitude as the layer thickness diminishes.

A number of examples of sandwich systems that have been reported to
exhibit straight in-layer cracking are discussed by Fleck et al. (1991), and
two of these will be remarked on in what follows. To emphasize the
significance of this effect, one can point to the symmetrically loaded,
double cantilever beam specimen, which is notoriously unstable in the
absence of a layer due to the fact that 7% > (. Because of the stabilizing
influence of a thin compliant layer, the specimen can be used successfully to
measure the toughness of a material in a sandwich layer.

D. INTERFACE OR IN-LAYER CRACKING?

Two sets of toughness data taken using sandwich specimens are shown in
Fig. 78. Indicated for each data point is whether the crack propagated along
the interface or within the interior of the layer. Thouless’s (1990b) data, for
a brittle wax layer joining silica glass, is presented as a function of the
applied phase angle of loading ™. Only for ™ = 0 did the crack propagate
within the brittle wax layer. The toughness of the wax was about one half
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Fic. 78. a) Data of Thouless (1990b) for brittle wax layer sandwiched between glass
substrates. b) Data of Wang and Suo (1990) for an epoxy layer between steel substrates.

that of the interface for near-mode-1 fracture. The data of Wang and Suo
(1990) for an epoxy adhesive layer joining two halves of a steel Brazil nut
shows instances of in-layer propagation for |¢|-values as large as about 10°.
Moreover, the epoxy is significantly tougher than the interface at low values
of ¥, and the in-layer path involves substantially higher energy dissipation
and applied load than the interface path. Nevertheless, a number of speci-
mens did exhibit in-layer propagation. This preference for a high energy
path over a low energy path in close proximity highlights the importance of
understanding the mechanics of crack path selection. It remains an open
question as to why a path down the interface was not selected, especially
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since Wang and Suo started their cracks on the interface and observed a
small amount of interface crack growth prior to the crack kinking into the
interior of the layer. Condition (2.65) for kinking out of the interface,
including the influence of the z7-contribution, does not appear to be satisfied.
This is the feature of the behavior that remains to be explained.

Both sandwich systems in Fig. 78 have a highly compliant layer, and both
systems have a tensile residual stress o in the layer. But in each case the second
term in (8.11) is at least twice as large in magnitude as oy (¢f. Fleck et al.,
1991, for complete details). Thus, the mode I specimens have a distinctly
negative 7-stress, and straight cracking within the layer is consistent with the
stability theory. By contrast, the plexiglass/epoxy sandwich system of Fig. 9
has relatively small elastic mismatch and a positive T-stress under mode 1
loading. For this system, the crack always followed one of the two interfaces.

For values of |y™| outside the range of possible trapping of the crack
within the layer (e.g., |w™| greater than 0° to 10°, depending on the
mismatch), the crack will be driven toward one interface or the other—
toward the lower interface if w* > 0 and toward the upper if ™ < 0. If
material #1 is sufficiently tough to resist any attempts for the interface
crack to kink into it, the crack will follow the interface and the test will
generate the interface toughness according to (8.7). This is the case for both
sets of test data presented in Fig. 78, other than those data points mentioned
in the preceding. Various micro-morphologies of interface fracture have
been observed, some of which have been discussed by Evans er al. (1989).
If the interface toughness is low compared with that of both materials #1
and #2, then the crack will tend to follow the interface fairly cleanly. If,
however, the interface toughness is comparable to that of the layer material,
then the interface crack will interact with flaws in the layer adjacent to the
interface, and nucleate microcracks. The effect of the mixed mode loading
is to grow these microcracks back towards the interface. The resulting
fracture surface will be covered with tiny chunks of the layer material.
Additional discussion of the micro-morphology of interface fracture is
given by Chai (1988), Wang and Suo (1990), and by several authors in the
volume on metal-ceramic interfaces (Ruhle et al., 1990).

E. ALTERNATING MorPHOLOGY (Fig. 74¢)

In the alternating mode of cracking of Fig. 74c¢, the crack switches back
and forth between interfaces with a fairly regular interval, which is typically
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several times the layer thickness. The mode has been reported in matrix
layers between plies of a composite when the loading is nominally mode I,
and it has been fully documented for mode I loading of an aluminum/
epoxy/aluminum sandwich specimen by Chai (1987). Chai used a heat
setting epoxy, which gives rise to a relatively high residual tensile stress in
the layer (gg = 60 MPa), which is more than twice the magnitude of the
second term in the 7-stress in (8.11) (c¢f. Fleck ef al., 1991). Thus, Chai’s
system has a strongly positive 7-stress and is not expected to display straight
cracking within the layer.

Akisanya and Fleck (1990) have carried out a quantitative analysis of the
alternating mode of cracking with specific attention to the aluminum/
epoxy system. Central to the phenomenon is the variation in the proportion
of mode 2 to mode 1 of the interface crack as it propagates from the point
where it first joins the interface in any given cycle, i.e., at ¢ = 0 in Fig. 79.
The trends of the variation in w found by Akisanya and Fleck are sketched
in Fig. 79, where y is defined by (2.45) with / = A. When g = 0, w rapidly
approaches the limiting value given by (3.38) with K;; = K] = 0, i.e.,
¥ = w. (For the aluminum/epoxy sandwich, o = 0.93, 8 =0.22, ¢ =
—0.07 and w = —15°.) However, when ag VA/K;" is on the order of unity,
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Fig. 79. Sketch of trends of phase of loading at interface crack tip for various levels of
residual tension oy in the layer. The remote loading is mode I.
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which is the case for the Chai specimen, the interface crack starts with a
large component of mode 2, which then diminishes to the value ¥ = w as
¢/h increases. The large negative mode 2 component forces the crack to
remain in the interface, since it cannot penetrate the aluminum. Only when
¢/h has increased to the point where the magnitude of y is sufficiently low
does kinking down into the layer become possible. With the aid of the
kinking analysis of Section I1.C.5, the value of ¢/h was determined at which
a mode I kink crack is possible. For the aluminum/epoxy system of Chai,
Akisanya and Fleck found that the kinking condition is met when c¢/A
reaches a value of about 2, in agreement with the intervals observed by Chai.

F. TUNNELING CRACKS

An example illustrating the ability of a crack in a brittle adhesive layer to
tunnel through the layer was given in Section II1.A.1, If the layer material
is sufficiently less tough that the interface and the adjoining material,
cracking will be confined to the layer as depicted in Fig. 16. Steady-state
tunneling results are useful because they provide fail-safe limits on stress
levels (or on layer thicknesses) such that extensive cracking can be avoided.
The particular example of Section ITI.A.1 reveals that an initial crack-like
flaw whose greatest dimension is equal to the layer thickness (¢.g., a penny-
shaped crack) will initiate growth at a stress that is only about 10% higher
than the steady-state tunneling stress. For many systems where the flaw size
is on the order of the layer thickness, the tunneling results should provide
realistic upper limits. When the flaw size is much smaller, the stress to
initiate crack growth is much higher than that predicted by the steady-state
tunneling limit, and the transient tunneling process is then highly unstable.

Several steady-state tunneling results for layers are presented in this
section. The results and their potential applications have a close resemblance
to the results for thin-film cracking in Section V.B.

1. Isolated Tunneling Crack

As previously emphasized, the energy released, #G,,, per unit length of
steady-state propagation of a tunneling crack is precisely the energy released
by a plane strain crack extended across the layer. Calculations have been
performed for G, by Ho and Suo (1990) for finite thickness sandwiches, as
specified in the insert in Fig. 80. In Fig. 80, ¢ denotes the uniform tensile
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FiG. 80. Steady-state energy release rate for isolated tunneling crack. The crack extends
from interface to interface, and is propagating in the direction perpendicular to the cross-
section shown.

stress within the central layer prior to introduction of the crack. That stress
may be due to a load applied to the sandwich or it may be a self-equilibrated
residual stress. Curves of the nondimensional G, are shown as a function
of the elastic mismatch parameter o with 8 = «/4 for various values of
layer thickness to total thickness, A/w. As long as the central layer is not too
stiff compared to the adjoining layers, the results for #/w = 0.1 are close to
the limiting case A/w = 0. For example, for o = 0, the normalized G, is
0.788 for A/w = 0.1 and 0.785 for A/w = 0. Observe that a relatively com-
pliant substrate (i.¢., small E, and/or w/k) provides less constraint, inducing
higher driving force. It is likely, for the same reason, that higher driving
force will be induced by crack-induced plasticity in the substrates, by inter-
face debonding, or by any other source of constraint loss. These effects
have been noted in thin film channeling by Hu and Evans (1989).

2. Multiple Tunneling Cracks

The approach to multiple cracking pursued here is identical to that
presented in Section V.B.3 for thin films under residual tension. The reader
is referred to that section for a more complete discussion of the derivations
underlying the results. Here, consideration will be limited to a layer of thick-
ness A sandwiched between two infinitely thick blocks. Elastic mismatch




184 J. W. Huitchinson and Z. Suo

0.2 P Ly i PR | P 1 P
0 0.2 0.4 0.6 0.8 1

h/L

Fic. 81. Steady-state tunneling cracks with uniform spacing, in the absence of elastic
mismatch. The cracks extend from interface to interface.
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Fig. 82. Relation between tunnel crack density and residual stress in the layer in the

absence of elastic mismatch. The curve is obtained from (8.14) with G, = T.
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between the layer and the adjoining blocks is neglected (o« = f = 0). The
stress in the layer in the absence of the cracks is o, which may be due to
applied load or a residual stress.

First, consider an infinite set of cracks periodically spaced a distance L
apart as in Fig. 81. If these cracks are equally extended in the tunneling
direction,

ﬁsﬁ = f(h/L). 8.12)
ag’h
The function f(x), which can be evaluated using results from Tada et al.
(1985), is plotted in Fig. 81. For A/L — 0, f = 0.785 and (8.12) reduces
to (3.1).

Next, consider the situation in Fig. 82 where one set of cracks spaced a
distance 2L apart has already tunneled across the layer, and where a second
set bisecting the first set is in the process of tunneling across the layer. The
steady-state energy release rate for the cracks in the process of tunneling is

EG

7, = & (/L) — fGh/L). (8.13)

Imagine a process in which ¢ is monotonically increased, as in application
of an overall load or stressing due to temperature change with thermal
expansion mismatch. Under the assumption that new cracks will be
nucleated half-way between cracks that have already formed and tunneled,
the preceding equation gives the relation between ¢ and the crack spacing
h/L. With G, identified with the mode I toughness of the layer material
T, (8.13) provides the desired relationship, which is plotted in Fig. 82. The

“threshold corresponds to the lowest stress at which steady-state tunneling
can occur, i.e., for A/L — 0,

olh/(ET)]"* = 1.128. (8.14)

The effect of elastic mismatch on this threshold level can be determined
using the results for the isolated tunneling crack.

3. Lateral Tunneling of a Kinked Crack

Tunneling appears to be a prevalent mode of cracking in layered
materials. When the brittle layer is thin and the flaw size is comparable to
the layer thickness, the cracks can be readily nucleated. A variety of
applications of these ideas can be found in Ho and Suo (1990) and Ye and
Suo (1990). Here, we give one more example to show the versatility.
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4

3D local kink crack lateral spreading of kink
crack by tunneling

—

plane strain problem
for kink crack

Fic. 83. Spread of a local kink by tunneling. Top left: 3-D local kink crack; top right:
lateral spreading of kink crack by tunneling; bottom: plane strain problem for kink crack.

Because it has relevance to the ability of an interface crack to nucleate a
kink into the adjoining layer, we mention in passing application of the
tunneling concept to crack kinking. Suppose the parent interface crack
depicted in Fig. 83 encounters a local, three-dimensional flaw that is capable
of nucleating kinking. Consider the process in which the kinked segment of
crack ‘‘tunnels’’ laterally along the interface crack front. Formally, this
tunneling process can be treated as a steady-state process. The average
energy release rate at the laterally spreading crack front can be evaluated
using the energy released in the plane strain problem, just as in the previous
examples. To simplify the discussion, assume 8 = 0 and n = 0, where # is
given by (2.63). Since the energy release rate for the plane strain problem
for a small kink is independent of kink crack length (¢f. Section II.C.5), it
follows that the average energy release rate for lateral tunneling along the
interface crack front is equal to the plane strain energy release rate.
Consequently, there is no barrier to the lateral spread of a locally nucleated
kink. This observation may help to explain why crack kinking often appears
to occur simultaneously along a more-or-less straight segment of crack front.
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