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Mechanics of the fiber pushout test
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Model equations governing the debonding and the pushout phases of the fiber pushout test are presented and are then
evaluated for accuracy by comparing them with detailed numerical analyses of some specific examples. It is assumed that a
residual compressive stress acts across the fiber /matrix interface and residual axial stress in the fiber is taken into account.
The interface is characterized by a mode 2 debond toughness I' and is assumed to develop a frictional stress upon sliding
according to T = 1, — po,, corresponding to a constant stress contribution and a Coulomb term. The model applies either to
pushout of a single fiber embedded in a homogeneous matrix or to a fiber selected for pushout from a specimen sliced from
a fiber reinforced composite. The effect of redistribution of residual stress due to slicing the composite in preparation of the
specimen is addressed in numerical examples. The detailed numerical work establishes that the debond crack advancing
down the fiber becomes unstable and breaks through to the bottom of the specimen when the debond tip reaches a distance
about one and one half fiber radii from the bottom. The model equations provide a reasonably accurate description of the
dependence of the pushout test on its many parameters.

Notation DPRr residual compressive axial stress in
fibers
R; fiber radius G energy release rate of debond crack
R, specimen radius I'=gG, mode 2 debond toughness of inter-
R, inner radius of support base face
p fiber area fraction for a specimen K mode 2 stress intensity factor for
cut from a composite debond crack
l length of mode 2 debond crack K = JE,I' mode 2 debonding intensity tough-
t specimen thickness ness of interface
Lk, E Young’s moduli of fiber and outer U load point displacement conjugate
region to p
L, Modulus quantity for interface u displacement of fiber end relative
crack (Eq. (2.10) to specimen surface
Ve, v Poisson’s ratios of fiber and outer
region
ng residual compressive stress acting 1. Introduction
across fiber / matrix interface ’
P compressive pushout stress applied
to fiber end Fiber pushout tests are now commonly carried
D, pushout stress to initiate debonding out with the purpose of measuring the fiber/
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matrix interface debonding and frictional sliding
characteristics for a wide variety of fiber rein-
forced composite systems (see Kearns and
Parthasarathy (1991) and Marshall (1992) for a
listing of references). To infer these interface
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characteristics it is necessary to make certain
assumptions about the nature of the laws govern-
ing debonding and friction and to then carry out
a mechanics analysis of the specimen subject to
these assumptions. In this way, theoretical predic-
tions for the specimen can be fit to measured
records of pushout load versus displacement us-
ing the desired interface properties as fitting pa-
rameters. The number of geometric parameters
characterizing the specimen and material param-
eters characterizing the composite is quite large
(see the Notation), and it is essential that the
mechanics solution for the specimen be in closed
form, rather than numerically generated for each
set of parameters, if it is to be broadly useful. At
the same time, it is essential that the analytical
solution, which is of necessity of an approximate
nature, be assessed for its accuracy. The ap-
proach taken in this paper is to present a closed
form analytical solution in Section 2, which con-
tains all the parametric dependencies and which
is valid for a reasonably general friction law, and
then in Sections 3 and 4 provide a full finite
element analysis of the specimen for some spe-
cific cases to assess the accuracy of the analytical

residual axial compression in
fiber in composite=pg

residual compression across
fiber/matrix interface=ng

> —lr>

model results. The analytical model results coin-
cide in almost all respects to solutions presented
recently by Kearns and Parthasarathy (1991) and
Marshall (1992) for the special case of Coulomb
friction acting on the fiber/ matrix interface.

The slicing process used to produce specimens
from a composite is illustrated in Fig. 1, and the
geometry of the specimen is also detailed in this
figure. It is assumed that there are residual com-
pressive stresses pp and ng in the axial and
radial directions, respectively, in the fibers in the
composite prior to slicing. The slicing process
redistributes these residual stresses in the vicinity
of the fiber ends, and one of our objectives will
be to assess the effect of this redistribution on
the pushout test with the aid of the numerical
calculations. In many specimens, the thickness ¢
is chosen to be not more than, typically, 6 to 12
times the fiber radius R; so that unduly large
pushout forces can be avoided. For such ‘thin’
specimens it is essential that the inner support
radius of the base, R, , be small enough such that
significant effects due to bending do not arise
(Kallas et al., 1991). If R, is taken to be less
than, say, 2R;, then bending effects are negligible
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Fig. 1. Residual stresses in composite and slicing to make a specimen. Definition of length quantities for specimen.
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and, moreover, R, itself will have little influence
on the pushout results. Similarly, the outer radius
of the specimen R, plays essentially no role as
long as it is more than several times ¢. The
numerical results reported below also indicate
that the details of the support conditions at the
base (e.g., zero friction versus clamped) have
relatively little influence, and clamped conditions
will be used in most of the numerical calcula-
tions. Assumptions about the details of the fiber /
matrix interface will be detailed below. The inter-
face is assumed to be characterized by a mode 2
debond toughness (work of fracture) I' or, equiv-
alently, by a critical mode 2 interface intensity
toughness K.. A generalized friction law which
combines the Coulomb law with a constant fric-
tion stress is used to describe the tractions ex-
erted across the debonded interface behind the
advancing mode 2 debond crack tip.

2. Approximate model governing pushout

The results in this section are derived from the
paper by Hutchinson and Jensen (1990) wherein
models for fiber pullout have been developed.
The formulas below are converted to be applica-
ble to the present pushout specimen with due
regard for certain sign changes. Moreover, the
separate results in that paper for cases of con-
stant friction and Coulomb friction have been
combined here according to the law

T =Ty MO, (2.1)

where 7 is the constant friction contribution, p
is the Coulomb friction coefficient, and —o; is
the compressive stress acting across the sliding
fiber / matrix interface. This relation has been
suggested by Mackin et al. (1992) as a phe-
nomenological characterization which incorpo-
rates both a Coulomb component and a compo-
nent independent of the compression across the
interface which is thought to arise from signifi-
cant asperity interaction of the kind documented
in their paper and in earlier work by Jero and
Kerans (1990).

2.1. Some basic equations

In specializing the results from Hutchinson
and Jensen (hereafter referenced as H-J), it will
be assumed that (R;/R,)* < 1 so that, in effect,
the specimen in Fig. 1 has an infinite outer radius
R,, leading to a simplification of some formulas
in the earlier reference. In addition, two cases
will be considered: case (i), an isotropic fiber
surrounded by an isotropic outer region; and case
(i), a transversely isotropic fiber surrounded by a
transversely isotropic outer region, where the
outer region can be assigned the effective elastic
properties of the composite from which the speci-
men is sliced. The model of H-I, like that of Gao
et al. (1988), uses the Lamé solution to character-
ize the radial dependence of the stress distribu-
tion in the fiber and the matrix at each position z
through the specimen. The approach is not accu-
rate when the mode 2 debond crack tip is within
about one fiber radius from the top or bottom
faces of the specimen, as will be clear in the next
section where comparisons with accurate numeri-
cal solutions will be made. However, the ap-
proach is quite accurate when the crack tip is in
the interior of the specimen, and it can be used
to analyze the most important aspects of pushout
behavior.

There are two combinations of the elastic
properties, B, and B,, which re-appear through-
out the paper. These arise in the following rcla-
tions from the Lamé solution (cf., H-J, Eq. (22))

(0, —0;) =By(of —oy) (2.2a)
and
(e —€) =By(o7 —o7)/E,, (2.2b)

where oy and ¢; are the average axial stress and
strain in the fiber, o, is the radial stress acting
across the interface, and the ‘+’ denotes values
well below the debond crack tip while the <=’
labels values above the tip. These relations follow
from the supposition that the changes in stress
distribution from one section along the fiber to
another are characterized by the Lamé solution,
together with imposition of continuity of normal
displacement and normal traction across the in-
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terface as discussed more fully in H-J. The for-
mulas for B, and B, for the two cases are given
as follows.

Case (i): isotropic fiber and isotropic outer re-
gion. Let E; and v; denote the Young’s modulus
and Poisson’s ratio of the fiber and let E and v
denote the corresponding quantities for the outer
region. Then,

B vk 23
L (1=v)E+(1+v)E; (2.3)
and
B,=1-2vB,
1+v))(1-2v))E+(1+v)E
=( £)( £) ( VE; (2.4)

(1-v)E+ (1+v)E,

(In this paper B, is the new notation for b, in
H-J, while B, replaces b, E;/E, in each case for
the limit with R,/R, approaching zero. See the
end of the Appendix for errata for the H-J
paper.)

Case (ii): transversely isotropic fiber and trans-
versely isotropic outer region. Let the 1-direction
be aligned with the fiber axis. The relevant com-
ponents of stress and strain for an elastic material
with transverse isotropy with respect to the 1-axis
are related by

€= ;a, - %(02 o), (2.52)
v 1 v’

€= % + T 5% (2.5b)
v v’ 1

€= — EUI — Ea'z + E—r0'3. (2.5¢)

With a subscript f denoting quantities associated
with the fiber and unsubscripted quantities for
the outer region, the expressions for B, and B,
generalize to

v, E’
(1=v)(E/E)E"+ (1 +v)E;’
B,=1-2v,B,. 2.7

B,

(2.6)

Of the two coefficients, B, is generally about
unity, while B, brings in the ‘Poisson effect’ and

is a much stronger function of the elastic proper-
ties than B,. For example for case (i) with v;=v»
=1/3, B, =0.167 and B, = 0.889 when E,/E =
1, and B, =0.0714 and B, = 0.952 when E;/E =
3. To see how case (ii) differs from case (i),
consider an isotropic fiber surrounded by a com-
posite comprising the same fibers with area frac-
tion p = 0.3. Suppose the matrix of the composite
is isotropic such that v, =v,=1/3 and E,/E =
3. A self-consistent theory determination of the
transversely isotropic elastic properties of the
composite needed to evaluate B, and B, in (2.6)
and (2.7) gives E;/E"=2215 and v"=0.351
leading to B, =0.0911 and B, = 0.939. These val-
ues can be compared with the second set of
values quoted above for case (i), and it is seen
that B, is the more sensitive of the two coeffi-
cients to the way in which the outer region is
represented.

The central equations of the model are (2.1)
and (2.2) along with the equation for axial equi-
librium of the fiber and the equation for the
energy release rate of the debond crack. The
axial equilibrium equation for the fiber is
doy 27
12 R’ (2.8)
where z is the axial coordinate parallel to the
fiber pointing upward, and the energy releasc
rate at the mode 2 crack tip is

G = H(B,R/E) (o7 —a)’. (2.9)

This equation for G is an exact steady-state re-
sult for a free-sliding fiber (v = 0) in the interior
of an infinitely thick, homogeneous isotropic ma-
trix. For a general elastic mismatch between the
fiber and the matrix in case (i), the relation
between the mode 2 interface stress intensity
factor K and the energy release rate is

1—1112 1—»?
_+_
E, E

KZELKZ
EI

(2.10)

G=1(1-p?)

where B is the second plane strain Dundurs
parameter and E, is an interface cracking modu-
lus conveniently representing the collection of
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moduli quantities shown. (See, for example,
Hutchinson and Suo (1991) for a background to
the above equation and for the expression for 8.
For most systems of interest in the present con-
text, B2 is seldom larger than a few percent.)

2.2. Debonding phase

Let I' denote the mode 2 toughness of the
fiber / matrix interface, and let py be the com-
pressive axial stress in the fiber prior to any
debonding. (Expressions for p, and ng in terms
of the thermal mismatch strains and the elastic
properties of the composite are given by H-J.)
Then imposition of the debonding criterion, G =
I, with o = —pg and o, = —p, gives the com-
pressive pushout stress in the fiber needed to
start the debond moving down the interface be-
fore any appreciable frictional resistance devel-
ops,

Pi=pPrt2 (2.11)

BZRf ‘

In writing this equation it has been assumed that
an initial debond region of length on the order of
R; pre-exists, otherwise a larger initiation pushout
stress p; would be required, as will be made
clearer in Section 4.

Once debonding has started, the debond length
[ increases with pushout stress p according to

) 1
— = In
R, 2uB,

To+tung +uB(p—pr)
To+ mng + wBi(p; —pPRr) ,
(2.12)

where ny is the compressive stress acting across
the interface prior to any debonding. Alternative,
equivalent expressions to (2.12) are

I'E; To+ uhg
=pr+2 ef + et —1
P rr By R, uB, ( )
T'E To+ un
—p.+ |2 e e G
B, R; wB,
(2.13)

where (=2uB|l/R;. The limit to (2.12) and
(2.13) for 7, =0 corresponding to Coulomb fric-
tion coincides with the results given by Kearns
and Parthasarathy (1991) and Marshall (1992) for
case (i), although the form is somewhat different.
In particular, the role of the residual axial com-
pression in the fiber py is transparent in the first
of the formulas in (2.13) — it simply adds to the
pushout stress. The second expression in (2.13)
emphasizes how the debond toughness and the
fraction combine to give the increment of pushout
stress required over and above initiation. The
limit for constant friction (u = 0) is the elemen-
tary result //R;={(p—p;)/(27,). Note that the
above results hold for case (ii) as well when (2.6)
and (2.7) are used for B, and B,.

Kearns and Parthasarathy and also Marshall
introduce a reference tensile stress quantity, Uf“,
which is the stress in the debonded portion of the
fiber required to reduce the radial component of
the interface traction, o, to zero. By (2.1), this
quantity is related to the residual stress quantities
by ng=B(a+pg). If ny is eliminated from
(2.13) in favor of ¢, then for the Coulomb
friction limit one obtains the form which these
authors give, i.e.,

T'E,
BZRf

2

p=-of+ +pgtol|ef.  (2.13a)

The sliding displacement of the top of the
fiber relative to the matrix (see Fig. 1) is given by

U

u P —D; _(T()+M”R)L
R,

2uBE; wB E; R

], (2.14)

where p — p; may be expressed in terms of //R;
using (2.11) and (2.13). Within the framework of
the model, the displacement U through which p
works can be approximated by u plus a contribu-
tion due to the deformation of the specimen
under p in the absence of debonding. Thus,

U u D

—=—4+C—. 2.15

Ry Ry E (2.13)
The constant C has been evaluated using the
numerical procedures of the next section. For
case () with v, =v_ = 1/3 and E;/F in the range
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1to 5, C is well approximated by 1.46 (E,/E)'/2.
The limit of (2.14) for constant friction (x = 0) is

u 2Bl T By 1)
— = + —| . (216)
R, R, \ B,RE; FE; \R;

In the next section, where a full numerical
analysis of the specimen under constant friction
conditions will be given, it will be seen that the
debond crack advances stably until the crack tip
reaches a distance of about 1.5R; from the bot-
tom of the specimen where it becomes unstable
and breaks through to the bottom surface by
dynamic advance. Let p* and U* denote the
load and displacement associated with the point
where the debond crack loses stability. A good
approximation to these instability values can be
obtained from the above equations by taking / to
be t — 1.5R,, i.e.,

I'E To+ un
B N 0 R o*
p¥=pa+2 e’ + (et —1),
b B, R uB, )
(2.17)
U* p* p* —p; Totung) 1
LA, (rotmng) 1
Ry E; 2u B\ E; wBE;  R;
(2.18)

Here {* =2uB(t — 1.5R;)/R;. These two equa-
tions contain the many parameters in the pushout
problem. Moreover, the three contributions to
the pushout stress at break-through are clearly
exposed in (2.17), respectively due to residual
stress, debonding toughness and friction.

2.3. Pushout phase

After the debond tip has broken through to
the bottom of the specimen the pushout force is
opposed only by friction. However, the axial stress
in the fiber at the bottom is now relieved with a
redistribution of the compressive stress acting
across the fiber / matrix interface. At the bottom
after break-through, this compressive stress be-
comes ny — B, py; which is assumed to be posi-
tive in what follows. With 4 as the remaining

length of the fiber in the matrix (d =¢ — u), the
pushout stress is

o+ u(ng — B p
p= 0 (ng 1PR) (b 1),
wB,

(2.19)

where {, =2B;nd/R;. In the limit g — (0, this
reduces to the elementary result p=27,d/R;
implying a linear drop-off of pushout load with
displacement. The limit of Coulomb friction (7,
={() gives a nonlinear relation between the
pushout force and displacement, i.c.,

ng —~Bipr

(et 1), (2.20)

p:

with the force dropping more rapidly in the be-
ginning (d = ¢) than at the end (d =0). With
(ng — B, pg) identified as the redistributed com-
pressive stress normal to the fiber/ matrix inter-
face at the bottom of the specimen, this formula
agrees with that of Shetty (1988), who adapted
the earlier pullout results of Takaku and Arridge
(1973). 1t also agrees with equivalent formulas of
Kearns and Parthasarathy (1991) and Marshall
(1992), noting that the coefficient in (2.20) is just
0. Recent detailed elasticity calculations of Meda
et al. (1992) have demonstrated the accuracy of
this formula.

The drop in the pushout stress Ap which
occurs when the debond breaks through to the
bottom of the specimen is given by (2.17) minus
(2.19) with d =¢.

3. Numerical analysis of the specimen with con-
stant friction 7, (case (i)

Attention will be restricted to pushout histo-
ries which are monotonic in the sense that the
average downward displacement of the end of the
fiber U is increased monotonically. The debond
crack length also increases monotonically under
these circumstances. An important consequence
of this monotonicity for the purpose of analyzing
and presenting results for the specimen is that,
for a given debond crack length, the quantities K,
U and u are linear functions of p, 7, and py.
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(The residual compression across the fiber/
matrix interface ny plays no direct role in the
constant friction solution.) Specifically, this means
it is possible to write

K/vs‘Ril‘:pfl(f)’Psz(f)_Tnfz(‘f)) (3.1)
UE /Ry =pg(£) —pr&A€) —7083(8), (3.2)
ubliy/Ry=ph (&) —prh(€) — 1oh3(€). (3.3)

The nine quantities f;, g, and A, are functions of
the normalized interface crack length, ¢ =1/R,,
as well as the other dimensionless geometric and
material property parameters: t /R, E./E, v; and
v. In addition, as discussed in the Introduction,
these functions also depend very weakly on
R,/R;, R,/R; and on the precise manner in
which the specimen is supported on its base. The
functions of ¢ are plotted in Figs. 2—-4 for se-
lected values of the nondimensional parameters.
The fiber and outer region are each isotropic
(casc ()): v,=v=1/3; and E;/E=1 or 3. To
provide a relatively severc test for the model
equations, a thin specimen has been chosen with
t/R, =6 but results for a thicker specimen with
t/R; =12 have also been obtaincd and will be
discussed. The results are calculated with com-
pletely clamped conditions along the base of the
specimen and with R,/R;=5 and R,/R;=15.
Each of the three contributions will be discussed
in turn, and the effects of varying certain parame-
ters will also be discussed. Some of the details of
the finite element procedures used to solve for
these functions are discussed in the Appendix.
Each contribution is analyzed as a mode 2 crack
problem with crack faces which slide relative to
one another but whose normal opening displace-
ment is zero. Thus, when the individual contribu-
tions are summed, the net result applies to a
mode 2 problem.

The corresponding results from the model will
be compared with the full numerical calculations.
The model results can be obtained in a straight-
forward way from the basic equations of Section
2.1. They are

BZEI
K/Ro=y g
f

I
3(p—pg) ~ g |- (3.4)

lzl:vwvw\ﬁvvw!\v{vvvxv!r\;xvvw
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= b
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Fig. 2. Contributions due to p in Egs. (3.1)~(3.3). The param-
eters of the specimen are defined in the text.
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Fig. 3. Contributions due to pg in Egs. (3.1)-(3.3). The insert
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the contribution. The parameters of the specimen are defined
in the text and p =4/9.

L ITV LR T T T T T T T T T T T T T T 14
15%(3)

L weee EJE=1v,=v=1/3 /
- — E,/E=3,v,=v=1/3

(&)

K/(1,4R)

L e L A s e s T
i(b)
80 - —— E/E=1v,=v=1/3 .
r — E,/E=3.v,=v=1/3 -
- A
o5 60 — —
I L
= | _
£ r N
< ol ,4
. L )
5 ]
20 — =
- -
ol .
0 [
100 1= LA S B S T T T T T
4
aol; - E/JE=l v =v=1/3 -
F — EB/E=3v,=v=1/3 / !
g ¢ \
= 60[» -

i I
o i
w i

= 40— .

[ 4

= d

20 —

F j Model Resulls B

Of L P R T I |

0 1 2 R 5 6

E=(/IR,

Fig. 4. Contributions due to 7, in Egs. (3.1)-(3.3). The
parameters of the specimen are defined in the text.
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I- 1 \?
uki/R; =B, (p_pR)F_TO(F) ) (3.5)
f f

with U=u + C, R /E;.
3.1. Contribution due to pushout stress p

The contributions to K, U and u from the
pushout stress p as calculated using the finite
element program are shown in Fig. 2. As just
discussed, the crack is modelled as a mode 2
crack in these calculations with closed, friction-
less crack faces, as is consistent with the repre-
sentation in (3.1)—(3.3). Included in each of these
figures are the predictions from the simple model,
(3.4) and (3.5). The contribution of p to K in Fig,.
2a increases sharply with crack length, reaching
the ‘steady-state’ plateau at &= 1. This plateau
regime persists until the crack approaches a dis-
tance of about one and one half fiber radius from
the bottom of the specimen, at which point the
nondimensional stress intensity factor increases
dramatically as the crack breaks through to the
bottom of the specimen. These features are even
clearer in Fig. 5 which compares results for two
specimen thicknesses, t = 6R; and ¢ = 12R;. The
contribution to K for the shortest cracks and for
cracks within the broad mid-region of the speci-
men are independent of specimen thickness. Sim-
ilarly, for crack tips within about 1.5R, from the
bottom, the contribution to K from p is other-

4 T T [77 T T T'“ T T T T —]‘ T T T T T LI ‘
(a) -
= E/E=1 v, =v=1/3 -l

- /R, =6 :

L
L
:

lIl[IIllillIklllAlllAlA‘(

—4
0

z/t

1 2 3 4 5

lztwrvl\ LA L A B S B S St e B |
! /J
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: .

B
I
i
8- i‘
[ B
& R ]
vt Model Resulls A
& 7
E/E=1 v, =v=1/3 1

R =6
—_U/R, =12 #
| | Ll L ?
4 6 8 10 12

E={/R,

Fig. 5. Contributions to K in (3.1) due to p for two thick-
nesses of specimen. The parameters of the specimen are
otherwise the same as those in Fig. 2a.

wise independent of specimen thickness. The re-
sult from the model obtained from (3.4) clearly
applies to the plateau regime.

The contributions to U and u due to p are
shown in Figs. 2b and 2c¢ where the model predic-
tions are also included. The constant C appear-
ing in the model equations has been obtained
from the numerical results of this section. As the
crack length increases, the relative difference be-
tween U and u diminishes. The agreement with
the model equations improves for thicker speci-
mens as discussed below.

S B e e S L EL A B B N B

I O

E,/E=1,v,=v=1/3

-0, / Pr

Fig. 6. Changes in normal and shear.stress on the fiber /matrix interface due to slicing a specimen from a composite with an axial
residual compressive stress py in the fiber. The insert displays the tractions applied to the specimen to model the stress changes
caused by slicing. The parameters of the specimen are the same as those in Figs. 2-4 with p=4/9, E;=E and v;=v =1/3.
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3.2. Contribution due to axial residual compression
DR in the fiber, including the effect of stress redis-
tribution due to specimen preparation

There is a significant redistribution of residual
stress near the fiber ends when the specimen is
sliced from the composite. Or, if a single fiber
specimen is prepared with a homogeneous other
matrix without slicing such that residual stresses
develop in the fiber, then the stresses near the
fiber ends will also be different from what they
are in the interior. Here attention will be fo-
cussed on specimens sliced from a composite with
fiber area fraction p. As discussed in the Intro-
duction, pg is the residual axial stress in the
fibers of the composite prior to slicing, and the
functions f,, g,, and A, in (3.1)-(3.3) reflect the
redistribution resulting from the slicing process.
Finite element results for the contributions due
to pr to normalized K, U and u are shown in
Fig. 3. The insert in Fig. 3a shows the tractions
applied to determine the contribution due to pg.
The residual stress distribution in the unsliced
composite ‘cell’ is modeled as having a compres-
sive stress pg in the fiber and a tensile stress
ppr/(1 — p) which acts over an area weighted to
correspond to the appropriate area fraction of
the matrix relative to the fiber such that the total
force on each of the potential top and bottom
faces is zero. The slicing process then is equiva-
lent to applying equal and opposite tractions to
remove these stresses, as indicated in the insert.
Plots of the changes in the normal and shear
stresses acting on the fiber /matrix interface as
calculated by this procedure are shown in Fig. 6
for the set of parameters indicated in the figure
caption. The changes constitute a significant frac-
tion of pp but they are confined to a region a few
fiber radii from the ends of the fiber.

The simplest way to compute K, U and u due
to pg is by applying the tractions shown in the
insert of Fig. 3a to the specimen for each length
of mode 2 crack. This is equivalent to cancelling
the shear tractions acting across the interface due
to introduction of the mode 2 crack. In present-
ing the contribution to U, g,(¢), the very small
displacement associated with £ =0 is subtracted
off such that g,(0)=0.

Included in Fig. 3 are the predictions from the
model from (3.5) which are seen to provide a
reasonable approximation in the mid-region of
the specimen. The redistribution due to slicing
gives rise to a peak contribution to K due to pj
which exceeds the mid-region levels and which
occurs at a crack length of just over one half a
fiber radius. Since the contribution due to py isa
negative (see Eq. (3.1)), the effect of the redistri-
bution is to require a larger pushout stress to
start the debond crack moving down from the top
surface of the specimen than would otherwise be
predicted. The contribution to K falls to zero as
the crack approaches the bottom surface of the
specimen since the axial residual stress is then
largely relieved.

3.3. Contribution due to the constant friction stress
To

The contributions in (3.1)-(3.3) due to 7, are
shown in Fig. 4, where the predictions from the
model are also included. The model results for K
in Fig. 4a underestimate somewhat the actual
contribution, but the slope of the relation in the
interior portion of the specimen is captured by
the model. This same tendency was observed in
the comparative study of pullout in Fig. 7 of H-J,
where it is also seen that the accuracy of the
model improves as the debond length grows (as-
suming it is still well away from break-through).
Thus, the discrepancies between the detailed nu-
merical results and the model seen in Fig. 4
diminish significantly in the interior of the speci-
men for specimens thicker than the one consid-
ered in this example, as will now be discussed.

3.4. Dependence on other parameters and support
conditions

The numerical results for the choice t/R;=6
shown above provide a fairly severe test for the
model equations since end effects extend into the
specimen a distance of between one to two fiber
radii, typically, from the free surfaces. The model
equations do not incorporate end effects, yet
nevertheless the model captures the quantitative
trends when the debond is in the interior of the
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specimen. Figure 5 illustrates the applicability of
the model equations to the portion of the speci-
men away from the ends. Generally speaking, the
model predictions for K are the more accurate
than those for U, which in turn are more accurate
than those for u. The calculations for ¢/R;= 12
show a systematic improvement in accuracy of the
model equations for all three quantities over those
for t/R; = 6. For example with E;= E, the error
in the model predictions at /=¢/2 drops from
3.6 to 1.8% for K, from 9.0 to 6.7% for U, and
from 27 to 17% for u. For E;/E =3, the error
improvements for a specimen with ¢/R;=12
rather than 6 are 14.7 to 4.0% for K, 22 to 13%
for U, and 55 to 26% for u.

Some of the calculations displayed above were
repeated using free sliding boundary conditions
(rather than completely clamped) along the bot-
tom surface of the specimen. This alteration had
virtually no effect on the numerical results for the
functions in Figs. 2-4. Similarly, reducing R,/R;
from 5 to 3 had virtually no effect.

4, Fracture analysis of the specimen with con-
stant friction (case (i))

The equations (3.1) and (3.2) of the previous
section will now be used to generate pushout
load—displacement relations during the debond-
ing phase and, consequently, to identify the point
where the debond crack becomes unstable and
dynamically breaks through to the bottom of the
specimen. Impose the condition K =K, =
(E,I))'"? on Egq. (3.1) to obtain the following

Fig. 7. Pushout behavior during the debonding phase for
pr = 0 with several levels of constant friction. Comparison of
the full numerical results from (4.1) and (4.2) with the model
predictions. In part (c) the point where /=¢ —1.5R; is indi-
cated by a dot for the model predictions. The straight line
segments emanating from the origin in (c) correspond to the
behavior prior to the onset of debonding as discussed in the
text. The parameters of the specimen are the same as those of
Figs. 2-4 with t /R =6, E;=E and v, =v=1/3.
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relation between p and the normalized debond
length ¢:

p B 1
JE.T/R;,  fi(€)

(1 + m]‘Z(g)

T fa(f)) (+.1)

Equation (3.2) with (4.1) supplies U as a function
of ¢ according to

mgl(‘f) mgz(‘f)

——4a:(¢)- (4.2)

~ VE\T/R; F/Rf

Examples are shown in Fig. 7 where the f’s and
g’s are those plotted in Figs. 2—-4 for the case
with E;=E, v;=v=1/3, and ¢ /R, = 6. Figure 7
isolates the effect of friction showing results for
several values of the nondimensional friction pa-
rameter, in every case with pp = 0. Plots a and b
of this figure display the dependence of p and U,
respectively, on £, while ¢ has been eliminated in
plot ¢ with p cross-plotted against U. The curves
in these plots apply when the debond condition,
K =K_, is met. The straight lines emanating from
the origin have been added to indicate behavior
prior to any debond crack advance, as will be
discussed below. Included in each of the three
plots of Fig. 7 are predictions of the model for
precisely the same case. The model predictions
are given by (2.13) and (2.15) for the limit u = 0.
Equivalently, they can be obtained from (3.4) and
(3.5) after K=K_ is imposed.

Fig. 8. Pushout behavior during the debonding phase for
7o /(E1T /R)VYE=0.1 with several levels of residual axial
compression pg. Comparison of the full numerical results
from (4.1) and (4.2) with the model predictions. In part (c) the
point where /=t — 1.5R; is indicated by a dot for the model
predictions. The parameters of the system are the same as
those of Figs. 2—4 with t /R; =6, E;=E and v =v=1/3.
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Suppose for the purpose of discussion that the
displacement U (rather than the load) is pre-
scribed by the pushout device. Any loading device
compliance could be taken into account in the
following discussion, but a stiff device is well
modeled by prescribing U. The straight line ema-
nating from the origin in Fig. 7c is the load-dis-
placement response of the system prior to attain-
ing the debonding condition K = K. If a debond
crack of length greater than about one fiber ra-
dius pre-exists, then the dashed line segment will
intersect the debonding curve at a point such as
A, and debonding will then progress smoothly as
U is increased. If, however, the initial debond
flaw is shorter than about one fiber radius,
debonding will start at a point such as B and will
advance dynamically arresting when the load
drops to the lower value at B’ associated with the
prescribed U. Subsequently debonding will
progress smoothly with increasing U until the
limit point with respect to U is reached. Values
at the limit point are denoted by (p*, U *), cor-
responding to the point where the debond crack
becomes unstable and breaks through to the bot-
tom of the specimen. The limit point is attained
when the debond crack tip reaches a distance of
about 1.5R; from the bottom. (The values given
by the model at which /=1¢- 1.5R; is indicated
by a solid dot in Fig. 7¢c.) From Figs. 2a and 5, it
can be seen that the instability point corresponds
to the strong up-turn in the dependence of K on
p. Note further that the two cases shown with
nonzero 7, arc stable under prescribed load al-
most to the same point as under prescribed U. In
other words, friction stabilizes the debonding
process until the point where the debond ap-
proaches the bottom of the specimen such that
there i1s very little dependence of the break-
through values, p* and U *, on the compliance of
the loading device.

Plots of p and U as functions of ¢ and p
versus U are shown in Fig. 8 for examples where
residual axial compression pg in the fiber is
present as well as constant friction. In this case
the normalized value of p — pg has been used as
the ordinate to bring out the fact that the main
effect of residual axial compression is to simply
require an extra push roughly equal to pg. The

model tends to underestimate p and overestimate
U, but the errors in p* and U* are not more
than about ten percent. The range of the nondi-
mensional residual stress parameter chosen in
Fig. 8, from 0 to 2, covers the feasible range of
this parameter. Using (3.4), one can readily show
that the fiber will debond by residual stress alone
(i.e., poke out of the matrix) if

PR E,
) - .
VELT' /R, E\B,

The collection of terms on the right side of this
inequality is usually fairly close to 2.

(4.3)

5. Closing remarks

The detailed numerical analysis of some spe-
cific examples in Section 3 and 4 indicate that the
model equations provide a reasonably accurate
characterization even for a specimen as thin as
t/R,; =6, with errors of about 10% being typical.
The accuracy of the model predictions in the
vicinity of the instability point is seen in Figs. 7
and 8 to be somewhat better than in the begin-
ning stages of the debond process. As discussed
in Section 3.4, the accuracy will be even better for
thicker specimens. The detailed analysis indicates
that the instability point in the debonding phase
occurs when the debond reaches a distance of
about 1.5R; from the bottom of the specimen,
and the model equations (2.17) and (2.18) can be
used to predict this point. Moreover, as long as
there is some friction, this instability point is not
a strong function of the compliance of the pushout
device. The instability is primarily associated with
the strong upturn in the relation of K versus
debond length seen in Figs. 2a and 5 as the
debond crack approaches the bottom of the spec-
imen.

A few remarks are in order in connection with
use of the model equations of Section 2 to infer
interface properties such as I’ and frictional
characteristics from experimental pushout
records. Firstly, one should be cognizant of the
approximate nature of the model equations in
making efforts to fit the model equations to ex-
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perimental pushout data. The level of error re-
flected by the examples in Figs. 7c¢ and 8c is
typical for relatively thin specimens. Secondly,
one must be aware that it may not be possible to
distinguish between a constant friction character-
ization and a Coulomb friction characterization if
the specimen is relatively thin. To see this, con-
sider the frictional contribution to the pushout
stress in (2.13). If { never exceeds 1/3, say, then
e¢ — 1 can be approximated by { and

Togt MAR

l

B, (65—1)52(7()+an)E. (5.1)
The combination (7, + pny) is equivalent to an
effective constant friction. In other words, if { <
1/3, there is negligible ‘Poisson effect’ and the
Coulomb friction contribution remains essentially
unchanged at pwny during the debonding phase.
These remarks also apply to the pushout phase
governed by (2.19), although note that the term
—u B, pg does affect the Coulomb contribution
relative to the debonding phase (5.1) in a way
which does distinguish it from constant friction.
Since the debond length is at most ¢, the condi-
tion that { never exceeds 1/3 is simply ¢/R; <
1(6u B,), which, depending on specific values of
the parameters of the system, could be as large as
10 or more.

Equation (2.13) can be used to assess the rela-
tive importance of debonding toughness, residual
axial stress, and friction to the pushout stress
during the debond phase. As emphasized earlier,
according to the model the residual compression
in the fiber py simply adds to the required
pushout stress. The terms

5 I'E, q
B.R, an

each have dimensions of stress and, respectively,
govern the debonding and frictional contribu-
tions. The nondimensional frictional parameter
and residual stress parameter introduced in Sec-
tion 4 used the first of the above quantities in
their normalization. Thus, the relative impor-
tance of the contributions can be assessed from
the relative magnitudes of these terms.

To T KRR
nB, 7

Finally, we wish to call attention to the fact
that the relative slip u of fiber to matrix at the
top of the specimen is only a tiny fraction of the
fiber radius at break-through in many systems.
This statement follows from inserting values for
typical systems in (2.16) and from experimental
records of pushout tests published in the litera-
ture. Thus, for example, a thin specimen with a
fiber of radius 50 microns may undergo debond-
ing with relative sliding u never exceeding a small
fraction of a micron. If the asperity roughness has
a wavelength which is long compared to u (which
is the case for some fibers), then debonding does
not involve the asperities sliding past one an-
other. In fact, under these conditions, debonding
will occur prior to the unseating, or unkeying, of
the fiber asperity pattern from the matrix which
surrounds it. The role of surface morphology
during debonding under these conditions is not
well understood, and it is not at all clear that a
phenomenological friction law such as (2.1),
whether for constant or Coulomb friction or some
combination, should apply both to the debonding
phase and the pushout phase after sliding dis-
tances on the order of the asperity wavelength
have occurred. By the same token, frictional char-
acteristics inferred from pushout tests where
‘large’ amounts of sliding occur may not be rele-
vant for debonding and sliding under pullout
conditions experienced in cracking applications
for brittle matrix composites which involve small
amounts of sliding.
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Appendix

The numerical results have been obtained us-
ing a finite element code aBaous (Hibbitt, Karls-
son & Sorensen, Inc., Providence, Rhode Island,
USA) with eight-noded quadrilateral axisymmet-
ric elements. The finite-element mesh consists of
1169 to 1305 elements. Mode 2 cracks of length /
are assumed to exist along the interface. Since
there is a square root singularity in the strain and
stress fields at the crack tip, quarter-point cle-

ments are employed in the region nearest to the
tip. The radial length of the smallest and largest
elements are 1.01 X 10~* R; and 1.60 X 1072 Ry,
respectively. For each pre-selected /, the energy
release rate, G, is calculated using a J-integral
option in ABAQus. The contour selected to calcu-
late G lies within the immediate vicinity of the
tip, where the plane strain conditions are asymp-
totically approached. The calculation is per-
formed for debond ratios ranging from 1 <I/R;
< 6, with between twelve to twenty ratios used
for a given specimen. The stress intensity factor
K and the average downward displacement of the
end of the fiber U are also calculated. The dis-
placement U is obtained by averaging the nodal
axial displacement of the fiber end over the inter-
section area of the fiber, while the relative dis-
placement u is obtained by subtracting the aver-
age axial displacement of matrix from U. Since
the linear elastic behavior is assumed, the contri-
butions to K and U from the applied compres-
sion p, the residual axial stress pgp and constant
friction 7 along the interface could be calculated
separately as discussed in Section 3. The contri-
bution due to axial residual compression pp in
the fiber is modelled by applying a uniform ten-
sion py to the fiber ends, and a compressive
stress ppg/(1 —p) acting over an annular region
whose radius extends from R, to R;/y/p on both
the top and bottom faces of the specimen. The
finite-element results for the constant friction
case are obtained by applying an appropriate
concentrated shear force to each nodal point
along the crack faces such that an equivalent
uniform shear stress 7, is achieved.

Errata for Hutchinson and Jensen (1990)

Equation (24): ¢, = 3a,(b, + b3)'/3,

Equation (47):  k, should be replaced by k, /(1
+kp),

Equation (59): e% in the numerator should be
replaced by e ¢L.






