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A simple constitutive framework is proposed to take account of progressive changes
in astress-based criterion of yielding as plastic deformation accumulates. The analysis
is relevant to a sheet of isotropic or orthotropic material which is subsequently
loaded in its plane by biaxial tensions (0,, 0;) in arbitrary JSixed ratio. Under these
circumstances there is evidence that texture development causes significant changes
in the shapes of successive yield loci in (o,, 0;) space. Here such departures from
geometric similarity are explicitly linked to a presumed dependence on 0,/0, of the
exponent m in a standard power-law representation of the stress-strain characteristic
under each constant value of o0,/0,. The linkage is formulated in detail Jor several
types of representation, and it is shown how a family of yield loci associated with
any conjectural dependence m (0,/0,) can be generated readily by computer graphics.
Some typical examples are given, in particular when m (0,/0,) reflects the distinctive
trends reported for certain kinds of brass and aluminum sheet (e.g., Wagoner, 1980;

Stout and Hecker 1983).

1 Objectives

The context is elastoplastic response of a textured sheet of
polycrystalline material under in-plane biaxial loads. In its as-
received condition the material is assumed to be orthotropic
at a macroscopic level. Uniform tensions in arbitrary fixed
ratios are applied parallel to the orthotropic axes, which hence
remain embedded in the material as it deforms. The aim of
the analysis is a constitutive framework that accommodates
differential hardening due to textural changes accompanying
plastic deformation. The approach is macroscopic and phe-
nomenological only: we attempt no correlation with statistics
at the level of crystal geometries, orientations, slip systems,
or Schmid stresses (e.g., Lequeu and Jonas, 1988; Chan and
Lee, 1990).

2 General Framework
A typical yield locus in the cartesian space of the principal
Cauchy stresses (o;, 02) will be expressed in polar coordinates:
o(r,0)=0 (1)

where (0,00) = 7(cos 6, sin §) as shown in Fig. 1 and 0 < ¢
=< 2x. The function ¢ is here normalized by the current yield
stress ¢ in equibiaxial tension, which means that
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¢(\/§o, 1/47) = o. Regarding the conceptual status of yield
loci, it is recalled that any particular one is the product of a
specific loading path. Moreover, its geometry and scale nec-
essarily reflect the terminal texture generated by the associated
strain history, which is likewise specific for that locus.

In principle, then, if the same terminus in stress space were
to be approached by some other route, the strain history and
final texture would both differ. So therefore would the re-
sulting locus, in greater or lesser degree according to the cir-
cumstances. Since the nature of this latter type of path
dependence has been little explored, we ignore it. In so doing,
we follow custom and idealize the totality of yield loci attain-
able from a given initial state as a non-intersecting and singly
infinite family. Its members are not required to be self-similar,
however, as in classical formulations where function #(r,6)
reduces to r¢(6) simply. On the contrary, progressive changes
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Fig. 1 Typical yield locus in (s,,5,) Space, showing polar coordinates
(,0) and the clockwise angle ¢ between a radius and the local outward
normal
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in shape within a family are of paramount concern: we see
them as inevitable concomitants of textural development dur-
ing deformation.

Henceforward we focus on radial paths since these predom-
inate in experiments on in-plane plastic response. Let v be
conjugate to 7 in that

dw=r7dy at fixed )

where w is the total work expended per unit volume and v is
reckoned from the origin. Generally,

dw=g,de| + 0:de; 3)

in terms of the logarithmic strains (e;,e;) parallel to the or-
thotropic axes, so the work conjugate is identifiable as

v=¢; C0s 6 +¢;sin 0. @
It is noted in passing that
TY = 01€1 + 0267 (5)

Elasticity being neglected, the relation between 7 and ~y can be
regarded as the stress versus plastic strain characteristic in a
test at fixed 8. More suited to our purpose, however, is the
corresponding relation between 7 and w, say
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Fig. 3(a) Family of loci between 1,(6) and r.(6) for case A of Fig. 2; (b)
strain trajectories for radial stress loading with ¢ in the range (0,x/2)
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Fig. 2 The relationship between m(¢) and the outer prescribed locus
7.(6) for n = 0.3 and ¢.lo; = 2. The five outer loci are ellipses specified
in the text. The inner locus is the Mises ellipse.
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Fig. 4(a) Family of loci between 74(6) and .(6) for case E of Fig. 2; (b)
strain lrajectones for radial stress Ioadmg with 6 in the range (9°, =/4)
where ' = tan™' (1/2)

J(7,0)=w. 6)

In particular this is
1
f(ﬁo, 3 7r> =w @)
in equibiaxial tension. Let ¢ be conjugate to o in that

1
dw=ode when 0=Z7r. (8)

Then

e=V2y=e+e=—g )
where ¢y is the through-thickness logarithmic strain (the ma-
terial being incompressible).

We wish to construct a family of yield loci from the radial
test data. For that purpose it is hypothesized that the same
amount of work per unit volume is expended on every ray to
a given locus. Then the family can be parameterized by w just
as well as by ¢. From this standpoint the assemblage (6) of
radial test data (namely 7(w) at any fixed 6) also generates the
individual loci (namely 7(8) at any fixed w). The equivalent
parameterization by o is obtained by combining (6) and (7) as

1
f(7,6) =f<\/50, " w) (10)
which can be reduced to (1). Conversely, when a family of loci

in stress space is given, it is automatically parameterized by
values of ¢ known from intersections with the equibiaxial ray
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0 = #/4. If, in addition, we assign the o(w) characteristic on
0 = w/4, the parameterization (6) is induced from (1), and
hence the test data 7(w) at any fixed 6. Equivalently, o(e) for
6 = w/4 generates 7(vy) for any 6 when the loci are given.

The proposed framework and its complementary aspects are
now explained further by means of particular examples.

3 Particular Frameworks

Analyucal representations of experimental stress-strain data
on radial paths are often sought within a class of so-called
power laws. In the present variables these laws are of type

7(v,8) = k()Y ® (1n

where 0 < m < 1. There is evidence indicating that the scale
factor « and the exponent m depend on the path direction 6
in at least some materials (e.g., Ghosh and Backofen, 1973;
Ghosh, 1978; Wagoner, 1980, 1982; Stout and Hecker, 1983;
Stout and Staudhammer, 1984). In the expectation that these
dependences will be found more widely, both are allowed for
in the formula. The associated increment in work along a radial
path is given variously by
dw=1dy=vydr/m=d(ry)}/(1+ m) (12)
per unit volume, where for brevity the possible dependence on
6 is not shown explicitly.
Empirical representations by power laws, however, are usu-
ally sufficiently accurate only above a certain threshold of

strain. In order to take account of this limitation we replace
(11) by

(7,8) = k(@y™? if and only if k(@™ = 140). (13)

Here, 74(0) is an inner reference locus and is presumed to be

“attained by the expenditure of work wg on a radial path from

the as-received state. The intervening stress-strain behavior is
not represented by this formula, nor is there need of any other.
Instead it is supposed merely that 7o(f) and w, are chosen
empirically in the course of fitting (13) to data over a range
of strain such that v = v,(6), say. Then a formula correspond-
ing to (6) for the work w on radial paths from the origin is

A+m) (w=—wy)/k= (/)T _ (1o/) ™™ (14)
Subsequent loci parameterized by values of w > wq are thus
given by

/7)™ — 1= (1 4+ m) (w— wy) /g0 (15)
Here

To=Kyo but wo# 1¢y0/(1+m) (16)
in general, since (12) does not apply when v < ~4(6). As an
illustration the computations will be simplified by taking
70(6)v0(0) to be constant (which would be the case if, for in-
stance, the loci within 74(f) were geometrically similar to it).

Then the exterior family is generated parametrically by
(/7)™ _11/(1 + m) = constant a7
oneach locus. Another possibility worth considering isuniform
70(0)v0(8)/ [ 1 + m(0) }. The exterior family is now generated by
(7/70)" ™™ = constant (18)

on each locus.
An alternative representation of radial stress-strain data,
more suitable for certain materials, is

7=x(y+n)" (19)

for any range of strain. Here the material constants m, «, and
n(>0) may all depend on 6. In the as-received state the yield
locus is 7 = £(6) where

E=xn". (20)

The initial rate of hardening is dr7/dy = mé&/n, which suggests
that n will usually be less than m in practice. The work on
radial paths from the origin is now such thar
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Fig.5 Yieldloci associated with inner Mises ellipse, 10(6), and variations
of m{#) prescribed by Egs. (39) and (40)
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Fig. 5(b)

(L +myw/ie= (r/k) M7 — (£ /)T 21

where 7 > £. Subsequent loci parameterized by positive values
of w are given by

G/e) T _ 1=+ m)w/Eq 22)

in terms of assigned functions m(6), £(9), and n(8). 1f £(6)n(6)
were constant, for example, then

{(T/E)(l+m)/m_

on each locus, which is formally analogous to (17).

In these examples the differential hardening relative to 74(6)
or £4(0) is governed solely by the dependence of exponent m
on direction 6. It is this alone that determines how the ratios
7(8)/1o(0) and 7(8)/ £(6) vary over each yield locus for any given
value of ¢/0y (the family being now regarded as parameterized
by the equibiaxial tension o). From that standpoint, explicit
formulae for the relative hardening associated with (17) and
(18) are

L 7(8)/7(0) ) I+ i Eim 6

=1+[ li"()l{(

11/(1 +m) =constant (23)

o)1), (24)

£ NI EA HLINIE 40N

{ 7(0)/70(0) ]n/(l +n) _ (o/o,o)m(e)/[] +m(8)] (25)

respectively, where n = m(1/47) and 2 o =.719(1/47). Sim-
ilarly a replacement of (23) is available in terms of » and
E(mw/4).

If loci generated in this fashion are always to be convex,
regardless of the nature and degree of the textural changes, .
then admissible variations of m with 8 must be Constrained
rather narrowly. The needed restrictions are not easily for-
mulated, however, and so the overall outcome of any a priori
selection of m(f) tends to be unpredictable, even over quite
modest ranges of ¢/0¢. At an early stage in the investigation
this caused us to adopt an alternative strategy. Instead of m(6)
an outer locus, 7.(6) say, was chosen together with the inner
one, 74(6). When both are convex, so are all loci in the annulus
between them (but not necessarily elsewhere). The function
m(6) is then determined by solving an equatjon such as (24)
or (25) with n given and 7() equal to 7.(6) (correspondingly
o equal to 0.). As to the status of an outer curve, it could be
an empirical limit to representation by a power law; or it could
be a conjectural cut-off associated with saturation hardening;
or it could merely be an unexceptional locus marking an ar-
bitrary limit to the computations.

4 Strain Paths Under Prescribed Loadings

The classical normality rule is adopted as the basis for cal-
culating cumulative strains (¢,,¢;) along any path in (¢,,07)
space. The direction of an outward normal to any yield locus
is specified by its clockwise orientation ¢ to the local radius
vector, as in Fig. 1. This angle is obtainable conveniently from

tan = dr/7df (26)

evaluated at fixed o in (1) or at fixed w in (6), whichever is
the preferred parameterization. The anticlockwise orientation
of a normal to the ¢, coordinate axis is calculable as 8 — i,
and then the incremental components of strain as

de,  deg ode

cos(@~y) sin(@—y) o, cos(@—y)+ o, sin(d— )
having regard to (3) and (8). This pair of relations can be
integrated straightforwardly along any path segment traversing
a considered family. The only test data involved directly is that
for equibiaxial tension, namely e(s) or w(o); the rest is ac-

counted for already in the particular geometry.
Various aspects of the general correspondence between paths
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Fig. 6 Yield loci associated with inner Mises ellipse, 70(0), and a m(f)
satisfying (41) and reflecting trends reported by Stout and Hecker for
brass

of stress and strain with arbitrary differential hardening have
been treated by Hill (1991). Here we are concerned solely with
the deformations that accompany stress paths at constant 6.
Then (27) simplifies to

dey/cos(6 — ) = dey/sin(0 — ) =dy/cos (28)

after the substitutions (gy,6,) = 7(cos 6,sin 8) and dy
= (0/7)de. In a case such as (13), the integration starts from
a reference locus where vo(6) is known empirically as part of
the global representation of radial test data.

The angle y varies along a ray in stress space unless successive
loci happen to be self-similar. Consequently the associated path
in strain space is generally curved. The precise dependence of
its curvature on the local geometry and current stress can be
seen in Hill (1991, Eq. (4.17)). Typical paths will be exhibited
later for values of 6 in (0, 7/2). At this stage we make only a
qualitative observation. It is that a strain path may eventually
bend so far as to become parallel, momentarily, to one or other
orthotropic axis. That is,

1
de, =0 when \//=0—5ﬂ’; orde;=0 when ¢=6. (29)
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(Vi )

In the presence of differential hardening, therefore, an incre-
ment of strain can be plane even when both components of
the accurnulated strain are positive. As remarked by Hill (1991,
pp. 295 and 303), this offers a natural way to account for at
least some of the failures by localized necking which often
terminate strain paths in the positive quadrants of forming

" limit diagrams.

Finally we record an elementary formula for future refer-
ence. The total differential of 7 is expressible as

dr/T=tan ydf+pdo/o (30)

when a family of loci is parameterized by o. The coefficient
p here was introduced by Hill (1991) as a convenient measure
of the local departure from geometric similarity. It is defined
by

p=(od7)/(7do) 31
where dr and ~/2 do here are specifically the radial distance
between a pair of neighboring loci in the directions 6 and
w/4, respectively; correspondingly dr/r and do/o are the pro-
portionate increases in the radii. As an example

mia (l+n)/n r (1+m)/m
=5 6
n \gy Ty

for the family (24). Along a reference locus, in particular, p
is equal to m/n simply; this can be compared with (1 + n)m/
(1 + m)n for the family (25).

5 Implementation and Examples

Two procedures for generating families of nonsimilar yield
loci were proposed in Section 3. Their implementation is now
illustrated in detail by examples for the power law (13). The
method would be similar for the alternative law (19) and is
readily extended to any other type of hardening.

Procedure (i). Inner and outer loci, 7¢(f) and 7..(8), are
specified together with a value of the exponent » for equibiaxial
tension. The exponents m(#) for loading along any other ray
are then calculated by substituting 7.(f) for 7 in (24). 1t is
reiterated that this equation is dependent on the hypothesis
that converts (15) to (17). Intermediate loci can now be gen-
erated at will from (24) as it stands. Preciselv the same steps
could be followed in relation to (25) when the hypothesis lead-
ing to (18) is more appropriate.

JUNE 1952, Vol. 59 1 85
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2 N \ \‘ ‘ | \ /; I | 4 in Fig. 3(a) for case A and in Fig. 4(a) for case E. The as-
3 \ ] i | / | | ,J | sociated strain paths under various radial loadings are shown
L / | / / / I i in Fig. 3(b) and Fig. 4(b), respectively. They were computed
L / /// ///// / J with (13) rewritten as
. e i L
% : - E 7(6) = 7o) {1(0)/7o(0)} ™", ¥(8) = 7o(6)- 3%
/T Here v4(6) is defined in relation to 7¢(f) by
Fig. (0 70(8)0(8) = doto (36)
Fig. 7 An example of m(f) which results in non-convex loci. This was .
onge of the iterative variations used in arriving at Fig. 6. as explamed before, where
0= oy(e/eg)” 37

Procedure (ii). An inner locus 7o(6) is specified together
with a predetermined function m(#) in (0, #/2). This includes
the value of n at § = =/4. Exterior loci 7(f) through any
designated values of g/gy can be generated directly from (24)
or (25) according to choice.

Procedure (i) will be illustrated by taking the inner and outer
loci to be ellipses in (g,,0-) space. In terms of the standard
parameters F, G, H (e.g., Hill, 1990) their equations are

(G+ H)oj—2Hag0-+ (F+ H)oi=1, (33)

where ﬁthe values of F, G, and H are subject to F + G
1/ > Oand FG + GH + HF > 0. Correspondingly

7(8) = (G + H)cos*8— 2H sin 6 cos §
+ (F+ H)sin’6] ' .

(34)

Suppose, for instance, that the as-received state is characterized
by in-plane isotropy (alternatively called normal anisotropy).
This necessarily also characterizes the idealized single infinitv
of loci associated with radial loadings. Therefore F = G for
both ellipses: for simplicity we further set F = H on the inner

S8/ Vol. 59. JUNE 1992

under equibiaxial tension. The strain components are com-
puted incrementally by means of (26) and (28). Starting values
at the inner locus are assumed to have developed proportionally
and are hence given by (28) with ¢, e; and «,(6) in place of
dey, dea, and dvy. On the inner Mises ellipse the values of 7 and
Y are given by

76(0) = go(1 — sin 8 cos §) 72,

tan \00:% cos 26/(1 ~sin 6 cos 8). (38)
The strain paths for case A in Fig. 3(b) correspond to loadings
along radial rays in (0, w/2) at equal intervals, whereas those
for case E in Fig. 4(b) correspond to rays in (8", 7/4) at equal
intervals where tan §* = 1/2 (i.e., de> = 0 initially). Note that
all paths are curved except under equibiaxial tension. Moreover
they bend to an extent such that the criterion (29) for incre-
mental plane strain is eventually met (namely at stages indicated
by the solid dots).

Toillustrate procedure (ii) we again assume in-plane isotropy
and take a Mises ellipse as the inner locus 7y(d). Consistent
with symmetry about 6§ = 7/4 and with periodicity = in 6, we
chose
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and consider three cases A, B, C (Fig. 5(¢)) in which the
constants mg, m,, m, are disposed so that

m(0) = my+ mcos {2 <0'—

A: m(0)=0.55, m(8")=0.50; m(i 7r) =0.45;

1
B: m(0)=0.45, m(6%)=10.40, m(z 7r> =0.35;p. (40

. 1
C: m(0)=0.35, m(6")=0.30, m(z w) =0.25.

Here, tan §* = 1/2 as before. These choices reflect qualitative
trends in the hardening exponents for an aluminum alloy in-
vestigated by Wagoner (1980, p. 170); this material was con-
firmed to retain in-plane isotropy up to strains of order 0.2.

3 T T T T T T T 7 T 7 T T

The subsequent loci computed by (24) are shown in Fig. 5(b).
Probably by chance, some of these are broadly similar in shape
to ones constructed by Wagoner (1980, Fig. 8) from an entirely
different standpoint. In particular, he predetermined their ge-
ometry to conform with the simplest version of Hill’s (1979)
general yield function. Further, a parameter in this version
was varied with strain so that each curve passed through two
points determined by experiment: namely a uniaxial yield

"stress’and dnother inferred from a test in quasi-plane strain

(the pair being associated by equal expenditure of work). The
respective approaches thus have little or nothing in common,
so we have not troubled to simulate another characteristic of
this particular aluminum.' We are in fact primarily concerned
here (and to understand in general terms) how the change in
shape of successive loci depends on the magnitude and type
of fluctuations in the function m(6).

The next example of procedure (ii) was motivated by non-
uniformity of the hardening exponent in 70/30 brass as re-
ported by Stout and Hecker (1983). Because of various
uncertainties we aim only at qualitative simulation and ac-
cordingly impose the constraints

m(0)=0.55, m(8*)=0.48, m(i 7r>=0.55. 41

With a Mises inner locus and the representation (39) we found
that the resulting yield loci began to develop concavities when
a/0, exceeded 1.5 or so (plots not shown). This phenomenon
was still encountered when two more terms with disposable
coefficients were added to (39). A different type of represen-
tation was therefore tried: values of m were specified at seven
points within the interval (0, w/4), including those in (41)

(-]
N 7 enforcing symmetry about § = =/4. Interpolation was by cubic
@ i e g 2 SIS .
splines. By iterating the disposable values we eventually
T achieved convexity with m(6) in Fig. 6(a). Some members of
7 the associated family are depicted in Fig. 6(b). For comparison,
T a typical m(6#) at an intermediate stage of the iteration is given
b in Fig. 7(a). It is seen from Fig. 7(») that a slight concavity
: has developed in some associated loci. A relatively small var-
L | iation in m(#) was enough to produce this effect. We are in-
. clined to believe that the a priori values stipulated in (41) are
%o
Fig. 8(a) 'The strain ratio under uniaxial tension did not vary; here this would entail
constant ¥ and m'(6) = 0 when 6 = 0 and #/2.
'5I(Ill\llFI\I\lllIIII‘II!I‘III[‘IIIIIT]’IY
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Fig.8 Anexample with in-plane orthotropy. The inner locus in an ellipse
with G = H and F/G = 2i3 and the outer locus is an ellipse with G =
Hand F/G = 113; n = 0.3 and o./oq = 2.
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on the edge of possibilities consistent with convexity over the
range 1 < o/6y < 2. For instance we could not achieve this
with any function m(8) whatsoever when its value at §* was
set at 0.45 without changing the others in (41).

In the preceding examples the material was considered to be
isotropic in the plane of symmetry; correspondingly its yield
function was written as ¢(7,0), a symmetric function of ¢, and
o, alone. lsotropy was not invoked in full, however, as the
biaxial stresses weré not oriented arbitrarily within the material
but always in the same two directions. In that context the
material could alternatively be considered to be one with a
special kind of orthotropy. To express this formally, let the
yield function be written as ®(7,0,«) where « is the arbitrary
angle which o, and ¢; make with the respective axes of ortho-
tropy. For our purpose the precise dependence on « can be
left open; some possibilities have been formulated by Hill
(1990). Here we require the function @ to be special only in
that ®(7,6,0) is identified with ¢(7,8) and is hence likewise
symmetri¢ with respect to interchange of ¢; and o, (equivalent
to replacement of § by /2 — 6). Even though the loci change
shape with deformation, this symmetry persists because they
are generated as an idealized single infinity from the data in
tests where o, and ¢, are maintained in fixed ratio.
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In our next example there is no symmetry of that kind and
&(7,0) # ¢(r, /2 — 6) in the as-recéived state. Such 4 function
is incompatible with isotropy and can only be associated with
orthotropy in the general sense. Procedure (i) will be adopted
in connection with inner and outer ellipses in the family (33)
with F # G. Correspondingly an outward normal is inclined
to the local radius at a clockwise angle ¥ given by

tan = (H+ (G~ F)tan § — H tan’d)4((Ge H) .
—2H tan 8+ (F+H)tan* 6] (42)

from (26). We choose G = H on both ellipses, which has the
effect that o, = ¢ when o, = 0 (0 denotes the yield stress in
equibiaxial tension). Moreover tan ¥ = 1/2 on both when 8
= 0, regardless of the value of F/H. There are further con-
sequences under the assumptions (17) and (24). Thus m(9) =
n on any ray where 7,(6)/74() = 0/ap; this happens when 6
= 7/2if G = H. Also m’(8) = 0 on any ray that meets both
ellipses at the same angle; it is easy to verify from (17) and
(26) that the ray necessarily meets all intervening loci at a
constant angle. By (42) there are two such rays (conjugate with
respect to each ellipse), namely § = 0 deg where ¢; = 0 and
Y = tan ' 1/2 = 26.565 deg, and # = tan™! 2 = 63.435 deg
where ¢; = 20; and = —tan~' 1/2. Both values of y are
unaffected by the ratio F/G when G = H. Furthermore the
incremental strain is plane (dey, = 0) on the latter ray, and so
the associated strain path is linear (¢; = 0). All these features
are seen in Fig. 8(a), (&) which show m(6) and the family of
loci when n = 0.3 and F/G is chosen to be 2/3 on the inner
ellipse and 1/3 on the outer one through ¢./0¢ = 1 and 2,
respectively. Their major axes are inclined to the g, axis at
angles 49.7 deg and 54.2 deg, respectively. Representative strain
paths are shown in Fig. 9(a) for rays.equally spaced between
6 = 0and n/2, and in Fig. 9(b) for rays equally spaced between
6 = 8" and =/4, where now 8 = 30.7 deg at the point where '
de; = 0 on the inner ellipse. Points where the incremental
strain is plane are indicated by solid dots.

We conclude with some practical observations regarding the
computing technique. With procedure (i) any convex curves
could be considered for 7¢(f) and 7..(6) (and not just ellipses).
Values of these functions can be prescribed on selected rays
and then interpolated by splines or an appropriate alternative.
The values of m can likewise be computed on arbitrarily se-
lected rays; we chose to space these equally but as closely as
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€, /€,

Fig. 9(b}

Fig. 9 Strain trajectories under radial stress loading for the family of

loci shown in Fig. 8

S8/ Vol. 59, JUNE 1992

Transactions of the ASME




required. In procedure (ii),. m(8) has to be prescribed in ad-
vance; we used either qubic splines or formula (39) to represent
this function. The former was found very effective when check-
ing convexity, as interpolation could be based on relatively
few values of m. In both procedures the angle y has to be
determined by computing m’(6). Several methods could be
adopted, depending on how m{(#) is represented; for conven-
ience we always used -the.simplest .approximation: namely
{m@ + 8 — m(@ — 8))/28.

6 Closing Remarks

The preceding analysis is concerned with the plastic response
of isotropic or orthotropic sheet under biaxial loading, more
especially when the shape of successive yield loci varies. This
is an expected consequence of changes in crystalline texture
during continued deformation. As often remarked in regard
to the normality flow rule, relatively small variations in shape
can significantly affect the cumulative strains associated with
a given stress path. On that account among others, experi-
mental determinations of successive loci over a finite range of
strain are a prerequisite for any useful theory. Such tests are
technically demanding, and the area to be explored is extensive,
With this in mind, we have devised a simple analytical frame-
work in the hope that it may contribute to the design of future
tests and sharpen the perceived objectives.

Aside from admitting families of nonsimilar yield loci, the
constitutive basis is broadly classical. For the present we see
no advantage in relaxing any other element in that description.
We have, in particular, retained the customary fiction that the
totality of potential loci is singly infinite, nonintersecting, and

parameterized by the work expended. The idealization is plainly

unrealistic in detail, for instance by virtue of the path de-
pendence mentioned at the outset.

It must be regarded, therefore, as a pragmatic expedient
until such time as it can be confronted by quantifiable data.
Meantime some minor improvements are feasible and should
be considered. Representation of radial tests by the
power law (13) is not obligatory, and it is conceivable that (19)
would be more apt for some materials in their as-received
states. More generally, contours 1(8,w,), 1(6,w,), ... of equal

Journal of Aobnlied Mechanics

work at discrete values of w could just as easily be constructed,
from any kind of representation r(w,8,), 7(w,0;), ... of the
radial test characteristics at discrete values of §. A basic ques-
tion remains: to what extent, and in what circumstances, is it
realistic for contours of equal work to act as yield loci in the
limited sense of determining normals for the classical flow
rule?
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