J. Am. Ceram. Soc., 76 | 3] 72936 (1993)

Journal

Results are presented for the cracking to be expected when
a sudden temperature increase is applied over a localized
region on a surface of a brittle solid. A localized tempera-
ture increase is applied to the surface of a body whose inte-
rior is initially at uniform temperature. A three-part
analysis is conducted: (i) for the evolving temperature dis-
tribution, (ii) for the evolving thermal stresses induced by
the nonuniform temperature field, and (iii) for stress inten-
sity factors of cracks oriented cither parallel to or perpen-
dicular to the surface and initiated at times when the
stresses are critical. Plane-strain and axisymmetric versions
of the problems are considered. For the plane-strain prob-
lem, the complete trajectory of the crack is determined
under the assumption that its tip advances maintaining a
pure mode I field at all times. Conditions for excluding
cracking due to localized hot shock are given.

I. Introduction

HE problem addressed is the susceptibility to cracking of a

brittle solid subject to localized heating at a spot on its sur-
face. An example of current concern is spalling due to hot
shock in the coating process of ceramic fibers where molten
droplets of coating material impinge the fiber, as discussed by
Backman.' Figure | shows the hot shock damage on sapphire
fiber which has been coated by a titanium matrix material
deposited as molten droplets. The matrix material was subse-
quently removed, revealing the spall damage. Another example
is when the localized heating of a surface of a brittle material
irradiated by a laser beam produces a hemispherically shaped
spall chip. Generally speaking, localized heating of a surface
induces compressive stresses parallel to the surface near the
surface, and thus it is not intuitively apparent how cracking
occurs in hot shock. By investigating the stresses induced in a
semi-infinite half-space subject to a suddenly imposed localized
temperature increase, one finds that tensile stresses do occur in
regions below the surface and in some cases even at the surface
outside the heated region. In this paper, both one-dimensional
and axisymmetric temperature increase distributions are con-
sidered, as depicted in Fig. 2. These are suddenly imposed and
subsequently held constant. The resulting temperature distribu-
tions are obtained as a function of time, as are the stresses
induced by the nonuniform thermal expansion. The time and
place where a particular component of stress reaches its maxi-
mum tensile value are identified, and cracking initiated at this
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critical time is analyzed in some detail. This study does not deal
with the coupled problem wherein a splat in contact with the
substrate transfers its heat and consequently undergoes a
change in temperature itself. The purpose of this paper is to
gain insight into how cracking can arise in the simplest
instances of localized hot shock. Subsequent work accounting
for coupling and other effects, such as spalling due to bonding
and subsequent cooling of the splat, will be necessary to refine
the quantitative predictions arrived at here.

As a model to gain insight into the fiber spalling problem,
Russell” has analyzed the effect of the sudden imposition of a
uniform temperature increase AT, on the surface of a cylindrical
body of radius R, i.e., the problem of an infinite solid cylinder
suddenly thrust into a hot bath. Material at the surface of the
cylinder experiences compressive stresses parallel to the sur-
face, but the interior region near the axis of symmetry develops
tensile stresses. The axial component of stress at the axis attains
the largest tensile value, which is given by

(v = 0.3)

o.(1 — v)/(aEAT)) = 0.47

(M

Fig. 1. Hot shock damage on a sapphire fiber (photograph supplied
by E. S. Russell of GE Corp.).
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Fig. 2. Surface temperature distributions considered in this paper
which are suddenly applied and subsequently held constant.
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where E is Young’s modulus, v is Poisson’s ratio, and « is the
cocfficient of thermal expansion. This value occurs after a time
lapse from the imposition of A7, of

t = 0.075R*D (2)

where D is the thermal diffusivity (D = k/(pc,), where k is the
thermal conductivity, p is the mass density, and ¢, is the specific
heat). Thus, if a critical stress o, for initiating a crack is
invoked, the model predicts that no crack will be initiated if

AT, < 2.13(1 — v)o/(aE) 3)

Russell? also considers the influence of barriers to perfect ther-
mal conductivity at the fiber surface and their role in lowering
the peak tensile stress.

II. Hot Shock in Plane Strain

An infinite half-space lying below the x-axis has uniform E,
v, a, and D. At ¢ = 0 it has a uniform temperature, and at that
instant a temperature increase

AT = ATye™™  (ony = 0) @)

is suddenly imposed on the traction-free upper surface and is
subsequently maintained for all time. As sketched in Fig. 2(a),
\ is the approximate half-width of the localized hot spot. A
three-part problem is solved: (i) the temperature distribution in
the half-space for ¢+ > 0, (ii) the stress distribution in the half-
space for ¢ >> 0 which is induced by the nonuniform temperature
field, and (iii) two cracking problems associated with cracks
initiated at flaws located at the points where the maximum ten-
sile stress components occur.

(1) Temperature Distribution

The change of temperature in the interior of the half-space,
AT(x,y,1), satisfies
AT
VAAT) = D' — (5)
at
subject to the initial conditions and Eq. (4) along with the con-
dition that AT — 0 as x> + y* — . This is a classical problem
which can be solved with the aid of transform methods. The
solution is

N[ e
AT(x, 1) = ATy - fm[(x —) + yz]
—_ 2 + 2
exp[—(x—;—D)l—X']d'ﬂ (6)

(2) Stress Distribution

Under the assumption of plane strain conditions, the Airy
stress function ®(x,y) at a given instant ¢ satisfies

VD = —[Ea/(1 — w)]VHAT) 7

where the in-plane stress components are given by g, = ®,,
g, = ®,, and g,, = — @, This equation is supplemented by
traction-free conditions on y = 0, along with the requirement
that the stresses vanish far from the hot spot. This problem, or
others similar to it, have also appeared in the literature,’* and
neither the solution details nor the solution itself will be pre-
sented here. Closed-form expressions for the stress components
O,p(x,y¢) are obtained which involve double integration over
the half-space. These integrals are evaluated numerically to
obtain the stress at any point at any time,

Plots of the two normal components directly beneath the cen-
ter of the hot spot on x = 0 are shown in Fig. 3 for various val-
ues of the nondimensional time variable, tD/A?. The maximum
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tensile value of a,,(0,y,¢) is given by the following and occurs at
the position and time given by
(I — vk
aFEAT,

l*

D
3T 0.023
(8)

The maximum tensile value of ¢,,(0,y,¢) and associated location
and time are given by

y*
= 0.0951 Y= —0.505

(1 ~ v)oi y* *D
A Ak 1 e = — — =
«EAT, 0.0438 " 1.23 % 0.098

®

A feature of the plane-strain hot-shock problem which follows
immediately from Eq. (7) is that the in-plane stresses approach
zero as the temperature distribution approaches steady state
(i.e., as V(AT) — 0 as ¢t — ). This trend is reflected in the
plots of Fig. 3.

(3) Crack Trajectories and Stress Intensity Factors

At the time r*, corresponding to either Eq. (8) or Eq. (9), a
very short crack of length a, + a, is introduced at the point
(0,y*) where the maximum tensile stress occurs. For Eq. (8),
the initiating crack is taken parallel to the y-axis, while for Eq.
(9) it is taken parallel to the x-axis. Given the stress distribution
at fixed time t*, the crack trajectory is determined under the
condition that the advancing tip is always in a state of pure
mode I.

First, consider a crack initiated parallel to the y-axis at (0,y*)
with the stress distribution associated with r*, as pictured in the
insert of Fig. 4(a). Symmetry dictates that a crack extending
along the y-axis will have mode I conditions at its crack tip. For
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Fig. 3. Stress distributions directly below the hottest point on the
surface for the plane strain problem.
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a sufficiently small crack length compared to y*, the mode I
intensity factor at each tip is given by

K, = o¥/mla, + ay)/2 (10)

Plots of K| at the top and bottom crack tips are given in Fig. 4.
The solution method for determining K is discussed in the
Appendix. The stress intensity factor of the upper tip increases
as the crack length initially increases but then goes to zero as
the tip approaches the free surface, advancing into the region
where o, is compressive. As the lower tip dives deeper into the
half-space, the stress intensity factor also decreases after first
increasing. Given the toughness of the material, K., one can
determine arrest lengths, 4, and «,, from the information in Fig.
4. If o, is the critical stress associated with some initial flaw
size, then, by Eq. (8), cracks parallel to the y-axis will not be
initiated if

AT, < 10.5(1 — v)a/(aF) (11

Now, consider cracks initiated parallel to the x-axis at (0,y¥)
at time * given by Eq. (9). A very short crack extending from
{—a,y*) to {a,y*) will be in mode I at each tip with

K, = o \[ma (12)

If it were to extend as a straight crack, it would develop a mode
I stress intensity factor in addition to mode 1. Curved trajector-
ies for the crack extending symmetrically about its midpoint
have been computed under the criterion that pure mode I condi-
tions exist at all times at its tips. The calculations are therefore
for a crack of increasing length (with symmetry enforced with
respect to x = 0) advancing with a curved trajectory deter-
mined incrementally such that K;; = 0 is always in effect. The
calculation, which is dicussed further in the Appendix, is
started with a very short, straight crack. The stresses in the

1

K1
Oxxy/2lay+a2
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Oxxy V2laysasy)
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(b)

Fig. 4. Stress intensity factor in plane-strain problem for (a) upper
tip and (b) lower tip. In each figure o is given by Eq. (8) and d =
—y* = 0.505\.
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uncracked half-space as determined in Section II(2) is
0,(x, 3 %), and this distribution is used in carrying out the cal-
culations for the subsequent development of the cracks. Calcu-
lations of crack trajectories based on the criterion of pure mode
I growth have been carried out in other contexts by Wawrzynek
and Ingraffea,” Swenson and Kaushik,® Fleck,” and Freund and
Kim.*

Three crack trajectories are shown in Fig. 5(a). The curve
labeled A is initiated at (0,y*), and those labeled B and C are
initiated above and below (0,y*), respectively, as can be seen
from where each trajectory crosses the y-axis. There clearly is
a tendency for the cracks to seck out a depth roughly equal to
y* = — .23\ and then propagate parallel to the interface. The
mode I stress intensity factor is shown with different normaliza-
tions in Figs. 5(b) and 5(c), where it is plotted against the hori-
zontal coordinate of the right tip and not against the half-length
of the curved trajectory. From Fig. 5(b) it is noted that the result
(Eq. (12)) for the short crack remains a good approximation for
cracks with half-widths up to A or larger. From Fig. 5(c), it is
seen that the peak value of K, occurs at a half-width of about
1.4\ with

K, = ot \/m\ = 0.078aEAT,\/N(1 — v) (13)

For crack half-widths greater than 1.4\, K, falls slowly and has
decreased only to about one-half of the peak value for a half-
width of S5h. Thus, the plane-strain model suggests that fairly
extensive subsurface cracking, more or less parallel to the free
surface, is possible if the temperature is high enough to initiate
growth. With o, as the critical stress for initiation, Eq. (9)
implies that these cracks will not be initiated if

AT, < 22.8(1 = vioJ(aFE) (14)

Alternatively, since the peak value of K| is given by Eq. (13),
no crack parallel to the free surface, irrespective of size, can
propagate if (K)pu < K, Or, equivalently,

AT, < 12.9(1 — VK J(aE YN (15)

II. Axisymmetric Hot Shock

The axisymmetric problem shown in Fig. 2(b) has somewhat
different boundary conditions than the plane-strain problem
just considered. The half-space has uniform temperature prior
to the sudden imposition of an axisymmetric temperature
increase, AT(r,0,t) = ATy, for t = 0 on the free surface for r <
R. For r > R, the free surface is taken to be perfectly insulated
with d(AT)/dz = Oon z = 0. The three-part problem solved for
the two-dimensional model is solved here. In the axisymmetric
problem, however, a finite element method is used to solve each
of the three parts. Discussion of some of the details of the com-
putational procedures is given in the Appendix.

(1) Temperature Distribution

Contours of constant temperature at three times within the
range of interest are shown in Fig. 6. These contours display the
progression of the heated region as it expands downward into
the half-space. The three times are ¢t = g, t = 24, and ¢ = 4,
where #, = 0.016R¥D.

(2) Stress Distribution
Contours of constant values of the two stress components,
o4 and o, are shown in Figs. 7 and 8, respectively, at the same
three times. The maximum tensile value of o, the location on
the axis of symmetry where it occurs, and the time it is attained
are
(1 = vio z* t*D

(XEATO = 0.085 F = —0.46 _Ez_ = (0.016
(16)

These calculations were carried out using the value of Poisson’s
ratio, v = 0.23, and the quantities shown do have some depen-
dence on v. Nevertheless, the above combination including the
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Fig. 5.

factor (I — v) does capture the approximate v-dependence.
This was established by repeating a few selected calculations
with other values of v. The circumferential component of stress
also attains tensile values at the surface of the half-space out-
side the circular heated region, as can be seen in Fig. 7. The
maximum tensile value of the circumferential stress at the sur-
face, its position, and time of occurrence are approximately

a - vied
(XEATO

— V)ogh o D
= 0.035 R 1.63 = 0.064
(1
The maximum tensile value of @, occurs along the axis of sym-
metry, and its value, position, and time of occurrence are

-1.00 -086
01104 0.00 0104 0.00 0.85
0.08 0.08 »
Yse__0 4
AT,
ExaTs Oe -0.04
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|
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(a) Mode I crack trajectories in the plane-strain problem. (b) and (¢) Normalized stress intensity factor for crack in (a).

z* *D
7= —-0.95 —=0.064

R
(18)

(I -~ v)o*

«EAT, = 0.070

The similarities between the tensile stresses in the axisym-
metric and plane-strain problems are striking as can be seen by
comparing Eq. (16) with (8) and Eq. (18) with (9). Of course,
Eq. (17) has no analogue in plane strain. The maximum tensile
stresses which occur in Jocalized hot shock are about one order
of magnitude smaller than the maximum compressive stress
induced at the surface, which is «EAT/(1 — v). In the axisym-
metric problem, the peak tensile value of oy, is slightly larger
than the peak value of o, and is attained earlier. Both the radial
cracks aligned perpendicular to the surface and the spalling

(c)

Fig. 6. Temperature distributions for the axisymmetric problem at (a) t = 1, = 0.016R*D, (b) t = 21, and (¢} t = 44,.
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Fig. 7. Distributions of ¢, in the axisymmetric problem at (a) = ¢,, (b) t = 2¢,, and (c) ¢t = 4¢,,.
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cracks aligned parallel to the surface can be produced by local-
ized axisymmetric hot shock, although the radial cracks may be
more prevalent than the spalling cracks for the reasons just
mentioned. Both are most likely to be nucleated below the hot
spot by subsurface flaws. The distribution of the circumferen-
tial stress is such that we can conjecture that a radial crack
nucleated below the hot spot would arrest in the form of a cres-
cent, which, if it reached the surface, would intersect the sur-
face as a relatively short segment of radial crack lying just
outside the perimeter of the hot spot.

A spalling crack nucleated parallel to the surface in the vicin-
ity of the peak tensile value of o, will spread outward as a pen-
ny-shaped crack, curving in response to the nonuniform stress
distribution, No attempt has been made to compute the surface
trajectories of pure mode I advance for the axisymmetric prob-
lem. Instead, calculations have been performed to determine
the energy release rate and the mode I and mode 1I intensity fac-
tors for flat penny-shaped cracks spreading from small cracks
centered at the axis of symmetry at a selection of depths and
times. As in the plane-strain problem, it is found that cracks
spreading from the point of maximum tensile stress will tend to
spread more or less in a plane parallel to the surface.

(3) Stress Intensity Factors for Penny-Shaped Cracks
Parallel to the Surface

Let o% be the maximum tensile stress given by Eq. (18) at
time 7*. A sufficiently small penny-shaped crack of radius a,
aligned parallel to the surface and located on the axis at z = z*,
will be in mode I with

2
K=o = 0.079aEAT,\/a/(1 — v) (19)
The energy release rate is given by
1 — v)K3 1+
G = (vE"—)K' - 0.0063(1 s :)(aATn)ZEa (20)

(b)

Distributions of ¢, in the axisymmetric problem at (a) 1 = ¢,, (b) t = 2¢,, and (c) t = 44,.

This result, which represents the maximum possible energy
release rate for very short cracks, is shown in Fig. 9.

As the radius of the flat penny-shaped crack extends away
from the axis, a mode Il component of stress intensity will
develop. Calculations have been carried out for a number of
cases for flat penny-shaped cracks centered at various points
along the axis of symmetry and subject to the stress field
existing in the half-space at various times. Curves for the
energy release rate,

G = a- )(K2 + K% @n
normalized by [(l + v)/(1 — v))ER(aAT,)?, as a function of a/R
are shown in Fig. 9. The curves are labeled by the depth, 4,
below the surface where the crack lies and the nondimensional
time characterizing the stress distribution. The results in Fig. 9
were calculated with v = 0.23, but several calculations

75510 -
to d/R = 0.4
aﬁ%ﬁ(m y o O/R = 06
5x10” / Lo, &/R = 0.8
Eq(ZO) ,/ ' o 9/R= 08

Fig. 9. Normalized energy release rate for penny-shaped cracks ori-
ented parallel to the surface at a depth d below the surface and advanc-
ing into the stress distribution of the uncracked body associated with
the times indicated.
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repeated with v = 0.4 suggest that the normalization captures
the Poisson’s ratio dependence to a very good approximation. It
can be noted from the results in Fig. 9 that the short crack limit
(Eq. (20)) provides an excellent approximation for cracks with
radii as large as the radius R of the heated spot. The companion
curves giving the relative amount of mode II to mode I are plot-
ted in Fig. 9, where the measure of mode mixity is taken as

¥ = tan”'(Ky/K)) (22)

Over the range of a/R for which calculations have been made,
the mode 11 component of the stress intensity is relatively small
compared to the mode I component. The general trend noted
with respect to the trajectories in the plane-strain problem can
be expected for the axisymmetric problem. Namely, when the
crack is initiated at a depth which places it above the maximum
of a,, on the axis, it will head downward but then begin to head
upward again after it has reached a radius on the order of R. The
present calculations do not allow one to conclude that the
cracks will more or less parallel the surface at radii well in
excess of R, as is the case in the plane-strain problem, but over
the range of a/R considered there is no suggestion of any strong
tendency for the crack to curve upward.
The maximum value of G over all the cases considered is

1+
G = 0.0063 (i—:)(aATO)ZER 23)

occurring for the case t = #, with a crack depth of d = 0.4R at
a crack radius of @ = R. From Fig. 10 it is seen that the crack is
nearly mode [ at this point, and thus the associated value of K| is

K, = 0.079aEAT, \JRI(1 ~ v) (24)

This result is remarkably close to the plane-strain result (Eq.
(13)) when the effective half-width of the hot spot in plane
strain is identified with the radius of the axisymmetric hot spot.
Thus, it follows that the condition (Eq. (15)) for excluding
cracking applies to axisymmetric cracking parallel to the sur-
face as well if A is exchanged with R.

To complete the results for the penny-shaped cracks, we have
displayed the variations of the normalized energy release rate
and  as a function of depth below the surface in Figs. 11 and
12, in each instance for a/R = . These variations are in accord
with the previous discussion. In particular, it is noted that the
largest energy release rates at finite crack radius (i.e., a = R)
occur for cracks nucleated at times well before 1* associated
with the peak tensile value of o¥ in Eq. (I18) and at a depth
which is only about one-half of the critical depth for the small-
est cracks.

IV. Discussion

When a temperature increase is suddenly imposed on the sur-
face of a body at uniform temperature, the stress just below the
hot spot is compressive with magnitude « EATy/(1 — v). Tensile
stresses develop below the surface as the temperature increase
diffuses into the solid. The magnitude of the largest tensile
stresses documented in this work are not more that about one-
tenth of the magnitude of the above maximum compressive

20—
{ to. d/R= 0L
_ 2te,d/R= 06

YR 20

Fig. 10. Measure of mode mixity for cracks whose energy release
rates are shown in Fig. 9.
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Fig. 11. Normalized energy release rate for penny-shaped cracks at
various depths d, all witha = R, and advancing into the stress distribu-
tion of the uncracked body associated with the times indicated.

Fig. 12. Measure of mode mixity for cracks whose energy release
rates are shown in Fig. 11.

stress. These tensile stresses develop on planes which are paral-
lel to the surface and also on planes which are perpendicular to
the surface. They occur at depths which are between one-half
and one times the half-width or radius of the hot spot. In the
case of the axisymmetric hot spot, circumferential tensile
stresses develop at the surface outside the perimeter of the hot
spot, but these stresses are only about one-half as large as the
maximum subsurface tensile stresses.

The crack analyses indicate that subsurface cracks initiated
parallel to the surface will tend to spread more or less parallel to
the surface, and not necessarily curve up to the surface to gen-
erate a spall chip. Cracks initiated under the hot spot on planes
perpendicular to the surface will remain in their plane and
extend both upward and downward, and they also will not nec-
essarily break through to the surface. In other words, the analy-
ses suggest that hot shock may in some instances create
subsurface damage which cannot be observed on the surface.
There are several mechanisms not discussed here by which the
cracks can travel to the surface and create a spall. If the radius
of a crack running paralle] to the surface becomes large enough
relative to its depth below the surface, the compressive stress
parallel to the surface can cause the platelike region above the
crack to buckle away from the substrate. This, in turn, will
induce mixed-mode conditions at the crack tip which will drive
the tip to the surface as discussed in Ref. 9. Another possibility,
noted in some model experiments (private communication by
Eric Matthys, University of California, Santa Barbara), has not
been discussed, where a splat solidifies and bonds to the sub-
strate and then cools and contracts at a faster rate than the sub-
strate, due to its higher coefficient of thermal expansion. This
gives rise to a stress distribution somewhat akin to cold shock,
which may be analyzed along the lines discussed in Section
V. E of the article by Hutchinson and Suo.*

Matthys impinged molten drops of Ni at 1600°C on a quartz
substrate. Using accoustic measurements, he observed two dis-
tinct cracking events: the first about 2 s after the droplet hit,
which appeared to be entirely subsurface, and the second about
30 s later, involving spalling of the previously established
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crack. The splat radius was typically 0.5 cm. Using the value
for fused quartz of D = 9.5 X 1077 m%s in Eq. (18) to predict
the time at which the maximum tensile occurs, one finds * =
1.7 s. This value compares favorably with the first cracking
event reported by Matthys. The second event is believed to be
associated with the cooling phase of the bonded solidified splat
mentioned above. The tensile stress levels induced by the splat
from Eq. (18), on the other hand, appear to be too low to initi-
ate cracking. Equivalently, the quartz substrate material
appears to readily meet the condition (Eq. (14)) on temperature
for the 1600°C splat. Thus, it remains to understand how the
cracks are initiated in this particular experiment.

Coupling in the heat transfer problem between the splat and
the substrate has not been considered here nor has the role of a
thermal coating considered in Ref, 2. If the time at which
cracking is predicted to occur, typically tD/R* = 0.02t0 0.1, is
short compared to the time it takes the splat to undergo signifi-
cant cooling, then the present results may be reasonably accu-
rate without further modification. This might be the case, for
example, for a splat medium undergoing solidification. The
coupled problem should be considered if the splat temperature
drops significantly prior to the predicted time of cracking or if
for any reason the temperature at the surface of the solid varies
rapidly with time after the first sudden increase.

APPENDIX

(1) Plane-Strain Cracking Problems

The problem of the subsurface crack oriented perpendicular
to the free surface is solved using standard integral equation
techniques. The geometry and the stress distribution of the
uncracked half-space possess symmetry with respect to the
crack line, so only opening displacements need be considered.
The crack is represented by a dislocation distribution which is
chosen to cancel the traction on the crack faces. The solution
for a dislocation below the traction-free surface of the half-
space is available in the literature, and the numerical procedure
of Erdogan and Gupta" for solving the integral equation can be
effectively used.

The problem of generating the trajectory of a very short
crack initiated parallel to and below the surface when the crack
is required to advance as a pure mode [ crack has been treated in
other contexts.’® Given a smoothly curved subsurface crack,
the solution can be produced using the same procedures as
described in the previous paragraph, except that both tangential
and opening displacements of the crack face must be consid-
ered. Because of the symmetry of the stress distribution with
respect to the plane x = 0, only trajectories which were sym-
metric with respect to that plane were considered. Assuming
that the crack at its current length has Kj; = 0, then the crack
length is increased with a change in curvature of the next incre-
ment chosen such that the advanced tip also is in a state of pure
mode I. The procedure used here for incrementing the crack
was identical to that used in Refs. 7 and 8.

(2) Axisymmetric Problems

As mentioned in the body of the paper, finite element meth-
ods were used to solve each of the three subproblems. Eight-
noded isoparametric elements were used, and the same mesh is
employed for the heat conduction problem as for the stresses
induced in the uncracked half-space.

Equation (5) governs the evolving temperature change,
AT(r,z,1). The following variational statement of Eq. (5) is used
as the basis of the numerical solution to the transient problem:

D"fd—?t—TST v = - fﬁAT-V'BTdV + f(ri-ﬁAT)STdS
S

v

(25)

where 8T is the variation of T. A finite body was used in the
numerical solution. It was taken to be a circular cylinder with
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outer radius R, = 10R and height H, = 10R. Apart from the
region r = R on the top surface, where AT is prescribed to be
AT, for t = 0, the surface is everywhere taken to be perfectly
insulated, assuming that negligible heat is lost from the
unheated portion of the surface. The choices for R, and H,
ensure that the zone of appreciable temperature increase is con-
fined to a relatively small volume of the body and that the ther-
mal stresses induced remain negligible in most of the volume
analyzed. The stress—strain relations for the elastic material
subject to a field of temperature increase AT relative to the ini-
tial uniform temperature are

aATd,) (26)

oy = Lg‘u(eu -

At a given time ¢, the temperature field AT is known from the
numerical solution of Eq. (25), and the corresponding stress
fields and strain fields are found by a numerical solution based
on using Eq. (26) in the principle of virtual work. At the bottom
surface, z = — 10R, far from the heated region, symmetry con-
ditions have been prescribed with «, = 0 and zero shear trac-
tions. All the other surfaces are taken to be traction-free.

As mentioned in the body of the paper, the crack is imagined
to develop in the uncracked half-space at a given time 7 with its
associated temperature and stress distribution. Tn other words,
the crack is assumed to grow after the temperature and stress
distributions in the uncracked body have been established. The
growth process is likely to be dynamic, and any subsequent
influence of the crack on the temperature distribution has not
been considered.

In each crack analysis, the energy release rate G is deter-
mined by the stiffness derivative finite-element technique,"'
which involves derivatives with respect to crack advance for
element stiffness and load terms resulting from thermal expan-
sion. The computations are still based on the principle of virtual
work with Eq. (26) substituted for the thermoelastic behavior,
but the mesh is highly refined near the crack tip, with several
rings of small elements around the tip. The J-integral is used to
evaluate the energy release rate, using the actual strain energy
density expansion accounting for thermal expansion.'? For
these axisymmetric crack problems, the J-integral values
obtained on contours of very small radius around the tip agree
with the values obtained by the stiffness derivative technique
within 2%—4%. The ratio of the stress intensity factors, K/K,
is needed to evaluate ¢ in Eq. (22). Approximate values of the
stress intensity factors were obtained by substituting stress val-
ues at two integration points symmetrically placed about the
crack plane into the well-known analytical expressions for the
singular near-tip fields. Corresponding values of the energy
release rate evaluated using the K’s obtained in this manner in
Eq. (21) differ by from 5% to 15% from the accurate values
obtained from the methods mentioned above. Thus, the magni-
tudes of the values of K| and K|, obtained from the singular
fields are not very accurate, but it is assumed that the ratio of
their values in Eq. (22) should give a reasonable representation
of mode mixity.

Finally, it is noted again that the assumption of traction-free
surfaces used in the present studies excludes the type of spalling
mentioned in the Conclusions, where a hot splat solidifies,
bonds to the substrate, and then drives a crack through surface
tractions upon cooling.
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