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ABSTRACT

The contribution of plastic deformation to the effective work of fracture is
computed for a crack lying along one of the interfaces of a thin ductile layer joining
two elastic solids. A model is proposed for the joint whose major parameters are
the layer thickness, the elastic—plastic properties of material in the layer, and the
work of separation and peak separation stress of the local interface fracture process.
A symmetric mode I loading of the joint is considered under conditions where the
thickness of the layer and the extent of the plastic zone are small compared with
the crack length. The crack growth resistance behaviour is computed, with special
emphasis on the steady-state work of fracture. The role of the layer thickness in the
development of the plasticity contribution to toughness is detailed. Plastic
dissipation is fully realized for layers above a certain thickness, characteristic of a
plastic zone dimension, and is negligible when the layer is thin relative to this
dimension. Other factors which may effect the effective toughness of the joint, such
as modulus mismatch of the layer and adherends and residual stress in the layer, are
discussed together with limitations and possible extensions of the model.

§ 1. INTRODUCTION

It has long been appreciated that plastic dissipation contributes significantly to the
total work of fracture in metals and polymeric solids. Irwin and Orowan independently
argued that Griffith’s energy balance for brittle crack advance must include a
contribution from plastic deformation when applied to nearly all structural metals.
Beyond the qualitative understanding that plastic deformation significantly adds to the
toughness of ductile metals, there is little available in the way of a quantitative theory
of toughness enhancement due to plasticity. In the case of cleavage fracture, for
example, there is no accepted theory for predicting the consequent reduction in the
plasticity contribution to the total work of fracture stemming from the reduction in
the atomistic work of fracture due to an embrittling agent. Similarly, for metals which
fracture by the nucleation, growth and coalescence of voids, the resultant effect on the
macroscopic toughness and subsequent crack growth resistance due to alteration of
conditions of void nucleation, for example, is not yet within the realm of quantitative
prediction. In both instances, the missing element is the nonlinear coupling between the
near-tip fracture process and the overall plastic dissipation.

Recent experiments on the toughness of joint systems consisting of a thin layer of
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ductile metal or polymeric adhesive sandwiched between two elastically deforming
adherends have added new possibilities to the experimental investigation of this
coupling. Reimanis et al. (1990) and Reimanis, Dalgleish and Evans (1991) have
performed experiments on systems with a thin gold layer joining two sapphire (Al;O3)
adherends, where a long crack is introduced on one of the gold—sapphire interfaces.
The system allows direct visualization of the interface ahead of the crack tip though
the transparent sapphire. Depending on the bonding process and on environmental
conditions under which the test is conducted, the fracture process was observed to be
either a cleavage-like interfacial separation or a void growth and coalescence
mechanism occurring at the interface. The total work of fracture was found to be many
times the work of the fracture process and, moreover, a fairly strong function of the
thickness of the ductile gold layer. The Al,Os/Au sandwich system and others like it
make possible systematic exploration of the role of plasticity in contributing to fracture
toughness.

Plasticity also plays a significant role in the toughness of polymeric adhesive joints.
Chai (1986, 1993) has carried out systematic studies of the effect of layer thickness
on the macroscopic toughness of joints loaded symmetrically (mode I) and
antisymmetrically (mode II). A variety of fracture process mechanisms have been
observed which depend on the quality of the bond, the ductility of the adhesive material,
and the type of loading. Most relevant to the present study are observations of mode
Ifailures occurring along one of the bond interfaces and the dependence of the measured
toughness of the joint on the adhesive layer thickness.

The geometry of the problem addressed in this paperis shown in fig. 1. A thin ductile
layer joins two elastic blocks with identical elastic properties. A crack lies along a
portion of one of the interfaces between the layer and the blocks. The crack is assumed
to be sufficiently long compared with the thickness of the layer such that the effect of
a remote symmetric loading is communicated to the vicinity of the crack tip through
the mode I stress intensity factor K. Thus the asymptotic problem depicted in fig. 1 is
a plane strain problem with two identical semi-infinite elastic blocks joined by a ductile
layer of thickness 4. A semi-infinite crack lies long the upper interface, and the remote
plane strain field is fully specified by the applied mode I stress intensity factor K.
Interface separation will be characterized by a traction-separation law, detailed shortly,
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which has a work of separation per unit area denoted by I'y. The mechanics problem
posed here is the determination of the macroscopic, or effective, work I” of fracture per
unit area in terms of Iy and the properties of the layer, including its yield strength avy,
its strain-hardening exponent N and its thickness. A standard elastic—plastic constitutive
model for metals will be used to represent the layer material. Thus the primary emphasis
here will be on systems with a ductile metal layer. However, the work should also have
implications for adhesive joints, to the extent that continuum metal plasticity is capable
of modelling features of inelastic polymer behaviour,

Specifically, for a given set of properties, the resistance to crack advance will be
determined in the form of the relation between I" and crack advance Aa. Particular
emphasis is placed on the toughness level I'ss attained after sufficient crack advance such
that steady-state propagation is in effect. This paper builds on work in two earlier papers
by the present authors in which the fracture process is modelled as a traction-separation
law applied along the line of the crack within a continuum representation of an
elastic—plastic solid. The first of these papers applied the approach to small-scale-
yielding mode I crack growth in a homogeneous elastic—plastic solid (Tvergaard
and Hutchinson 1992, hereafter denoted TH1). The second was concerned with
mixed-mode crack growth along a bimaterial interface under small scale yiclding
conditions (Tvergaard and Hutchinson 1993, hereafter denoted TH2). The approach of
embedding a traction-separation law within an elastic—plastic continuum to model crack
growth initiation and advance was initiated by Needlehams (1987) in his study of the
debonding of hard particles in ductile metal matrices.

1.1. The traction-separation law of the interface
Following the notation for the law introduced in TH2, let 6, and &, be the normal
and tangential components of the relative displacement of the crack faces across the
interface in the zone where the fracture processes are occurring, as indicated in fig. 2.
Let &5 and &7 be critical values of these displacement components and define a single
non-dimensional separation measure as
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such that the tractions drop to zero when A = 1. With a(1) displayed in fig. 2, a potential
from which the tractions are derived is defined as
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The normal and tangential components of the traction acting on the interface in the
fracture process zone are given by
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The traction law under a purely normal separation (3, = 0), is T, = a(4) where 4 = d,/5;.
Under a purely tangential displacement (3, =0), T,= (5;/0;)c(1) where A= 5/5;.
The peak normal traction under pure normal separation is ¢, and the peak shear traction
is (;/6))6 in a pure tangential ‘separation’. The work of separation per unit area of
interface is given by eqn. (2) with A= 1. For the separation function ¢(4) specified in
fig. 2,

The parameters governing the separation law are therefore the work I'y of the
fracture process, the peak stress quantity 6 and the critical displacement ratio J;/J;,
together with the factors 4; and A; governing the shape of the separation function. Note
that use of the potential ensures that the work of separation is I'y irrespective of the
combination of normal and tangential displacements taking place in the process zone.
Experience gained in the two earlier studies suggests that the details of the shape of the
separation law are relatively unimportant. It will be seen that the present ductile layer
problem involves separation displacements which are predominantly normal, such that
the choice of the ratio d;/d; also has relatively little influence on the predictions of
the macroscopic toughness. Thus the two most important parameters characterizing the
fracture process in this model are I'g and &. Further discussion of their interpretation
is given below.

1.2. Properties of the ductile layer and the two elastic solids

As noted earlier, there are many parameters which influence the macroscopic
toughness of the system shown in fig. 1. Some theoretical evidence will be cited in the
final discussion section which suggests that differences between the elastic moduli of
the layer and the adjoining solids may have a fairly significant effect on the macroscopic
toughness of the system. The residual stress in the thin layer, acting parallel to the layer,
is also likely to be important. Nevertheless, in this first study of the ductile layer system
using the present approach, the effects of elastic mismatch and residual stress in the layer
will not be considered. The layer and the adjoining adherends are taken to have identical
isotropic elastic propertiés, with Young’s modulus £ and Poisson’s ratio v.
The adherends do not yield. The layer is assumed to be stress free in the unloaded state.
The layer material is characterized by J> flow theory, that is the standard isotropic
hardening incremental plasticity theory based on the Mises invariant. The tensile curve
of true stress against true strain for the layer material is taken to be

g =z
iy g =0y,
E
&= N for (5)
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where oy is the tensile yield stress and N is the strain-hardening exponent.
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1.3. Definition of the macroscopic toughness measure and the reference
length quantiry R,
Irwin’s relation between the energy release rate G and the stress intensity factor K
for a mode I plane-strain crack in an elastic solid is

G= K> (6)

This relation applies to the asymptotic problem of fig. 1 with G interpreted as the remote
or applied energy release rate and K as the intensity of the remote field. The crack growth
resistance I is identified with G under conditions of crack advance. The model will be
used to compute the history of I" as a function of crack advance Aa as it depends on
the parameters of the system. From these resistance curve data, one can identify a
toughness level characterizing initiation of crack growth and an asymptote, denoted by
I'ss, characterizing steady-state crack growth. Dimensional considerations dictate that
the resistance curve will be a dimensionless function of the following non-dimensional
quantities:
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where R, is a material-based reference length introduced next.
When plasticity makes a negligibly small contribution to the toughness of the
system, the crack will propagate along the interface at a constant applied energy release
rate equal to the work of the fracture process: I' = I'p or, equivalently, at K = Ky where

Ko=[ETry(1 —v)]¥2. As in THI, define a reference length by
1 <K0>2 I El,
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In general, Ry should simply be regarded as a material-based length quantity. However,
under certain circumstances it can be interpreted as a plastic zone size. For a
homogeneous elastic—plastic solid, Ry is the widely used estimate of the size of the
plastic zone in small-yielding under plane strain when the remote loading is K.
For the present problem, R, can thus be regarded as an estimate of the plastic zone size,
as long as it is less than the layer thickness and as long as the plasticity contribution
to the macroscopic work of fracture is comparable with I'y. When I is larger than I'o,
the plastic zone scales with but is larger than Ry.

§ 2. IDENTIFICATION OF [y AND & FOR TWO FRACTURE PROCESSES

For situations where failure of the interface predominantly involves a normal
separation, it has already been remarked that the two most important parameters
specifying the traction-separation law are 'y and &. For a given application, these
parameters can be regarded as phenomenological quantities and assigned values to fit
the model to selected experimental resistance curve data. More fundamentally, when
the essence of a given fracture process is captured by a traction-separation law such as
that introduced above, there is the possibility of estimating the values of these two
parameters by micromechanics analysis. An illustration of this more fundamental
approach was given in TH1, where a micromechanics analysis of the mechanism of void
growth and coalescence led to identification of the two parameters for this fracture
process. The outcome of that analysis will be briefly reviewed, followed by a second
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example for a cleavage. mechanism where .the -representation must be regarded as
phenomenological.

2.1. Fracture process based on the mechanism of void growth and coalescence

In THI1 the model of void growth and coalescence of Gurson (1977) was used to
calculate the traction-displacement relation for a planar sheet of uniformly spaced voids
sandwiched between two blocks undergoing normal separation. Under conditions
discussed in TH1, where the fracture process zone extends ahead of the crack tip by
more than a few void spacings, the traction-displacement relation so calculated can be
used as an approximation for the separation law in the crack propagation model. In this
way, one can calculate the values of I'g and 6 in terms of the parameters specifying the
Gurson model. The calculations performed in TH1 give, as the work of the fracture
process, ' = Covd, where d is the void spacing and C ranges between 0-4 and 0-8
depending on oy and N. With d specified, the work of separation is otherwise only
weakly dependent on the initial void volume fraction f;. The peak stress 6 is quite
sensitive to fy, as well as to N and av/E. A set of results taken from TH1 are reproduced
in fig. 3 showing the dependence of I'y/ovyd and é/6vy on f, and N for ov/E = 0-003 and
v=03.

Shih and Xia (1993) have employed a more elaborate model of the void growth and
coalescence mechanism to generate plane-strain crack growth resistance behaviour.
Within a finite-element representation of a solid containing a semi-finite crack, they
modelled a planar array of discrete voids spaced a distance 4 apart on the plane ahead
of the macroscopic crack tip. The Gurson model was used to represent the response of
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coalescence process as a function of initial void volume fraction (TH1).
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the individual void cells. The predictions of the model of Shih and Xia depend on the
same continuum and fracture process parameters discussed above. In the range of
behaviours where the fracture process zone extends more than about two void spacings
ahead of the crack tip, the predictions of their model are in close agreement with those
of the present model when fracture process parameters such as those in fig. 3 are used
as input.

2.2. Fracture process based on a cleavage-like mechanism

Suo, Shih and Varias (SSV) (1993) have proposed a model for calculating the
plasticity enhancement of toughness for metals and metal-ceramic interfaces where
the separation process involves atomic cleavage. They restrict consideration to metals
whose structure is such that a crack tip advances by cleavage without emitting
dislocations. Their emphasis is on the role of the plastic deformation which occurs as
aresult of generation and motion of dislocations outside a dislocation-free zone centred
at the crack tip. Their model, which is depicted in the inset of fig. 4, uses an elastic strip
of height 2D to represent the dislocation-free zone and uses the same isotropic hardening
flow theory of plasticity referred to in § 1.2 to represent the elastic—plastic material
outside the strip. Small-scale yielding in plane strain is considered with K or,
equivalently, G specifying the applied field, just as in the case of the present model.
Thus the SSV model is characterized by the parameters E, v, oy and N of the
elastic—plastic continuum, together with the cleavage work I'c of fracture of
the dislocation-free strip and its height 2D. In addition to its use to predict the plasticity
contribution to toughness, the SSV model was put forward to explain how stresses in
the immediate vicinity of the crack tip reach the high levels needed to produce atomic

Fig. 4
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Relation of D/R; from the SSV model to the normalized peak stress of the present model needed
to bring the steady-state toughness predictions of the two models into coincidence. Both
apply to small-scale-yielding crack growth in a homogeneous elastic—plastic solid.
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Fig. 5
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separation. According to standard continuum plasticity models of crack tip behaviour,
stresses cannot rise to levels required for cleavage without the presence of the
dislocation-free strip. The SSV model neglects a transition zone outside the
dislocation-free region within which conventional continuum plasticity is obviously an
inadequate representation of dislocation behaviour. Nevertheless, the model seems to
capture successfully some of the main features which influence cleavage-like separation
in the presence of plastic flow and appears to have qualitative validity for metals and
metal-ceramic interfaces which cleave.

The present class of models does not invoke a dislocation-free elastic region and
is incapable of extrapolation all the way to a crack tip undergoing cleavage-like
separation. Nevertheless, it is possible to bring the present class of models into direct
correspondence with the SSV class of models. Specifically, it is possible to relate I’y
and & of the present model to I'c and D of the SSV model such that crack growth
resistance predictions of the two models are similar. For reasons which will be made
evident later in this paper, both models predict that initiation of crack growth occurs
when I attains the local work of fracture, that is I'y for the present model or I'¢ for the
SSV model. Thus correspondence requires o = I'c. The choice of & is made such that
the steady-state toughness Iy, predicted by the two models is also the same. Figure 4
displays plots of D/Ry against 6/ay for three values of N which achieve this purpose.
(This correspondence was made using the results in fig. 5 of TH1 and the corresponding
results in fig. 5 of the SSV paper, both of which were obtained with ¢y/E = 0-003 and
v=0-3. The curves in fig. 4 were plotted by reading numerical values off the curves
in the respective figures, and thus their accuracy may be somewhat less than the original
results.) The essential point is that for /Ry in the range from 0-05 to 0-5 the present
model can be used in a phenomenological way to reproduce the predictions of the SSV
model by an appropriate choice of I'y and 6/ay. The corresponding range of '/ is
from about 20 down to 1.

In summary, in some instances, the present model can realistically reproduce
behaviour down to the crack tip. In other applications, such as the SSV model of
cleavage, it may be possible to choose I’y and ¢ as phenomenological parameters which
characterize the effective behaviour of a zone of intermediate scale surrounding the
actual fracture process zone at the tip.
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§ 3. NUMERICAL METHOD

The numerical method used to solve the present plane strain problem in fig. | has
some similarity to the finite-element scheme used in TH1 and TH2. In particular, the
numerical aspects concerned with propagation of the crack down the interface are
similar to those in the interface crack study in TH2. Here, however, plastic deformation
takes place only in the thin layer of thickness h, while the solids on either side of the
layer remain elastic. The region analysed numerically is divided into three subregions
I, 2 and 3, as shown in fig. 5, where the outer regions | and 2 are semicircular with
radius Ay, and region 3 is rectangular with dimensions 4 by 2A,. The finite element mesh
consists of quadrilaterals, each built up of four triangular linear-displacement elements.
The meshes used in regions 1 and 2 are identical with those employed in THI and TH2.
In region 3 the quadrilaterals are rectangular with edge nodes located so that they fit
the edge nodes of the adjacent region. The initial crack tip is located at x; = x» = 0, and
a uniform mesh region of length By is used in front of the initial crack tip to model crack
growth. The length of one square element in this uniformly meshed region is denoted
by A().

Itis irnagined that the extent of the plastic zone in the layer is very small compared
with the full crack length. This permits consideration of the asymptotic problem
depicted in fig. 1 for a semi-infinite crack under remote mode 1 loading. Thus, on the
circular edges of regions 1 and 2, loads corresponding to the tractions of the mode I
stress field are applied, with amplitude K. At the two ends of the thin layer the edge
loads are neglected which introduces a very small error as long as h/Ap is small. At the
boundary between regions 2 and 3 the conditions to be satisfied are

u'(n3) = u'(m2), W (n3) = (), )]
T'()= —T'), T*(n3)= — T, (10)

where #, and 55 are coordinates along the boundary. At the boundary between regions
1 and 3 the initial crack surfaces for x; <<0 are traction free, while for x; >0 the
displacements and tractions are related by the traction-separation law of the interface
of § 1.1. Thus, for & >0 and & > 0 (see fig. 5)

u'(E) — u'(&) = 8(&), uH(E) — 17(&3) = 3u(&3), (11)
T'(E) = —TUE) =T, THE) = —THE) =Tu(&) (12)

For region | the linear elastic equations are solved once at the start to obtain linear
relations between the nodal displacements along &; = 0, the corresponding nodal forces,
and the load amplitude K, using a Rayleigh-Ritz finite-element method (Tvergaard
1976). For region 2, similar linear relations are obtained between nodal displacements
on the boundary edge with coordinate #,, the corresponding nodal forces and the
amplitude K. In the region 3, elastic—plastic deformations take place following a finite
strain generalization of J, flow theory, as has been described in more detail in THI.
Thus for region 3 the solutions have to be obtained incrementally and, in each increment,
linear relations are obtained between nodal displacement increments and the
corresponding nodal forces increments on the edge &3>0 and along the edge with
coordinate #3.

The linear relations for the three subregions are finally assembled using eqns.
(9)—-(12) to obtain a set of linear algebraic equations for the increment in the load
amplitude K and the nodal displacement increments along &; > 0 and &3 > 0 and along
the edge with coordinate #;. On the initial part of the resistance curve, an increment
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in Kis prescribed, but this procedure is unstable when K approaches its asymptote. Then,
the Rayleigh—Ritz method is used to control a monotonic increase in displacement
differences at the crack tip, such as those specified in eqn. (11).

In most of the computations, the properties of the elastic—plastic layer are
characterized by the parameters oy/E = 0-003, v =4 and N = 0-1, and the separation law
is specified using d;/6; = 1, A; =0-15 and 4, = 0-5 with 6/0y varied. Selected results
will be reported for other values of N and J;/6;. The influence of &;/3; on the predictions
in this paper will be seen to be minor.

Let Ay denote the length of one of the small elements in the uniform mesh along
the interface in the crack growth region. Nearly all the computations have been carried
out for a region size specified by A, = 90004, and By = 604,. Computations have been
carried out for various mesh refinements compared with the length scale J; of the
separation law, in order to guarantee convergence of the solutions. On the basis of these
trials, most of the computations have been carried out for ; = 0-2A4,. For the larger
values of the layer thickness /2, compared with 4y, the mesh size is stretched across the
layer in such a way that the row of quadrilateral elements along the crack plane are
square. In each of the semicircular elastic regions the number of triangular elements
is 7912 and the number of nodal points is 4051. In the thin elastic—plastic layer the
number of triangular elements is 7808 and the number of nodal points is 4043,

§ 4. NUMERICAL RESULTS

4.1. Crack growth resistance curves and plastic zones

Computed resistance curves in the form of '/’ as a function of normalized crack
advance Aa/Ry, are shown in fig. 6 (@) for three values of the non-dimensional thickness
h/R,. These curves were computed with ay/E = 0-003, v=1%, N=0:1 and é/ay = 4.
Thus the three ductile layer systems in fig. 6 have identical elastic—plastic properties
and interface separation characteristics; they differ only in the thickness of the layer.
Plastic zones at the point of growth where the peak value of I' has been attained are
shown in fig. 6 (b) for each of the three thicknesses. The non-dimensional thicknesses
for the three cases have been chosen to demonstrate the strong dependence of crack
growth resistance on the layer thickness. The plastic zone of the thinnest layer
(h/Ro = 0-37) extends several layer thicknesses ahead of the current crack tip location.
Constraint of the elastic adherends on plastic flow in the layer is known to give rise to
a build-up of triaxial tension ahead of the crack (Varias, Suo and Shih 1991). Thin
layers thus reach the peak stress ¢ on the interface required for crack advance at lower
values of I', all other things being equal. The thickest layer (#/Ry = 5-96) is sufficiently
thick that the plastic zone does not reach the lower adherend and is unconstrained. Since
the layer and adherends have the same elastic properties, the behaviour of this system
is identical with the small-scale yielding problem for a semi-infinite crack on the
interface between an upper elastic half-space and a lower elastic—plastic half-space.
In other words, for thicknesses in excess of a certain critical value, the thickness no
longer has any influence on the effective toughness of this system. Further discussion
of the transition values of thickness will be given later. The intermediate thickness
(h/Ry = 1-49) gives rise to a plastic zone which is roughly the size of the layer thickness.
Some interaction with the lower adherend takes place, leading to slightly lower crack
growth resistance than that displayed by the thickest layer.

Initiation of crack growth is coincident with G attaining Iy, as can be seen in
fig. 6 (a). As discussed in TH1 and TH2, this is a consequence of two theoretical features
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(a) Typical resistance curves for three values of h/Ry, corresponding to layers which can be
characterized as being thin, of intermediate thickness and thick as far as plasticity effects
are concerned. (b) Associated plastic zones at the point where the maximum I is attained.

associated with the model. As in most crack problems involving monotonic loading,
stressing in the elastic—plastic layer is nearly proportional prior to any crack growth,
and thus conditions for applicability of a deformation theory of plasticity are met.
This being the case, the J integral can be used to connect the remote field with amplitude
K to the separation at the end of the fracture process zone, by a procedure which is now
widely known. It follows that the first attainment of separation at the end of the process
zone (i.e. 4 =1 at x; =0) requires K = K, or, equivalently, G = I'y.

The plastic zones in fig. 6 (b) are associated with the point of crack advance where
the peak value of I' is attained. The usefulness of the reference length Ry in eqn. (8)
as a measure of the plastic zone size at initiation may be evaluated by considering the
plastic zone size at I’ = Iy in the three cases in fig. 6 (b). For A/Ry = 5-96 the size of
the plastic zone at initiation is given by the dimensions 0-95R, and 1-69R; in the
directions along the layer and transverse to the layer respectively. For A/Rq = 1-49 the
same dimensions are 0-95R,; and A respectively and, for A/Ry = 0-37, 0-69R, and A.
The first of these three cases involves no interaction between the lower adherend and
the plastic zone, while in the other two the plastic zone has reached the lower adherend
prior to initiation. The reference length Ry gives a rather good estimate of the plastic
zone size at I = I'yp. Ozdil and Carlsson (1992) give further details of the relation
between the plastic zone of the stationary crack to I computed specifically for several
polymeric adhesive layers, with pressure dependence of yielding taken into account.

The slope of the resistance curve at initiation is quite high when the interface has
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a high value of 6/ov, falling off gradually as the crack advances. The resistance curves
in fig. 6 (a) have a shallow peak and approach their asymptotes from above. A similar
behaviour was observed for some of the computed resistance curves for interface growth
in TH2. In no case was the difference between the peak resistance and the asymptote
appreciable. For convenience and to limit computational, effort, I'y; will be identified
with the peak value of I' rather than with the steady-state asymptote.

4.2, Thickness dependence of steady-state toughness

Extensive resistance curve computations have been carried out to determine the
dependence of the peak crack growth resistance I'y, on the non-dimensional thickness
h/Ry and on the normalized maximum separation stress /oy of the interface.
The complete set of results for oy/E = 0-003, v=1 and N =0-1 are plotted in fig. 7.
Considerable effort was made to assure the accuracy of these results. Refinements of
the mesh described in § 3 and refinement of crack growth increments were carried out
to establish the adequacy of the choices used in the calculations. Particularly stringent
conditions exist for the larger values of 6/ov, and the curve for 6/oy = 4-5 in fig. 7 was
terminated at the value of A/Ry shown because it was not possible to obtain accurate
results for I's at larger values of the thickness parameter.

Several aspects of the roles of #/R, and 6/0vy are evident in fig. 7 but, nevertheless,
worthy of comment. Only for é/oy larger than about 2.5 is there any significant
enhancement of toughness by plasticity, as was demonstrated and discussed in the two
earlier studies, TH1 and TH2. Consequently, only for 6/ larger than about 2-5 is there
any significant effect of thickness on the toughness. The non-dimensional thickness
needed to give the maximum possible toughness enhancement, (1 ss)max/I 0, depends on
é/oy. For the highest levels of enhancement shown in fig. 7 (i.e. I'sy/To=06 for
6/oy = 4-25) a value of h/R; larger than about 4 is needed. Recall that, for thicknesses
above this transition level, negligible interaction occurs between the plastic zone and
the lower adherend for a system with homogeneous elastic properties. Included in fig.
7 as abroken curve is the approximate location of the transition, A/Ro. Layer thicknesses
in excess of A ensure that the full plasticity enhancement of toughness occurs, while
smaller thicknesses experience constraint from the lower adherend which reduces
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the plasticity contribution. The larger the maximum possible plasticity contribution to
the toughness relative to I'y, the larger must be the layer thickness relative to Ro to attain
1t.

Figure 7 suggests an experimental procedure to obtain the ‘intrinsic’ or local work
I'y of fracture. In principle, by measuring the steady-state toughness I',, for a sequence
of specimens with decreasing layer thickness, one could extrapolate to thickness levels
such that I'y, = I'y. Figure 7 gives an indication of the range of thicknesses required to
carry out this extrapolation. If, for example, the process of testing a sequence of
specimens suggests that the toughness of the systems with the thickest layers (h > ;)
is 61, then the normalized layer thicknesses A/R in the sequence should range from
less than about } to about 4. Since I'y is involved in the definition of both Ry and A.,
the process in inherently implicit.

The strain-hardening exponent N is the most important of the non-dimensional
continuum parameters of the elastic-plastic layer listed in eqn. (7) influencing crack
growth resistance. Figure 8 displays the maximum possible plasticity enhancement
(I's)max/I o as a function of é/oy for two values of N. The values for N =0-2 were
computed using #/Ry > 6 and thus satisfied the condition A > A, for all values of /0y
shown. The values of (I "«)max/I o for N = 0-1 are the asymptotes for large A/R, in fig.
7. Higher levels of strain hardening permit larger stresses to develop at the crack tip
and, for a given value of é/0vy, lead to lower toughnesses. The trend with N in fig. 8
is similar to that observed for crack growth in homogeneous solids in TH1. The effect
of oy/E on the non-dimensional crack growth relation (7) was also explored in that
earlier study and was found to be minor. It is expected to have a secondary role in the
present problem as well. :
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The effect of §;/8; has been checked by a number of computations for the three cases
illustrated in fig. 6. Owing to the different behaviours of the materials on either side
of the interface containing the crack, the stress fields at the crack tip are not symmetric
and shear, as well as normal, tractions occur on the interface. Thus the tangential
component of the relative crack face displacement o, is expected to play some role in
the separation process, although it proves to be minor. Changing §;/8; from the value
of unity used in nearly all the calculations resulted in almost no change in the predicted
resistance curves. The table displays the values of (K )m.x/Ko computed for three other
choices of d;/5; for three values of normalized thickness.

§ 5. DISCUSSION

The problem of linking up an atomic separation process through various scales,
through a plastic zone to an outer field, is clearly a major challenge which the present
model does not pretend to address. At a less fundamental level, the model does permit
conclusions to be drawn about the contribution of plastic deformation in the ductile layer
to the effective work of fracture of the interface. The enhancement due to plasticity,
reflected in the ratio I'i/Io, depends on the properties of the layer (primarily on its
strain-hardening exponent N), on the traction-separation law employed to model the
fracture process (primarily on 6/¢y) and on the non-dimensional thickness #/R; of the
layer. As discussed in § 2, the traction-separation law may in some applications model
details of an actual fracture process mechanism (but not an atomic separation process),
while in others it may be used as a phenomenological characterization of a fracture
mechanism occurring on a finer scale. Plasticity enhancements of toughness in the range
from zero up to about ten times the ‘intrinsic’ work I'p of the fracture process have been
computed. This is the range in which the model is primarily applicable. Higher levels
of I'y/I'o would be associated with even higher values of the normalized peak traction
é/ay of the fracture process than those shown, for example, in fig. 8. The continuum
plasticity model used to represent the layer material (J, flow theory) does not give rise
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to normalized stresses in the vicinity of the crack tip much higher than the highest levels
of ¢/ovy terminating the curves in fig. 8. Thus prediction of larger values of I'y/I'y than
those determined here would require either the modification of the representation of the
fracture process or the use of a plasticity theory more realistically capable of capturing
the higher stresses generated under the high strain gradients present at the crack tip.

Figure 9 provides a comparison between steady-state mode I crack growth
resistance results computed with the present model for three different applications.
The curve for the present layer problem is taken from fig. 8, corresponding to the
asymptotic limiting toughness for large layer thicknesses. As has already been
emphasized, this curve applies equally well to the small-scale-yielding problem for a
crack on an interface between two semi-infinite blocks with identical elastic properties,
with plastic yielding occurring only in the lower block. The curve for I's/I"y in mode
I growth in small scale yielding in a homogeneous solid was taken from THI1, while
the curve for small-scale-yielding growth along a bimaterial interface where the
half-space block above the interface is rigid was taken from TH2. For each value of
/oy, the value of I'i/I'y on this latter curve was chosen as the minimum value over the
entire range of mixed-mode loadings and thus can be regarded as the ‘mode I’
steady-state toughness of the bimaterial interface.

The three sets of results in fig. 9 were computed with identical parameters governing
the elastic—plastic behaviour (N = 0-1; ay/E = 0-003; v = 1) and the traction-separation
law for the interface (4, = 0-15; 4 = 0-5; 6;/5; = 1). (The results of TH1 were for v =0-3
and not 4, but that difference should have negligible effect.) The significant differences
in predicted toughness for the three systems are due to ‘extrinsic’ factors. Consider first
the difference between the toughness for mode 1 growth in the homogeneous material
and that for interface growth where the elastic properties are homogeneous but yielding
occurs only below the interface. At the simplest level of reasoning, it is expected that
the homogeneous solid should have the higher toughness of the two systems since it
has two lobes making up its plastic zone, one above and one below the crack line, as
opposed to just one lobe below the interface for the other system. Were the lobes of
similar size for a given value of /oy, one would expect roughly twice as much plastic
dissipation in the homogeneous system as in the other system. Of course, the interaction
between plastic deformation and near-tip traction separation behaviour is highly
nonlinear, and thus the plastic lobes for the two systems will not necessarily be of
identical size, nor will the distributions of plastic strains within the lobes be the same.
Nevertheless, the relative toughness of these two systems is in qualitative accord with
a simple argument based on the number of lobes to the plastic zone.

Clearly, this argument does not carry over to the system which has a rigid solid
above the interface (E = * and 6y = = for the upper solid). Ata given 8/ay, this system
has considerably higher steady-state toughness than either of the other two systems,
even though it also only has plastic deformation occurring below the interface.
The explanation for this apparent anomaly appears to be substantial shielding of the
crack tip by the solid above the interface due to its rigidity. For an interface with a given
é/ay, higher levels of G are needed to propagate the crack. Plasticity is inherently
involved in this effect because the discrepancy between the three systems disappears
when there is no plastic contribution to the toughness. Further evidence for a significant
influence of the modulus mismatch on the effective interface toughness has been
obtained in computations currently under way.

In conclusion, there are many factors which can significantly influence the effective
toughness of a joint consisting of a ductile layer sandwiched between two elastic solids.
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In addition to ‘intrinsic’ properties of the interface itself (modelled here by I’y and 6),
there are the properties of the elastic—plastic material in the layer, the layer thickness
and, in all likelihood, the elastic mismatch between the layer and the adherends.
It remains to investigate the role of residual stress in the layer. The utility of the present
model is that it permits the role of these ‘extrinsic’ properties to be explored.

ACKNOWLEDGMENTS
The work of J.W.H. was supported in part by the National Science Foundation
(Grant No. MSS-92-02141) and by the Division of Applied Sciences, Harvard
University.

REFERENCES

CHal, H., 1986, Engng Fract. Mech., 24, 413; 1993, Int. J. Fract., 60, 311.

GURSON, A. L., 1977, J. Engng Mater. Technol., 99, 2.

NEEDLEMAN, A, 1987, J. appl. Mech., 54, 525.

OzpIL, F., and CARLSSON, L. A_, 1992, Engng Fract. Mech., 41, 645.

RemMANIS, 1. E., DALGLEISH, B. J., BRAHY, M., RUHLE, M., and EvaNns, A. G., 1990, Acta metall.
mater., 38, 2645.

REIMANIS, L. E., DALGLEISH, B. J., and Evans, A. G, 1991, Acta metall. mater., 39, 3133.

SHiH, C. F,, and Xia, L., 1993, Constraint Effects in Fracture: Theory and Applications, ASTM
Special. Publication No. 1244, edited by M. Kirk and A. Bakker (Philadelphia,
Pennsylvania: American Society for Testing and Materials).

Suo, Z., SHiH, C. F., and VARIAS, A. G., 1993, Acta metall. mater., 41, 1551.

TVERGAARD, V., 1976, J. Mech. Phys. Solids, 24, 291.

TVERGAARD, V., and HUTCHINSON, J. W., 1992, J. Mech. Phys. Solids, 40, 1377; 1993, Ibid.,
41, 1119,

VARIAS, A. G., Suo, Z., and SHIH, C. F,, 1991, J. Mech. Phys. Solids, 39, 963.




