J. Mech. Phys. Solids, Vol. 42, No. 7, pp. 1139-1158, 1994
P Copyright 1 1994 Elsevier Science Lid
ergamon Printed in Great Britain. All rights reserved

0022 5096/94 $7.00+0.00
0022-5096(94)E0022-V

ON LARGE SCALE SLIDING IN FIBER-REINFORCED
COMPOSITES

Z. CepRIC XiA, JOHN W. HUTCHINSON, ANTHONY . Evanst and
BERNARD BUDIANSKY

Division of Applied Sciences, Harvard University, Cambridge, MA 02138, U.S.A_;
and T Materials Department, University of California, Santa Barbara, CA 93106, U.S.A.

(Received 9 December 1993)

ABSTRACT

A CRITICAL EXAMINATION is made of the use of the line spring model to represent fiber bridging of matrix
cracks in the analysis of failure phenomena in fiber-reinforced brittle matrix composites. Attention is
focused on composite systems designed to undergo fiber debonding and sliding when matrix cracking
occurs. For most composites of this class, it is found that the distance along the fiber within which sliding
occurs is often too large to justify use of the line spring representation. A model which allows for large
scale sliding (the LSS model) is proposed and applied to three problems: a matrix crack emerging from a
semi-infinite unbridged through-crack in a uni-directional fiber-reinforced composite, the same problem
for the finite length unbridged through-crack. and matrix cracking of a cross-ply composite. Primary
emphasis is placed on the stress concentration in the bridging fibers, Predictions from the LSS model are
compared with those from the line spring model. In general, the line—spring model is found to overcstimate
the stress concentration in critically located fibers. A discussion of the significance of the lower estimates
of the stress concentration factors is given for several composite systems.

NOMENCLATURE
Cryr O fiber, matrix volume fractions (¢;+c¢, = 1)
E longitudinal Young’s modulus, =¢Ee+ ¢, By
E.E, fiber, matrix Young's moduli
/ length of the sliding zone
R; fiber radius
o tensile stress in the bridging fibers
P = oy smeared-out bridging stress in the bridging fibers
T interface sliding shear stress

1. INTRODUCTION

HIGH STRENGTH CERAMIC fibers are employed to enhance the fracture performance of
ceramic matrices. A well designed composite can sustain matrix cracks traversing the
composite. Unbroken, debonded fibers then provide bridging restraint across the
matrix crack faces. After the matrix is fully cracked, the intact fibers continue to carry
additional load. Eventually the fibers fail and the composite ruptures, but the load-
bearing capacity may substantially exceed the stress for matrix cracking.
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An approach to studying matrix cracking and fiber stress concentrations in fiber-
reinforced composites has emerged, wherein a line—spring model is used to represent
the effect of intact fibers bridging matrix cracks. If the radius and spacing of the fibers
are small compared to other length scales characterizing the deformation of the
composite, the bridging-fiber forces can be smeared-out and treated as stresses pro-
vided by springs connecting crack faces. A bridging law is then used to relate the
spring stress to the crack opening displacement. If the fiber—matrix interface has
negligible debonding energy, if initial stresses are ignored, and if a constant frictional
sliding stress 7 is assumed, the following nonlinear bridging law results from an

elementary shear lag analysis:
p(x) = /6(x)/2, (M

where p(x) is the smeared-out fiber bridging stress and J(x) is the effective opening
displacement along the bridged region. The nonlinear spring constant f is given by

4 EE )
p=d———"-b . 2)
Rl‘CmEm

where the notation is defined in the Nomenclature. The distance along the fiber /,
within which sliding occurs on each side of the crack surface, is related to the smeared-
out fiber bridging stress by

CmEm Rf
1(v) = =5 = p(x). (3)

cET

The bridging law is consistent with / greater than several fiber radii.t

The bridging law can be used together with integral equation methods to formulate
and solve various problems for stresses in bridging fibers and stress intensity factors
of matrix cracks. Thus, for example, it was in this way that MARSHALL ef al. (1985)
and McCARTNEY (1987) obtained conditions for the spread of a matrix crack from
an initial, finite length bridged matrix crack. The critical stress required to propagate
the matrix crack approaches the steady-state cracking stress for a semi-infinite bridged
matrix crack, originally obtained by energy-based analyses by AVESTON et al. (1971)
and BUDIANSKY ef al. (1986). MARSHALL and Cox (1987) and Bupiansky and Cui
(1994) have used the line—spring approach based on (1) to study the effect of an
unbridged through-crack in a uni-directional composite on the subsequent propa-
gation of a matrix crack extending from the through-crack. These authors also
determine the maximum stress experienced by the bridging fibers as the matrix crack
spreads. Given the strength of the fibers, they estimate the ultimate strength of the
composite as a function of initial through-crack flaw size. With much the same aim,

t Readers should be aware that the bridging law (1, 2) is not exactly the same as some in the carliest
papers on the subject. The formula for # by MARSHALL er al. (1985) and MARSHAL and Cox (1987) is
missing a factor [¢y,En/E] 2. MarsHaLL and Cox (1988) give a formula identical to that given here.
McCARTNEY's (1987) formula is also the same as the present one, apart from a factor 1 —v?. The transverse
interaction between the fiber and the matrix due to Poisson contraction can be approximated in various
ways leading to such minor variations in the law [see discussion in the Appendix of HE er al. (1993)]. More
recently. MEDA and StEir (1993) proposed a modification of the bridging law with a nonzero bridging
stress as o becomes zero.
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X1a and HUTCHINSON (1994) have used the line—spring approach to investigate matrix
cracking and fiber stress concentration in cross-ply composites.

Line—spring models have become valuable tools in the micromechanics analysis of
various toughening mechanisms [see BAo and Suo (1992) for a review]. These models
replace bridging elements by an equivalent traction—displacement law applied as a
boundary condition along the crack line. For the fiber bridging model, the constituent
properties of the composite and the interface are nicely incorporated into one single
spring parameter, . In addition, the spring model allows use of well established
analytical techniques to solve crack bridging problems. As convenient and powerful
as the line—spring model appears to be, suspicions have arisen that results obtained
from this model for fiber stress concentration in the presence of through-cracks may
be unduly high. Specific experimental evidence giving rise to these suspicions is cited
in Section 6 of this paper, where it is noted that the ultimate strength of some cross-
ply composites should not be as high as experimentally measured, given the stress
concentration levels predicted in the fibers by the line-spring model. It was this
apparent discrepancy between theory and experiment which motivated a critical
examination of the line—spring model for this application, and which led to the
identification of large scale sliding (LSS) as one possible source of the discrepancy.

The large scale sliding model is proposed in the next section, and a solution
procedure using this model is outlined. It is then applied to three representative
problems in subsequent sections: (i) the asymptotic problem for a semi-infinite
through-crack collinear with a semi-infinite bridged matrix crack (Fig. 1) ; (ii) a finite
length through-crack with fully extended collinear matrix cracks [see ahead to Fig.
5(a)]; and (iii) a multiply cracked cross-ply laminate [see ahead to Fig. 5(b)]. For
each problem, key parameters of the problem are identified and solutions based on
the line-spring model are obtained. The new LSS model is then applied to the problem,
and the results are compared with those from the line—spring model. For composite
constituent properties chosen within practical ranges, substantial reductions of stress
concentration in the most highly stressed fibers just ahead of the through-crack tip
are predicted by the LSS model relative to the line—spring model. At the same
time, it is demonstrated that line—spring results are applicable when the constituent
properties are such that small scale sliding does occur. Summary discussion is given
in the last section, along with the appraisal of the experimental observations alluded
to above.

2. THE LARGE SCALE SLIDING MODEL

The uni-directional fiber-reinforced composite containing a semi-infinite through-
crack with a fully extended matrix crack will be used to introduce the LSS model. As
shown in Fig. I, the crack is loaded by a remote, mode | field specified by the
monotonically increasing stress intensity factor K;. Plane strain conditions are
assumed for the composite blocks, and the mode 1 field is that for a crack in an
elastically orthotropic solid. The primary quantity of interest is the stress in the
leading fibers just ahead of the through-crack tip, at x = 0.

The line—spring model is indicated in the lower left-hand corner of Fig. 1. The




1142 Z. C. X1a et al.
bi by tKi

“ LSS model

(T
*KI 7 7 {%,
U line-spring model
b¥; off
- 14
A
5 4
2 X gp|e
A p(x):BJB(x)IZ )"[ : :
*KI O'fO

FiG. 1. A semi-infinite, unbridged through-crack with a semi-infinite, collinear bridged matrix crack.
Conventions for the line—spring model and the large scale shding model.

traction—separation law (1) and (2) is applied as a boundary condition along the x-
axis, for x > 0. In region A, outside the sliding zone, the solid is characterized by the
orthotropic elastic behavior of the composite, i.e. the matrix material reinforced
by perfectly bonded, uni-directional fibers. A nonlinear integral equation for the
distribution of the opening displacement é(x) is formulated. Solution of this equation
provides both the opening displacement and the distribution of the stress in the fibers
where they cross the x-axis, ahead of the through-crack tip. Details of this solution
will be given in the next section.

The rationale for a line—spring approximation requires that the extent of sliding be
small compared to all relevant in-plane lengths. Only then can a sliding zone of
finite width be confidently replaced by an equivalent traction—displacement condition
applied along a line. In the present problem of Fig. 1, there is only a single charac-
teristic length parameter, described in the next section. In the other problems,
additional relevant lengths may be pertinent, such as the length of a through-crack
or, in the case of the cross-ply composite, the ply thickness.

The LSS model distinguishes between region B in which fiber sliding has occurred
and region A in which it has not. Within B, the fibers are treated separately from the
matrix, as will be made clear in the sequel. Denote the boundary between regions A
and B by T, characterized by the extent of fiber sliding /(x). This boundary is not
known in advance but must be determined as part of the solution process. If it is
assumed that sliding is one-signed, consistent with K being monotonically increased,
the load transfer from the fibers to the matrix, within B, is known precisely. Because
each sliding fiber exerts a force per unit length on the matrix equal to 2z R, the load
transfer from fibers to matrix within B is equivalent to a body force per unit volume
given by
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It acts in the sense shown in Fig. |, required by symmetry with respect to the x-axis.
Denote the stress in a fiber at the line of the matrix crack on y = 0 by ¢, and denote
its value at the top of the slipped region at y =/ by of. A simple shear lag analysis
based on equilibrium of the fiber (see Fig. 1) and compatibility of strain at the top of
the sliding zone requires

P=gl—1 !

Of = Oy R (5a)
r 0
o Oy

E (5b)

These combing to give

'm Eoy Ry

/ — Cn By Ry ()'(-). (6)

2Fr

In addition to the body force f in region B, the sliding fibers exert a line load (load
per unit thickness per unit length in the x-direction) along T equal to c;o}. The one
remaining quantity needed to fully describe the behavior of the slipping segment of a
fiber is its vertical displacement " at the top of the slipped region. It is related to the
other quantities by

| T
r__{ o_*npn
v E (o-tl r ! ) (7

where, by symmetry, the vertical displacement of the fibers is zero along y = 0 for
x> 0.

The LSS model is posed as follows. Assuming that the location of I is known (it
must be determined by iteration), the sliding fibers may be regarded as separate
entities from the rest of the solid in B. Represent the fibers as just described. Represent
the remnant material in region B by a linear elastic material whose properties are
those of the matrix with cylindrical holes rather than fibers. These are constrained
only in the transverse direction, because the fiber and matrix remain in frictionless
contact. This replacement will be specified more precisely below. The material in A is
assigned the orthotropic moduli of the composite with bonded fibers. The loads on
the planar body comprising the composite in region A and the remnant matrix in
region B are the remote K\ -field, the vertical body force f in B, and the vertical line
load ¢;o! acting along T'. The remnant matrix in B has zero tractions acting along the
matrix crack line (y = 0, x > 0). The separate sliding fibers in B are governed by the
three equations (5a), (6) and (7) and are described by four unknowns, o, of, [ and
v". The deformation of the sliding segments of the fibers is coupled to the planar body
specified above by requiring that ¢" coincide with the vertical displacement of the
body on T, i.e. ' (x) = v(x, I(x)).

In a given iteration with /(x) regarded as known, the system of equations for the
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body in regions A and B, together with (5a) and (7) for the sliding fiber segments and
the coupling condition on I, specifies a solution for all field quantities, including the
stresses in the fibers. In general, however, this solution will not be consistent with (6)
specifying the vertical extent of the zone of sliding. Given ¢f from the current iteration,
(6) can be used to generate /(x) for the next iteration. However performed, an iteration
process must be used to determine the location of T.

Like the composite material in region A, the remnant matrix material in region B
is orthotropic with one axis of orthotropy aligned with the y-axis. Transverse isotropy
with respect to the y-axis would be assumed for both materials in most instances, and
this has been done here. The moduli of the remnant material in B are those of the
matrix material alone, but containing cylindrical holes with freely sliding fibers.
Since the composites being considered in this paper are assumed to have a residual
compression acting across the fiber—matrix interface, the sliding fibers in region B
continue to constrain the behavior of the remnant matrix by frictionless contact.
Various methods are available for estimating the moduli of the remnant material.
The one employed for the present problems will be mentioned in the next section. For
the problems investigated in this paper, the main quantities of interest are rather
insensitive to details of the elastic properties of the remnant matrix in B. In fact, it
was found that the moduli of the material in A could be substituted for those for the
remnant matrix in B with little consequence. The significance of this substitution is
that the problem for the planar body in the combined regions A and B becomes
elastically homogeneous, opening up such LSS problems to solution by analytical
methods which could not otherwise be used.

In this paper the LSS problems have been analysed by accounting for the different
elastic properties in regions A and B. A finite element method has been used for this
purpose. Most aspects of the implementation of the model in a finite element code
are standard. A finite element mesh is formed for the planar body in regions A and
B. It is convenient to regard the separate sliding fibers in region B as a separate ““fiber
sheet” which has a Young’s modulus ¢E; in the y-direction and all other moduli
(including shear moduli) taken to be zero. The sliding stress 1 acts on the fiber sheet
as the body force f but in the direction opposite to that on the remnant matrix. The
fiber sheet has zero vertical displacement along the x-axis and is attached to the planar
body along I'. This representation is readily implemented in the ABAQUS code used
to carry out the computations. The fiber sheet representation is completely equivalent
to (5a) and (7). As alrcady mentioned, (6) is used to update the location of I for the
next iteration when o? has been determined.

3. A Martrix CRACK EMERGING FROM A SEMI-INFINITE THROUGH-CRACK

The problem addressed in this section is an asymptotic problem in which a matrix
crack has extended from the tip of a semi-infinite through-crack which is loaded by a
remote mode I field with stress intensity K. Two sub-problems are considered : the
problem mentioned in connection with Fig. 1 where the bridged matrix crack extends
to infinity, and a version of the same problem where the matrix crack has finite length
a.,. The emphasis in the first problem will be on determination of the stress distribution
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in the fibers where they bridge the matrix crack. The bridging stress of the leading
fibers will also be of concern in the second problem, along with the stress intensity
factor at the tip of the matrix crack. These quantities will be computed using both the
line—spring model and the LSS model. The problem of Fig. 1 for the fully extended
matrix crack is considered first.

A closed form expression can be readily obtained for the bridging stress of the
leading fibers, p, = p(0) = p(3(0)), as predicted by the line-spring model based on
the bridging law (1). The following result is restricted to the problem at hand involving
the fully expended matrix crack. Application of the J-integral to connect the remote
field to the opening along the crack faces gives

KIZ 3(0) X )
J= E = J p(b) do. (8)
0

Here E = E/(1 —v?), where E is the Young’s modulus of the composite for stressing
parallel to the fibers, v is the Poisson strain ratio of transverse contraction to axial
elongation, and A is an orthotropy factor. This factor depends on ¢; and on non-
dimensional moduli combinations specifying the properties of the uni-directionally
reinforced composite [see, for example, BubiaNsKY and Cui (1994)]. It is unity for an
isotropic material and lies between 0.8 and 1 for most composites. Substitution of the

bridging law (1) into (8) yields
3ﬁ2 K% 13

Determination of the distribution of the bridging stress, p(x), for the line—spring
model requires the formulation and solution of an integral equation. These procedures
are now well established ; therefore, the equation and the numerical analysis used in
its solution will not be recorded here. The analysis employed has been used by Xia
and HUTCHINSON (1994) to study similar equations. The integral equation for p(x)
can be put in non-dimensional form using two quantities: the bridging stress at the
tip, py, and a quantity with the dimensions of length,

d— (3‘45{(')“ (10)
)

This is the only length parameter in the problem. Numerical results for the bridging
stress p(x) normalized by p, are plotted as a function of x/d in Fig. 2 as a solid line;
note that the bridging stress p is ¢;o;. The curve in Fig. 2 is universal in the sense that
there is no additional parametric dependence. Included in Fig. 2 is the classical inverse
square root stress distribution, K;/(2rx)"', specifying the remote field, which takes
the form p/p, = (2/3)2"3/\/27r(x/d). Note that the length quantity d characterizes the
transition to the classical field, with any significant difference from it disappearing for
x greater than about 1.54. The length of the sliding zone at the tip will be compared
to d in the assessment of whether LSS conditions pertain.

Now consider the large scale sliding model of this problem. It is convenient to use
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Fi1G. 2. Bridging stress distributions ahead of the through-crack tip.

the two quantities p, and d defined above. The formula (6) relating the slip length to
the stress in the fibers along the line of the matrix crack (y = 0) can be rewritten as

) _ (V" GEE p) (11)
d 3 emEnAE py
where now p(x) = cof(x). The body force f is given by

f= Po (3)”3 CEELAE
| d CfEsz

: (12)

and the remotely applied stress intensity factor is linked to p, and d by

K = (%)2‘3170\/;[ (13)

It follows from (11)—(13) that, according to the LSS model, the stress distribution
in the bridging fibers, normalized by p,, will depend only on x/d, in addition to the
non-dimensional moduli parameters characterizing the composite, such as £,/E,,, and
the fiber volume fraction ¢;. In all the numerical examples presented in this paper the
Poisson’s ratios of the fiber and the matrix are taken to be the same and equal to 0.2.
In the four problems studied in this paper, we have used HiLL’s (1965) self-consistent
results for the transversely isotropic elastic properties of the composite in region A.
The moduli in region B have also been represented as transversely isotropic and have
been determined using the same self-consistent equations, but replacing fibers by
cylindrical holes for the purpose of estimating the axial modulus, the Poisson’s ratio
relating the transverse and axial strains, and the longitudinal shear modulus. The
transverse modulus and Poisson’s ratio relating the two transverse strains were taken
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to be the same as those of the composite with bonded fibers. This approximately
accounts for the constraint afforded by contact across the fiber—matrix interface.
The transversely isotropic properties were used to generate the plane strain moduli
guantities needed in each of the problems studied here. The LSS model is now fully
specified.

Numerical calculations were carried out for a wide range of E;/E, and ¢ (with
ve = v, = 0.2). To appreciate the numerical results, consider the ratio of the extent of
sliding of the fibers at the through-crack tip to d as predicted by the line—spring model,

1.e. with p(O) = Po,
1'(0) 2\ crlrE _ 2\'7 ‘

For typical values of the parameters appearing on the right-hand side of (14) the ratio
of sliding length to & will not be small compared to unity. Only materials with small
& will give rise to small values of this ratio. [t will be seen that if £ is not small the
LSS predictions will differ appreciably from those of the line-spring model. This is
illustrated by the LSS stress distributions for F;/£,, = 1 and various ¢, covering a
range of &, in Fig. 2. The LSS distributions progressively approach the distribution
of the line—spring model for decreasing £. Of the examples shown, agreement arises
only for & = 0.05 corresponding to the unrealistically small fiber volume fraction
¢; = 0.05. Figure 3(a) presents LSS results for the stress in the fibers just ahead of the
through-crack tip. The results are presented as the ratio (¢6¢);gs/(¢t0¢)im. Where
(¢e0r)1em = Po 18 the line—spring model prediction. This ratio reflects the extent to which
the LSS prediction is lower than the line—spring prediction for the most severely
stressed fibers. For all practical values of E;/E, and ¢, the line—spring model over-
estimates the fiber stress concentration substantially. Figure 3(b) reveals a remarkable
near-collapse to a single relationship of all the numerical results in Fig. 3(a) when
they are plotted as (c;o¢)1ss/(¢10;)ism versus E. The solid line in Fig. 3(b) is an empirical
curve fit to the numerical data. For this problem, Fig. 3(b) clearly shows that the
parameter & provides a measure of the degree to which LSS predictions differ from
the line—spring predictions. In turn, by (14), this confirms that the necessity of invoking
an LSS approach is tied to the magnitude of the ratio of the sliding length at the
through-crack tip to d.

A selected set of the above numerical computations with the LSS model were
repeated with only a change in the elastic moduli in region B. We found very little
sensitivity in the predictions for the fiber stresses to the details of the moduli in B. An
excellent approximation to the results presented above was obtained by taking the
moduli in B to be the same as those in A. Evidently, the essential difference between
the LSS and line—spring models lies in the modeling of the spatial aspects of the load
transfer from the fibers and not in complications of the modified moduli in region B.
The finite height of the sliding zone at the tip of the through-crack tends to diffuse
the stress concentration in the most highly stressed fibers.

Next consider a matrix crack of finite length a,, ahead the through-crack tip as
shown in the insert in Fig. 4. Now the emphasis will be on the stress intensity factor
K, at the matrix crack tip, as well as the stress concentration in the fiber at the through-
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Fi:. 3. (a) Ratio of the bridging stress directly ahead of the through-crack tip as predicted by the LSS
model to that by the line-spring model [i.e. p, given in (9)]. (b) The ratio in (a) plotted against ¢ defined
in (14). The solid line curve is an empirical fit to the computed values.

crack tip. The line~spring mode] version of this problem was first solved for all values
of a,/d, and the results are presented in Fig. 4. Figure 4(a) displays K,/K| as a function
of normalized matrix crack length, a,,/d, while Fig. 4(b) displays the companion plot
of ¢iay/p, for the fibers just ahead of the through-crack tip. The portion of the curve
for ay,/d < 0.2 has been dashed because the line—spring relation (1) is increasingly
inaccurate as & goes to zero, with the consequence that the prediction for the stress in
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as a function of the normalized matrix crack length. (b) Ratio of the bridging stresses just ahead of the

unbridged through-crack as a function of the normalized matrix crack length as predicted by the two
models.

the lead fiber is not expected to be correct when a,, = 0 (MEDA and STEIF, 1993). Also
shown in Fig. 4 are numerical results obtained from the LSS model for £,/E, = 1 and
several values of ¢, again chosen to illustrate the approach to the line-spring pre-
dictions when ¢, (and thus &) becomes small. Differences between the predictions of
the two models for the matrix crack stress intensity factor are relatively small. The
substantial reductions in stress concentration in the lead fibers predicted by the LSS
model compared to the line-spring model are seen to be only weakly dependent on
dn /d.

4. UnN1-DIRECTIONAL COMPOSITE CONTAINING A FINITE THROUGH-CRACK AND
FuLLy EXTENDED MATRIX CRACKS

The second problem to be investigated using the LSS model is that of a uni-
directional fiber-reinforced composite containing a finite through-crack of length 2a
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Fi:. 5. Conventions. (a) Finite length unbridged through-crack with collinear semi-infinite bridged matrix
cracks. (b) Transverse section of a cross-ply matrix with a uniform distribution of unbridged through-
cracks in the 90 plies and bridged matrix cracks in the 0° plies.

with fully extended matrix cracks emerging from each tip, as depicted in Fig. 5(a). A
remote stress ¢ acts on the composite. This problem was previously studied by
Bupiansky and Cui (1994) by means of the line—spring model in an effort to determine
the tensile strength of the composite in the presence of crack-like flaws. Determination
of the stress concentration in the leading fiber ahead of the through-crack tip has
special interest, because failure of the leading fibers will precipitate failure of the
composite.

Define the stress concentration factor (SCF) for the leading fibers at the through-
crack tip as

;O

A=—, (15)
g

where ¢ is again the smeared-out bridging stress of the leading fibers. Since the
through-crack is not bridged by fibers, 4 will exceed unity. The line-spring version of
the problem is again obtained by formulating and solving an integral equation. In
accordance with the analysis of Budiansky and Cui, the solution for 2 is fully charac-
terized by a single non-dimensional parameter, #, defined as

3nct BB ar
= = (16)
A ELAE R
The relation between A and # obtained from the numerical solution of the integral
equation is plotted in Fig. 6(a) as the solid line. A remarkably accurate approximation
to this result is given by
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F1G. 6. Stress concentration factor for the bridging stress just ahcad of a finite length through-crack as a
function of » defined in (16) as predicted by the two models. (a) The effect of varying fiber volume fraction

in the LSS model. {b) The effect of varying E/E, in the LSS model.

i= T

an

shown as the dashed curve in Fig. 6(a) [obtained from (12) of Budiansky and Cui].
The LSS model is similar to that developed for the previous problem. The slip
length in (3) is now normalized by the half-length of the unbridged through-crack

and written as
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() _ 3nGEE 1 p(x)

(18)

a 2c,E AEw o
and the body force / is expressed as
.o 202 ELAE

. 19
a 37thEfE2 1 ( )

It can now be shown from a non-dimensionalization of the governing equations for
the LSS model that the SCF, 4, depends on » and on the non-dimensional parameters
such as E(/E,, and ¢; specifying the composite.

There are two length quantities in this problem: the half-crack length a and the
measure d which may still be defined as in (10), but now with K| = 0\/%. To place
the need for an LSS approach into perspective, the height of the sliding zone at the
tip of the through-crack, /(a), as predicted by the line—spring model will be compared
to both a and d. By (15), the approximation (17), and (18),

o)  oEE 3/l +n*? 5371, /145 (20)

a (memAE 2y 2n

A plot of l(a)/(£a) versus # is given in Fig. 7(a). Similarly, the line-spring estimate of
the other length ratio is
la)  EE J1+n*° 5\/ 147 )l

d  enEadE g2 Gpi2)"? .
and /(a)/(¢d) is also plotted in Fig. 7(a). For a given value of the parameter ¢, the
ratio /(a)/d is nearly constant over most of the range of n, while /{a)/a is largest for
small # and falls off gradually for large . Based on experience with the previous
problem, LSS conditions are again expected to depend on the magnitude of £ as well
as y.

Results obtained from the LSS model for three values of ¢ with E/FE, =1
(v = vy, = 0.2) are included in Fig. 6(a). The appreciable deviation between the two
models with increasing ¢; is clearly evident. The influence of a change in E/FE, is
displayed in Fig. 6(b). It is apparent that the discrepancy between the two models is
considerable over essentially the entire practical range of parameter space, with the
LSS model predicting lower values of stress concentration. The numerical data points
from the two plots of Fig. 6 for y =1, 5 and 30 are used to plot the ratio
(crop)Lss/(Cr0e)m as a function of & in Fig. 7(b). The lowest curve in this figure is the
empirical fit to the numerical results for the semi-infinite through-crack problem in
Fig. 3(b), which corresponds to the limit # = c0. It can be noted that for # ranging
from about 5 to co the reduction in the LSS prediction for the stress in the leading
fibers relative to the line—spring model depends primarily on &,

5. A MuLtirLy CRACKED CROSS-PLY LAMINATE

The last of the problems to be studied is a fiber-reinforced cross-ply laminate with
unbridged through-cracks across the 90° plies connected by bridged matrix cracks in
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Fic. 7. (a) Normalized variation of the ratios of the height of the sliding zone at the tip of the through-
crack, /(a), to the crack half-length, @, and the length quantity, &, defined in (10), as predicted by the line—
spring model. (b) Ratio of the bridging stresses just ahcad of the through-crack tip from the two models

cross-plotted against ¢ for several values of #.

the 0° plies, as illustrated in Fig. 5(b). The plies are equally spaced with ply thickness
2t, and the applied stress carried by the composite is a. The pattern is doubly periodic
with the spacing between cracks taken as 2L. The sequence of events leading to an
idealized pattern such as that envisioned in Fig. 5(b) is as follows. For the properties
of a typical brittle-matrix cross-ply composite, the first cracks to form as the applied
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stress is increased are those in the 90° plies which spread from flaws and tunnel in the
direction perpendicular to the plane of Fig. 5(b). They extend all the way across the
90° plies. At higher applied stresses, these cracks serve as flaws from which plane
strain matrix cracks spread across the 0° plies. The fibers in the 0° plies of a well
designed composite must survive this process if the composite is to display any
appreciable “‘ductility”. The process just described has been analysed in some detail
by Xi1a and HurcHINSON (1994), who used a line—spring model to represent fiber
bridging in the 0° plies. Their emphasis was on the applied stress associated with
matrix cracking and the stress concentration in the most highly stressed fibers located
at the ply interfaces. The doubly periodic cracking pattern shown in Fig. 5(b) is one
of two patterns considered by Xia and Hutchinson to model crack interaction effects.
The issue to be addressed here is whether the stresses predicted by the line—spring
model for the most highly stressed fibers are unduly high, with clear implications for
survivability of cross-plies with fully developed matrix cracks.

The fibers at the interfaces between the 90° and 0” plies will experience the highest
stress. Again, define the stress concentration factor, 4, for these most highly stressed
fibers by (15). The parametric dependence of this stress concentration factor has the
general form

) E; t
A=4 (Em \ G, W’L)’ (22)
where /L is the crack density and # is now defined using ¢ rather than a as
3nctEE? 1t
G ELAE Ria
The dependence of 4 on v and vy, is left implicit; v, = v, = 0.2 is used in the calcu-
lations.

In the case that the fibers and the matrix have identical elastic properties, the cross-
ply is homogeneous and isotropic prior to any cracking. Solutions to the line-spring
model version of the problem can be obtained by the integral equation techniques
used by Xia and HurchinsoN (1994). The results of the line—spring model for the
SCF for the case t/I. = 0 are shown in Fig. 8. Because all the load is carried by the
bridging fibers in the 0 plies, A is never less than 2. The stress concentration factors
for the same problem obtained from the LSS model are also plotted in Fig. 8 for three
values of ¢;. The conclusion is that the line—spring model again overestimates the SCF
in the range of practical values, sometimes significantly so.

Consider next the effect of the crack density, ¢/L. on the stress concentrations in
the bridging fibers. An important consequence of multiple matrix cracking and sliding
is the alleviation and ultimate elimination of the stress concentration in the fibers in
the 0" plies. Elimination arises when the fibers are fully sliding (i.e. / = L across the
entire ply), as shown by elementary considerations of fiber equilibrium and stretching
for the geometry in Fig. 5(b). An accurate estimate of the critical density of matrix
cracks at which 4 drops to 2 is obtained by setting / = L and p = 2¢ in (3) giving

L erit Bl CnEn R0 B 3nc B E -

(23)

(24)
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F1G. 8. Stress concentration factor for the bridging stress at the interface between the 0° and 90 plies of a
cross-ply composite as predicted by the two models for the case +/L = 0. The line—spring prediction depends
only on y defined in (23); the LSS prediction depends on # and on constituent parameters such as ¢, and
By B,

Stated differently, as the applied stress ¢ increases, the matrix crack density increases
until the fibers become fully sliding. In this state, the stress in each fiber where it
bridges a matrix crack is given by oy = 20/c;.

Numerical calculations based on the LSS model have been performed for a rep-
resentative case of E//E, =1 and ¢; = 0.4. Results for A = ¢io/o are plotted as a
tunction of the crack density 7/L for different values of # in Fig. 9. The numerical
results are connected by dashed lines to the intercepts corresponding to first attainment
of A =2 given by the formula (24). The accuracy of the simple formula is evident.
Indeed, the numerical solutions revealed that the sliding zone approached the con-
dition / = L fairly uniformly across the 0° plies, as assumed in the derivation of (24).

In summary, as the applied stress on the cross-ply is increased, leading first to
tunnel cracking in the 90° plies and then matrix cracking in the 0° plies, the stresses
in the fibers at the ply interfaces will be the greatest. However, as the applied stress
and the matrix crack density increase, the stress concentration factor for the fibers at
the ply interfaces drops until matrix cracking is saturated with full sliding. In this
state, the fibers uniformly share the load and the stress in the fibers at the matrix
crack line becomes oy = 20/c;.

6. ToHE EXPERIMENTAL SITUATION
The ultimate tensile strengths (S,) of many unidirectional and cross-ply CMCs

have been reported to conform with predictions based on global load sharing (GLS)
(CurTiN, 1991). The GLS model considers that the load is distributed uniformly
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F1G. 9. Stress concentration factor for the bridging stress at the interface between the 0 plies and the 90”
plies in a cross-ply composite as a function of crack density, t/L, as predicted by the LSS model. The
intercept with the horizontal axis is given by (24).

among all intact fibers. The CMC materials that give good agreement with the GLS
model include various SiC/C composites (HEREDIA et al., 1992), SiC/CAS (PREWO,
1986) and SiC/CAS (BEYERLE et al., 1992). Each of these materials has the common
characteristic that the interface sliding stress 7 is relatively small (2 < © < 40 MPa).
The situation has been comprehensively summarized by CUrRTIN (1993). The impli-
cation of this agreement for the present discussion is that the stress concentration in
the fibers is minimal at the failure loads, despite the presence of manufacturing flaws
and matrix cracks. Otherwise, the stress concentration would lead to premature fiber
failure and ultimate tensile strength values appreciably below the GLS predictions.
To explore the situation further, the preceding LSS model is used to evaluate the
fiber stress concentration for various of the experimental conditions wherein GLS
predictions have been found to apply. The most stringent test of the LSS model arises
for cross-ply laminates. For this case, the unbridged crack dimension is the largest (the
ply dimension 21), resulting in correspondingly large values of n (23). Experimental
information for several CMCs is summarized in Table 1. These experimental charac-
teristics can be most readily compared with the LSS model by using (24), with o = S,
to predict the crack spacing at which the stress concentration in the fibers is eliminated.

TABLE 1. Properties of cross-ply CMCs

Material E. (GPA) T (MPa) S, (MPa) n coyfo (/L) rne
Sic/C 20 10 340 90 x2 1.03

SiC/CAS 100 15 220 10 2 0.8]

SiC/LAS 100 3 300 1 2 0.08

E;=200GPa; Ry =7 um; ¢; = 0.4, ¢, = 0.6.




Large scale sliding 1157

For all three composites, (¢/L). is about unity or less (Table 1). Crack spacings in
CMCs almost invariably satisfy ¢/L > 1 prior to composite rupture (BEYERLE e al.,
1992 ; GuILLAUMAT, 1993). The applicability of the GLS criterion for the ultimate
tensile strength is thus consistent with the predictions of the LSS model. One other
factor is relevant for the SiC/C composite, which gives the largest (¢/L).; (Table 1).
Processing flaws tend to induce inter-ply shear cracks (TURNER e al., 1993) which
suppress matrix cracks in the 0° plies, while also eliminating stress concentrations in
the fibers.

The comparison with experiments has emphasized the importance of large scale
sliding in governing the stresses in fibers within cross-ply composites, resulting in the
applicability of global load sharing concepts for predicting the ultimate tensile stress.
Related arguments would apply regarding the role of manufacturing flaws within the
plies. Such flaws result in unbridged cracks, which would be expected to introduce
stress concentrations into the fibers. The line—spring model and the LSS results taken
together show that, where these stress concentrations exist, they can be relatively
small provided that r is less than about 3 (cf. Fig. 6), especially when E/E_ is
large. The clear implication from (16) is that the material becomes more tolerant to
manufacturing flaws when the interface sliding resistance is low.
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