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It has been suggested that multilayered sheets, in which alternating layers have different
elastic moduli, might lend themselves to railoring to reduce, or even eliminate, harmful stress
concentrations at holes or other stress raisers. Such tailoring could be implemented by making the
sheet thickness spatially nonuniform, varying the number of layers, but keeping the layering
pattern unchanged; or, keeping the total thickness unchanged, by varying the pattern of layer
locations and thicknesses; or by a combination of these two approaches. We will call the first
method "thickness tailoring”, and the second "modulus tailoring”. Tailored fabrication of such
nonuniform layered sheets seems particularly well suited to masked deposition techniques.

This note provides a preliminary analytical assessment of the theoretical feasibility of
designing a tailored, layered sheet that would alleviate the stress concentration induced by a circular
hole in a field of balanced biaxial tension (see Fig. 1). If the stress concentration is actually
climinated, the result is a so-called "neutral” hole. It should be emphasized at the outset that
reducing the average circumferential stress at the boundary of the hole is definitely not necessarily
the desired goal. As we shall see, if modulus tailoring with constant overall thickness is exploited,
and only the relative volumes of the layer constituents are changed, the stresses within the
individual layers can be reduced while the average stress goes up! (This seemingly paradoxical
result takes a little getting used to; the reason it's right is that while the stress in the stiffer material
drops, there is more of it, so the average rises.) Conversely, a misguided reduction of the average
hole-boundary stress by means of modulus tailoring can lead to higher stress concentrations within
the layers.

We consider a two-constituent layered sheet, with Young's moduli Eg (@=1,2) in the
alternating layers, and for simplicity, we assume the same Poisson's ratio v in each layer. The
effective sheet modulus is E=f;E; + f2E,, where the f's are volume fractions. At each r, denote
the average radial and circumferential stresses by G, and g, and let 6!, o{™ (a=1,2) be the
stresses in the layers. The stress-strain relations are
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Fig. 1. (a) Layered sheet. (b) Hole in sheet under balanced biaxial tension.
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where E(e0) is the untailored sheet modulus far from the hole. Then
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and so the layer stresses are proportional to s, and sg. Hence, it is the value of sg at r=a that we

must seek to lower by tailoring E(r), or the sheet thickness h(r), or both. Note that while the stress
concentration factor (SCF) for the average sheet stress Gg is Gg(a)/S, the layer concentration
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factors are
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For a uniform layered sheet, these layer concentration factors are equal to the classical stress
concentration factor 6g(a)/S=2.

The equations of equilibrium and compatibility are
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respectively. These may be rewritten as
[kps,] = A.Se (7)
[P(sg = vs;)] =s, - Vsg ®)

interms of p=r/a, and the railoring function defined by
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Primes denote derivatives with respect to p.
We proceed in a semi-inverse fashion by asserting the spatial distribution :
s, =5(1-p™) (10)
and solving the compatibility equation (8) for sg to get
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where C is a constant. The only value of C that leads to a bounded tailoring function is
2n-n?
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and this gives the layer stress concentration factor s¢/S=n at p=1. The tailoring formula
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follows from the equilibrium equation (7). In all cases the peak value of A(r), as expected, occurs
at r=a, and is given by
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For v=0 this last result equals exp(n2/6).

Fig. 2 shows how the peak tailoring magnitude varies with the layer stress concentration
factor n, for several values of v. We remark that if only thickness tailoring is used, the SCF for
average stress is the same as that for the layers, and so is also reduced below 2. But for pure
modulus tailoring, the SCF for the average stress is given by nA(a), and this always exceeds 2 for
n<2,
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To get a neutral hole, we set n=1 in the formula for A(r), and find
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For v=0, this result becomes
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Fig. 3 shows how Apeytra) varies with r/a for v=0,1/4, and 1/2.
We should check the values of 6{®(r)/ 65 (ee) = s4(r)/S away from the hole. In the case

of the neutral hole, we find




S=1-(p1-p~"*V)/v (v=0
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=1-p~llogp (v=0)
and so the peak layer stress does indeed occur at the hole.
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Fig. 2. Tailoring function at hole boundary vs. layer stress concentration factor.
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Fig. 3. Spatial variation of tailoring function for a neutral hole.
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