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Composite Laminates in Plane Stress: Constitutive Modeling and
Stress Redistribution due to Matrix Cracking

Plane-stress constitutive relations for laminate composites
undergoing matrix cracking are developed that can be fit
to data from uniaxial tests. The constitutive equations are
specialized to brittle-matrix composites in the form of cross-
plies and quasi-isotropic laminates. The effect of nonlinear
stress—strain behavior on stress redistribution around holes
and notches in laminate plates is illustrated.

1. Introduction

IBER-REINFORCED Dbrittle-matrix composites are of techno-

logical interest as potential lightweight materials for high-
temperature environments. Design with brittle-matrix composites
is typically based on linear elastic stress analyses, and compo-
nents made of such composites are usually constructed so as
to avoid all cracking at design loads. This approach is unduly
conservative for certain classes of fiber-reinforced ceramic-
matrix composites that possess appreciable “ductility” associ-
ated with matrix cracks that leave the fibers intact. Allowance
for some matrix cracking at points of high stress concentration
can considerably increase the load-carrying capabilities of some
of these materials. In these laminates, the nonlinear stress—
strain behavior associated with matrix cracking can redistribute
and reduce stresses in regions of high stress concentration,
similar to the way that plastic deformation accommodates stress
concentration in metals.

An example of a composite that displays some ductility is
coated silicon carbide (SiC) fibers embedded in a glass (calcium
aluminosilicate, CAS) matrix. When SiC/CAS laminae are
stacked in a (0°/90°) crossply configuration and loaded in uniax-
ial tension, the stress—strain behavior of the laminate is as
shown in Fig. 1(A), as reported by Cady' and Beyerle ef al.?
The material responds linearly to the point at which the matrix
material begins to crack, then loses stiffness as an increasing
number of matrix cracks form.”* The cracks that are growing in
the matrix material deflect into the low-toughness fiber/matrix
interfaces, given an appropriate fiber coating, and eventually
arrest,*” leaving the fibers intact. When the matrix material
becomes saturated with cracks, all the load is taken by the
fibers, which deform in a linear elastic fashion until failure.
When the fibers do start to fail, they do not necessarily break at
the matrix—crack plane; consequently, they continue to provide
some load-carrying capacity because of frictional pullout. The
data shown in Fig. 1(A) has been taken under nominally load-
controlled conditions. If the data had been taken in a controlled-
displacement tensile test, a portion of the stress—strain curve
with decreasing stress after the peak would be observed.

Figure 1(A) also shows the Cady data' for the strain trans-
verse to the loading direction in a uniaxial tensile test that has
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been conducted parallel to a set of fibers in the SiC/CAS cross-
ply. The material experiences the usual Poisson contraction in
the linear range; however, as matrix cracks deflect into the fiber/
matrix interfaces and the fibers become increasingly debonded,
the transverse strain is largely uncoupled from the uniaxial
stress and the strain increments reverse sign. By the point at
which the matrix material becomes saturated with cracks, some
composites actually experience an expansion in the transverse
direction.

Figure [(B) shows the uniaxial and transverse strains
resulting from a controlled-force tensile test that has been con-
ducted at an angle of 45° to the fiber directions in a SiC/CAS
crossply. The curves illustrate a different behavior from that
exhibited in the previous loading, with extensive straining at
nominally constant stress once matrix cracking is underway.
The matrix cracks still form perpendicular to the direction of
the maximum principal stress; however, now the fibers are not
oriented to carry the applied stress nearly as effectively as when
the stress acts parallel to one set of fibers. If the matrix were not
present, the crossed fibers would simply deform by a “scissor-
ing” mechanism. The uncracked matrix suppresses this mecha-
nism but matrix cracking permits its partial operation. The
density of matrix cracks at saturation is generally much higher
for the 45° loading than for the 0° loading. This effect may be
increased by a porous matrix or strong elastic anisotropy in the
fibers. However, the matrix cracking stress and even the elastic
modulus for loading at an angle of 45° to the fiber directions
may be higher or lower than the corresponding quantities for
loading parallel to the fibers, depending on the properties of the
constituents of a laminate. Transverse to the loading direction,
the response of the SiC/CAS laminate differs significantly from
the transverse response that is observed in Fig. 1(A). After the
45° matrix cracking stress is attained, the composite experi-
ences continued negative transverse straining with strains on
the order of the strain in the direction of loading. This behavior
is readily understood in terms of the scissoring mechanism.

The stress—strain curve for the SiC/CAS crossply subject to a
shear stress applied parallel to the fibers is shown in Fig. [(C).
Tt is quite similar to the curve for uniaxial tension at an angle of
45° to the fibers, with the composite exhibiting comparable
ductility.

Brittle-matrix laminates that are suitable for engineering
have a tendency to be one of two types. Either they behave as
SiC/CAS, with a strain to failure both in tension parallel to the
fibers and in shear that exceeds the linear elastic strain for the
corresponding failure load by a moderate amount, or they
exhibit brittle behavior in tension with a much larger strain to
failure in shear, as in carbon-carbon (C/C) composites. An
example of the stress—strain behavior of the latter, as reported
by Turner et al.,’ Heredia,” and Evans,® is shown in Fig. 2. Both
types of materials are attractive in that they have been observed
to redistribute stresses around stress concentrations, sometimes
to the point that elastic stress concentrations are completely
eliminated before the material fails.”~'> Such behavior is termed
notch insensitivity. In this work, it will be shown that changes
in stiffness due to matrix cracking contribute to the notch insen-
sitivity observed in components made of SiC/CAS laminates by
forcing the redistribution of stresses away from regions of high
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Fig, 1. Stress—strain behavior of a SiC/CAS crossply in (A) uniaxial tension parallel to the fibers, (B) uniaxial tension at an angle of 45° to the

fibers, and (C) pure shear in the fiber axes. Data is from Cady’ and Beyerle er al.?
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stress concentration. However, in components made of the C/C
composite, matrix cracking can actually serve to intensify stress
concentrations; the observed notch insensitivity in C/C compo-
nents is due to phenomena that occur after the carbon fibers
begin to fracture.

Stress analysis that accounts for notch insensitivity allows
for less-conservative design. The goal of the engineer, and the
goal of the present work, is to predict the notch sensitivity
of a brittle-matrix laminate in a particular configuration and,
thereby, accurately assess the ultimate load and failure mecha-
nism for a component made of these brittle-matrix laminate
materials.

Fundamental to such an analysis is a constitutive law that
accounts for the inelastic material response of these composites.
Although a substantial amount of literature exists for the predic-
tion of the mechanical behavior of laminates of different mate-
rial systems and stackings based on micromechanical analysis
(e.g., Xia and coworkers''* and Dvorak and coworkers'®'#),
the micromechanical approach to design is invariably too com-
plicated to use for generating the constitutive response needed
in component stress analysis. Although a few attempts have
been made to actually design very simple laminate components
from micromechanical analyses for metal-matrix and polymer-
matrix composites (e.g., Kennedy and Wang' and Dvorak
et al.™), most efforts to develop computational methods of
stress analysis to aid in the design of components of brittle-
matrix laminates have led to two categories of constitutive
relations: continuum damage laws and phenomenological
stress—strain laws similar to those for elastic—plastic solids.

Continuum damage mechanics attempt to curve fit experi-
mental data with a set of damage parameters that are considered
to be internal variables that evolve with the loading history.
Various schemes for modeling the state of degradation of either
a lamina or a laminate have included scalar variables,?'~** dam-
age vectors,”” and even damage tensors (e.g., Talreja® and Allen
et al™). The approach adopted in the present paper is the
phenomenological approach. The focus is on behavior under
proportional plane stressing, and the development of the consti-
tutive law parallels that of the deformation theory of plasticity.
This entails using data from stress—strain tests and, ignoring
details of the internal mechanisms that produce this behavior,
creating a scheme that reproduces the input tests and estimates
the mechanical behavior for all other multiaxial loadings.

Several phenomenological constitutive models exist in the
literature, each of which treats either individual laminae or
entire laminates as plane-stress continua and has been designed
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to model only proportional loading. Petit and Waddoups™ pro-
posed an incrementally linear orthotropic model, in which the
incremental shear and tensile moduli at each point within each
lamina are updated to equal the tangent moduli of the stress—
strain curves corresponding to the tensile and shear stresses at
the beginning of a loading increment. Although their model
completely neglects the behavior of the material transverse to
the loading direction and, thus, is not applicable to multiaxial
stress states, Petit and Waddoups® did successfully predict ten-
sile stress—strain curves for uniaxial loadings in different orien-
tations on applying their scheme to laminate composites of
different lay-ups, with the laminae constrained by the condition
that points in neighboring layers must move together.

Hahn and Tsai,* focusing on materials such as the C/C
composite, whose behavior is shown in Fig. 2, modeled the
behavior of a lamina by combining linear elasticity for the
normal components of stress and strain with a nonlinear elastic
curve-fit of the shear behavior. Hahn* later specialized this
model to the case of a 0/90 laminate. Surrel and Vautrin®
proposed a curve-fit of the nonlinear behavior for loading per-
pendicular to the fibers in a lamina, in addition to a curve-fit
of the nonlinear shear behavior, and then also successfully
reproduced off-axis uniaxial test results in a unidirectional lam-
inate. These simple constitutive models are limited in that they
are incapable of modeling inelastic behavior that occurs for
loading in the fiber axes, such as that observed for the SiC/
CAS composite in Fig. 1, and also fail to reproduce the often-
reported observation that the maximum inelastic strain in a
brittle-matrix laminate occurs in the direction of the largest
principal stress. Nevertheless, several authors (e.g., Chang
et al.’") have analyzed multidirectional laminate composites by
applying a single lamina constitutive law, similar to that of
Hahn and Tsai,” to each of the individual laminae of a compos-
ite in the manner of Petit and Waddoups™ and have obtained
reasonable qualitative results. Other authors*-® used the linear
elastic properties of a 0/90 laminate combined with a nonlinear
elastic curve-fit of shear behavior in a manner similar to that
of Hahn.”

The current work presents a plane-stress constitutive model
for proportional loading of (0/90) laminate composites that is
based on three uniaxial measurements, The formulation also
applies to laminates of a (0/+45/90) configuration. The model
accurately predicts all additional sets of data that are available
for the two material systems introduced above. The model is
then used in component-stress analysis and accurately repli-
cates experimental observations and measurements.
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Fig. 2. Stress—strain curves for a C/C crossply (from Turner et al.,* Heredia,” and Evans®),
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II. Constitutive Model

This section develops a plane-stress constitutive model for
symmetrically stacked brittle-matrix laminates. In the first part,
the model is developed for “specially orthotropic” laminates,
i.e., laminates that possess cubic in-plane symmetry. The most-
common examples of these are laminates stacked with a (0/90)
configuration and laminates stacked with a (0/=45/90) config-
uration in which the number of individual plies with a +45°
orientation differs from the number of plies with 0° and 90°
orientations. Although the formulation is valid for both sys-
tems, attention is focused on the (0/90) configuration.

In the second part, the model is developed for laminates
that possess in-plane isotropy. Two common configurations of
laminae that produce “quasi-isotropic” laminates are the (0/+60)
and (0/£45/90) configurations, the latter only when equal num-
bers of laminae are oriented in each of the four directions. The
constitutive equations for quasi-isotropic laminates are shown
to be a special case of the constitutive equations for the cross-
ply laminates.

(1) Crossply Laminates

The most-reliable data on which to base a plane-stress consti-
tutive model are uniaxial stress—strain tests. Let the results of a
stress—strain test parallel to the fibers in a crossply composite
be denoted by & = f,(o,) for strain parallel to the fibers, in
terms of applied stress, and €;; = fy(oy) for strain transverse to
the loading direction, in terms of applied stress, as depicted in
Fig. 1(A). The following is proposed for proportional multiaxial
loading when the principal axes of stress and strain are aligned
with the fibers:

& = foloy) + for(ow) (1a)
and

£y = folow) + for(oy) (1b)

This assumes that no interaction exists between these two prin-
cipal stress components, which is justified on the grounds that
matrix cracking perpendicular to one stressing direction decou-
ples the straining in the other direction.

The axes at an angle of 45° to the fiber axes also are symme-
try axes. For loading in which the principal axes of stress are
aligned at an angle of 45° from the fibers in a crossply, the
strains share the same principal axes and are considered here to
be given by relations similar to those in Egs. (1):

& = fas(o) + fusr(ow) (2a)

and

&y = fas(oy) + fasr(o) (2b)

In these equations, f,;(o;) represents strain in the loading direc-
tion for a uniaxial tension test conducted at an angle of 45° to
the fiber directions, and f,s(0,) represents strain transverse to
the loading direction for this test, as shown in Fig. 1(B).

An important connection follows from the requirement that,
for equibiaxial loadmg with o, = oy = 0, the orientation of the
principal axes is indeterminate and the strains from Egs. (1)
must match the strains from Eqs. (2). Consequently, f,s+(c) may
be written in terms of the other three functions as

Jast(0) = fo(0) + for(0) = fis(0) 3

In principle, experimental stress—strain data for any three of the
four functions appearing in Eqgs. (1) and (2) could be chosen,
with the fourth given by Eq. (3). In this work, data for the three
functions on the right-hand side of Eq. (3) will be input into the
model, whereas f,;+(o) follows from Eq. (3).

From this point, the formulation continues as a recipe for the
stresses in terms of the strains. This is necessary because, for
materials of the type being considered, stress component ranges
vary significantly for various multiaxial states, whereas strain
components are much less restricted. We define 2 (g,,€,;) as the
inverse of Egs. (1), such that
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o, = Zo(8,8y) (4a)

and
oy = 2y(8y.8) (4b)

The reduction in stresses due to matrix cracking at prescribed
g, and g;;, when the principal loading axes coincide with the
fiber directions, is the difference between the stresses that
would result if no cracking occurred and X,. The “stress defi-
cits” for loading in the fiber axes are defined as

Al =

E
=T Zo(Enen) (5a)

(& + vygy) —
and

Aol = ———5 (&g + vo€&) — Zp(€.8) (5b)

E,
(1 =)
where E;, and v, are, respectively, the elastic modulus and
Poisson’s ratio for uniaxial loading parallel to the fibers.
Similarly, for the case when the principal axes of loading lie
at an angle of 45° to the fiber directions, denote the inverse of

Eq. (2) as 0y = 2 ,5(¢;,€y) and oy = 2,5(€,,€;) and let the stress
deficits due to matrix cracking be given by
AofS=:(r%?i;§(el+—vﬁeu)—»24ge“eu) (6a)
and
Ao = a= )(Eu + vs€) — Zus(€4,€) (6b)

Here, E,; is the elastic modulus for uniaxial loading in the axes
at an angle of 45° to the fiber directions; v,s, which is the
Poisson’s ratio in these axes, can be expressed in terms of E,
v, and E,;, using Eq. (3), as

=1- —(1 Vo) )

Now consider principal strains (€,€,,) in principal axes ori-
ented at an arbitrary angle # from the fiber directions. The
principal axes of stress deficits due to matrix cracking are
considered to coincide with the principal strain axes. The stress
deficits in these axes are assumed to be given by interpolation
between the stress deficits in the 0° and 45° orientations,
according to

Aoy = Aofcos? 28 + Ao sin? 26 (8a)
and
Aoy = Ao cos’ 260 + Ao sin? 28 8b)

where the stress deficits Agf, Acf;, Ao}, and Ao are given
in terms of (g,,€;) by Eqgs. (5) and (6). On rotating back to the
fiber axes, one obtains the plane-stress relation for stresses
associated with proportional straining to (€,,€,,v,, = 2€,,):

E,
ST = )(E + vo€;) — Aoy cos® 6 — Aoy sin” 6
(%a)
E .
g, = F%o"T)(Ez + V()E]) - AUI Slnz 9 - AU" 0082 9
(9b)
and
E
. 45 — (Ag; — Aogy) sin fcos 6 (9¢)

21 v 2

Of the five possible sets of data that could be used as a
foundation for the constitutive relations, only three are used.
The fact that the constitutive behavior can be modeled with
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only three of these five tests is a requirement in the elastic
range; beyond the elastic range, this is an assumption that must
follow from Egs. (1) and (2). The validity of this assumption is
assessed by evaluating the predictions of the model against the
two neglected uniaxial tests: the shear strain, in terms of shear
stress, and the transverse strain, in terms of stress applied at an
angle of 45° to the fibers, For both of these tests, exact expres-
sions for strains, in terms of stresses, follow from Egs. (1)
and (2). The expression for the transverse strain, in terms of
stress applied at an angle of 45°, has been derived above and is
given in Eq, (3).

For an applied shear stress, the strains are readily obtained
by considering the principal stress state, which occurs in the
axes of symmetry at an angle of 45° to the fibers, then rotating
back to the fiber axes. In the principal axes, the strain state is
given by

& = fus(T) + fasr(—T) (10a)
and
&y = fas(—T) + fasr(T) (10b)

where, again, f,5r(o) is given by Eq. (3).

Rotating back into the fiber axes, the following expressions
are found for the strains that result from the application of a
shear stress:

Yiz = 281, = fis(T) ~ fas(— 1) = fase(T) + fasz(—7)
(11a)

and

1
€)= €Ep = 5(.)‘:15(7) *+ fis(—T) + faso(T) + foso(—T))

(11b)

Before matrix cracking occurs, f,s(—7) = —f,5(7) and i (—71) =
—f1s+(7); therefore, €,, = €,, = 0. However, once the matrix
begins to crack, the model predicts that a specimen loaded in
pure shear will expand.

Predictions for the two sets of data that are not included as
input into the model are plotted against the experimental data
of Cady' for the SiC/CAS composite in Fig. 3. The predictions
are obtained from the above expressions by matching f,, fs, and
for to the uniaxial experimental data of Cady' for positive values
of o and by continuing the linear dependence on o when o is
negative. The slight discrepancy between theory and experi-
ment in the elastic range is due to experimental error; the
measured elastic constants are not quite consistent with each
other. Figure 3 shows excellent correlation between the experi-
mental and theoretical curves.

(2) Quasi-Isotropic Laminates

The above approach is applicable to symmetric laminates of
any stacking. A case of particular interest is the case of compos-
ites with isotropic in-plane behavior, which requires only two
input equations. Two examples of such composites, to within
a reasonable approximation, are composites with lay-ups of
(0°,£60°) and (0°,45°,90°), which are usually referred to as
being quasi-isotropic. As above in Egs. (1) and (2), the formula-
tion begins with the following proposal for strains in terms of
stresses in any set of principal loading axes:

& = f(oy) + frloy) (12a)
and
en = floy) + fi(oy) (12b)

where f(o) and f (o) are, respectively, the data for axial and
transverse strains, in terms of stress, for any in-plane uniaxial
tensile loading.

As before, let 2(g,&,,) represent the solution of Eqs. (12) for
oy, in terms of the principal strains, and 2(g,;,€,) represent the
solution for o,; the strains resulting from any applied loading
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will produce the principal stresses X(g,,€,) and 2(g,,€,).
Define 6 as the angle from the x,—x, axes to the principal axes.
Transforming the stress tensor back into the x,—x, axes yields
the following relations for arbitrary plane-stress loading:

o, = Z(g,g,) cos® 8+ 3(g,,g) sin® 4 (13a)

o, = 2(g,,8,) cos? 8+ 2(g,,&,) sin’ 8 (13b)
and

T = (Z(&,€y) — 2(&,,€,))) sin fcos 6 (13¢)

Equations (13) also follow directly from the crossply model.
Noting that, for an isotropic composite, fo(c) = fi(o) = f(0)
and f,r(a) = fisr(0) = fr(0), Egs. (1) and (2) match Egs. (12).
Still defining 2(g,,€,;) as the inverse of Egs. (1) and (2), the
stress deficits in the principal axes may be written as

Ag = (& + vey) — (g8, (14a)

_E
(-

E
Aoy = a_dvz)(eu + ve,) — Z(gyE) (14b)

With these stress deficits being identical in the 0° and 45° axes,
Egs. (8) become trivial. Then, when Eqgs. (14) are substituted
into Egs. (9), the linear elastic parts of the two sets of equations
cancel, and the quasi-isotropic model of Eqgs. (13) is recovered.

III. Applications of Model to Stress Redistribution at
Holes and Notches

Two boundary-value problems are now solved using the con-
stitutive model, in conjunction with the finite-element method.
Both illustrate how the model can be used to predict stress
redistribution and the failure mechanism for composite plates
containing holes and notches. Two types of material behavior
are considered. The solutions generated for plates with edge-
notches are compared with experimentally measured strains
for this geometry. Because the constitutive equations proposed
above are only intended to be valid to the point at which the
first fibers begin to break, the calculations can be expected to
retain accuracy only when the strains in the fibers are less than
the fiber failure strain. Loads at which fibers are expected to
begin to fail will be noted in the sequel.

The results show that matrix cracking accounts for a very
large portion of the experimentally observed notch insensitivity
that is observed in laminates such as the SiC/CAS composite in
Fig. 1. However, the results also show that matrix cracking
alone is insufficient to reduce stress concentrations in laminates
such as the C/C composite in Fig. 2.

(1) Holein a Plate

A plate of a crossply brittle-matrix laminate containing a
circular hole of radius R is loaded with an applied displacement
8 parallel to the fibers, as shown in the insets in Figs. 4(A)
and (B). The SiC/CAS composite in Fig. 1 and the C/C compos-
ite in Fig. 2 are each considered. The behavior of each crossply
is compared to that of the corresponding isotropic composite,
whose tensile behavior in any direction is matched to the 0°
tensile curve.

The nonlinear problems were solved by the finite-element
method. An in-house constitutive subroutine was developed
and incorporated into a commercial finite-element program
(ABAQUS). The constitutive subroutine is designed such that
the stress—strain data that are identified in the above section,
together with the fiber orientations, are the only inputs.
Although the subroutine is completely capable of incorporating
nonlinear compressive behavior into the analyses, all materials
considered were assumed to behave linearly in compression to
highlight the effects of the inelastic tensile strains due to matrix
cracking. Outside the linear elastic range in tension, iteration is
required at each load step to obtain the stresses in terms of the
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strains. Eight-noded quadratic elements have been selected for
the analyses. Mesh studies have been conducted to ensure accu-
racy of the computed quantities.

Figures 4(A) and (B) show how the maximum stress concen-
tration in the plate varies as the applied load increases. The
point of maximum stress lies on the hole boundary at (0,=R).
In Figs. 4(A) and (B), this stress is normalized by the linear
elastic stress concentration at (0, R). For the SiC/CAS cross-
ply (which is isotropic in the elastic range) and the isotropic
composites, this initial stress concentration, defined as the max-
imum stress divided by the mean stress across the ligament, is
2.5; for the C/C crossply, which is extremely anisotropic in the
linear range, the initial stress concentration is 3.85. Solutions
for these stress concentrations for the case of an infinite plate
can be found in the literature by Green and Zerna.*

The C/C composite is significantly weaker in tension at an
angle of 45° to the fibers than it is in the fiber axes; conse-
quently, matrix cracking is most pronounced on the boundary

of the hole, just behind the point (0,*R), as illustrated in
Fig. 4(A). As shear cracks develop in a fairly narrow band,
leaving the majority of the material that is above the hole
and over the ligament uncracked and linear elastic, the stress
concentration at the hole increases as a result of the reduction
in the tangential shear stiffness of the material directly behind
the edge of the hole. Matrix cracking increases the overall
compliance of the specimen; that is, it reduces the force incre-
ment required to further displace the upper boundary of the
material above the hole. However, the cracking also causes the
material to lose the shear stiffness necessary to distribute this
force over the ligament and away from the hole boundary, and
the end result is an increase in the stress concentration.

Despite the large shear concentrations, the C/C crossply will
most likely begin to fail in tension, starting at the point (O,R).
Failure will occur in this fashion because the shear strain at
every point throughout the domain is less than the shear strain
that would cause failure in a shear test when the normal strain
that would cause failure in a uniaxial tension test is exceeded.
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The isotropic version of the C/C composite cracks first at the
point (0,R). After a slight decrease in the stress concentration
that is due to a small reduction in axial stiffness that occurs
before the failure strain of the fibers is attained (cf. Fig. 2), the
stress attains the value that would cause fiber failure in a uniax-
ial loading of the C/C crossply. The hypothetical isotropic ver-
sion of this laminate can withstand a higher load than the
crossply before fiber failure because of the substantially lower
stress concentration. However, this does not necessarily imply
that a quasi-isotropic composite is superior for this loading; a
(0/£60) laminate, for example, would have a somewhat lower
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ultimate stress than the crossply, which would have to be
considered.

To accurately continue either of the above analyses beyond
the point at which the first fiber fails, an analysis of the bridged,
propagating crack would need to be performed. Nevertheless,
to evaluate the impact of the decrease in axial stiffness on the
stress concentration, the analysis is continued by extrapolating
the input stress—strain data to the constitutive law as if no fiber
failure had occurred. The dashed lines in Figs. 4(A) and (B)
indicate that the small decrease in the stiffness of the material
at the hole boundary that occurs just prior to the expected first

- C/C

X
. ap
(G
a a
e 4a ——— -
—N e

£= remote strain

1.2 T T

SiC/CAS

1.2 ' I

2

x/a

(B)

Fig. 5. Engineering shear strains (y = 2¢,,) along a line one-half notch length (i.e., 0.5a) above the notches in double-edge-notched specimens
constructed of (A) C/C (@) experiment (various loads), (———) elastic, and (—) Oyg /0, = 0.1) and (B) SiC/CAS ((- — -) elastic). Experimental

data plotted in Fig, 5(A) is from Evans.?
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fiber failures, albeit an effective means of stress redistribution,
is insufficient to reduce the stress concentration to beneath the
linear elastic value for the C/C crossply.

The response of the SiC/CAS composite, whose matrix
cracking strength at an angle of 45° to the fiber axes is compara-
ble to its matrix cracking strength in the fiber axes (cf. Fig. 1),
is shown in Fig. 4(B). For this material, matrix cracking first
occurs on the hole boundary at the point (0,R), and the stress
concentration decreases steadily until matrix cracking extends
from the hole boundary to the corners of the plate. The rate of
increase of the stress concentration slows when the cracked
region extends across the entire top of the plate, and the stress
concentration then decreases slightly as cracks develop above
the hole.

The curve corresponding to the isotropic version of the SiC/
CAS laminate in Fig. 4(B) closely follows that of the crossply.
Two conclusions can be drawn from this result, First, the tan-
gent modulus of the material at the hole boundary is the most
important parameter in the problem; any mechanism that can
reduce the tangent modulus or extend the matrix cracking
region of the uniaxial stress strain curve will contribute strongly
to stress redistribution. Second, for crossplies that are isotropic
in the linear range, the computationally more efficient isotropic
material model provides an excellent approximation to the
material behavior, assuming that the stress of interest in the
body acts parallel to the fiber axes.

In all the cases considered, stressing is approximately pro-
portional throughout the entire loading history (i.e., the relative
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magnitudes of the stress components at each point are approxi-
mately independent of loading). This is essential if the nonlin-
ear constitutive model introduced in this paper is to replicate
material behavior accurately.

This simple example clearly shows the utility of the plane-
stress analysis incorporating the nonlinear behavior of the mate-
rial. In both cases, elastic stress concentrations are altered by
the mechanism of matrix cracking, and the actual load at which
failure may begin can be significantly higher or lower than that
predicted by simple linear elastic analysis. The results show
that, regardless of whether matrix cracking relieves or intensi-
fies stress concentrations, a fair amount of cracking can occur
locally at points of high stress within a component without
destroying its integrity. The results emphasize the importance
of inelastic straining in the direction of the fibers in redistribut-
ing stress.

(2) Double-Edge-Notched Specimens

A plate of a crossply brittle-matrix laminate with symmetric
edge notches extending one quarter of the way across the sec-
tion (notch length ) is loaded in tension, as shown in the inset
of Fig. 5(A), and examined using the constitutive model for the
same two composites that have been considered above. The
loading is an applied displacement parallel to one set of fibers.
This configuration closely replicates specimens for which
experimental data has been obtained and which will be refer-
enced below. The notch height is 3% of the specimen width and
is very small compared to the height of the specimen. The notch
tips are semicircular.

ONET . 1.19

0 (uncracked)
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Fig. 6. Evolution of matrix cracking in a double-edge-notched SiC/CAS specimen loaded perpendicular to the notch plane. Qutermost contour
indicates the extent of the cracking region; inner contours indicate increased crack density. Extent of matrix cracking is described by the variable Ao
(equal to (1/a,,.)(Aay” + Agy?)"?), which is a normalized average of the stress deficits.
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The boundary-value problems were again solved using the
finite-element method. The solution procedure for the C/C
specimen involved repeatedly stepping the applied displace-
ment forward by a very small increment, iterating twice for the
displacements within the domain, and proceeding to the next
small displacement increment, regardless of whether equilib-
rium had been satisfied to within an acceptable tolerance. Con-
vergence studies were conducted to ensure that the results
presented here are independent of mesh size and displacement
increment size. Convergence was attained with an analysis of
400 increments.

The solution for the SiC/CAS crossply was generated from
the solution for a composite with a slightly stiffer 45° stress—
strain curve. This solution served as the initial condition for
each level of applied displacement.

Figures 5(A) and (B) show the engineering shear strain, v,,,
normalized by the remote tensile strain, € away from the
notched area, along a line one-half crack length above the
notches for the SiC/CAS and the C/C composites. In each of
Figs. 5(A) and (B), the dashed line corresponds to the shear
strains from a linear elastic analysis, and the solid lines corre-
spond to computed normalized shear strains at the values of the
net section stress, oyer (equal to P/(2a)), indicated for loads P
ranging up to the load at which fiber breakage is predicted to
occur. P is calculated as part of the solution to the boundary-
value problem.

Figure 5(A) contains the numerical predictions for the C/C
system. Normalized shear strains are plotted for loads in the
linear range and for the load at which fiber fracture is predicted
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to begin. For the C/C composite, this occurs when the value of
Oner 18 ~10% of the uniaxial matrix cracking stress, o,,.. The
shear-strain concentration is slightly reduced by matrix crack-
ing but the straining remains almost proportional throughout
the loading. This result is confirmed by experimental data
reported by Evans,® which is superimposed onto Fig. 5(A). The
Evans data, which is for several loads up to and beyond the
stress at which fiber breaking is predicted to begin, fall within
the range of shear strains that are observed in the analysis. This
experimentally verifies that the strains remain almost propor-
tional and that the model provides a highly accurate prediction
of the strain field.

The numerical results and the experimental data for the C/C
composite indicate that shear strains are concentrated in sharp
shear bands extending vertically just behind the notch tips, as
will be more evident in a plot shown later. Note that the peak
value of v,, Is greater than € by a factor of >5 and is greater
than the corresponding normalized strain level for the SiC/CAS
composite in Fig. 5(B) by a factor of ~5. This large difference
is due to the strong anisotropy of the C/C material.

Figure 5(B) reveals that the shear-strain concentrations in the
SiC/CAS specimen in the elastic range are much smaller than
those in the C/C specimen, which is expected because of the
almost isotropic elastic properties of the SiC/CAS laminate.
Matrix cracking that occurs around the notch tip eases the
shear-strain concentrations very slightly by the time the first
fiber fails, at a net section stress of ~130% of the uniaxial
matrix cracking stress. Despite this relatively small redistribu-
tion, the strains again remain almost proportional.

0 (uncracked)
0.23

0.46 (fiber break
probable)

Fig. 7. Evolution of matrix cracking in a double-edge-notched C/C specimen loaded perpendicular to the notch plane. Outermost contour indicates
the extent of the cracking region; inner contours indicate increased crack density. Extent of matrix cracking is described by the variable Ao (equal to

(1o )(Ao? + Ao®)V?), which is a normalized average of the stress deficits.




May 1997

As in the case of a plate with a circular hole, cracking in
the notched SiC/CAS specimen relieves stress concentrations,
whereas cracking in the corresponding C/C specimen intensi-
fies them. For the C/C specimen, the stress concentration,
defined as the stress at the notch tip divided by the average
stress across the ligament (oygy), is 10 for the elastic case, then
increases to 14 at fiber failure. For the SiC/CAS specimen, the
stress concentration decreases from the elastic value of 5.3 to
~2.5 at fiber failure.

The matrix cracking stress for an unnotched specimen of the
C/C composite loaded parallel to one set of fibers is greater
than that of the SiC/CAS composite by a factor of 4, and the
stress at which fiber failure begins under such conditions is
greater for the C/C composite by a factor of 1.25. However,
because of the superior ability of the SiC/CAS composite to
redistribute stresses through matrix cracking, the applied stress
at which fiber failure is predicted to begin in the notched SiC/
CAS specimen is higher than that predicted for the C/C com-
posite. Stress redistribution due to matrix cracking more than
doubles the load that is required to break fibers in the notched
SiC/CAS specimen, relative to the load that is predicted based
on the elastic stress concentration.

Figure 6 shows the development of matrix cracking in the
SiC/CAS specimen. The contours are a normalized average
of the principal stress deficits due to cracking: Ao =
(l/o_)(Ac? + Ao,”)', where Ag, and Acy, are as defined in
Eqs. (8a) and (8b), respectively. The outer contour, correspond-
ing to where this quantity first becomes nonzero, depicts the
extent of the region undergoing matrix cracking at a given load,
and the inner contours indicate an increased crack density. The
contour associated with the largest value of Ao shown indicates
the stress decrease at which fiber failure would occur in a tensile
test conducted at an angle of 45° to the fiber axes. Matrix cracks
begin at the notch tips, then spread toward the center of the
specimen. The first fiber failures are most likely to occur at the
notch tips in the direction of the applied load.

Figure 7 shows the contours of maximum principal stress
deficits that are predicted for the C/C composite. For this com-
posite, cracking is initially concentrated in narrow shear bands
above the notch tips, consistent with the behavior discussed
earlier. A region of less-dense cracking develops along the
ligament between the notches. For this specimen, fiber failure
will most probably first occur on the notch boundaries, just
behind the notch tips.

IV. Conclusions

Matrix cracking in brittle-matrix laminate composites can
result in significant inelastic strain contributions, which, in turn,
can lead to important stress redistribution at sites of high stress
concentration. Matrix cracking can either ease or intensify
stress concentrations. In this paper, a constitutive model has
been presented that uses data from two uniaxial tests as input
and is capable of predicting strains under proportional stressing
for multiaxial plane-stress states. This model has been used to
explore the effects of matrix cracking on stresses and strains in
laminates containing holes and notches.
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