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The mechanics governing the lateral cracks that form when
a hard object plastically penetrates a ceramic is presented. The
roles of indentation load, penetration depth, and work of in-
dentation are all highlighted, as are the influences of the me-
chanical properties of the material. A closed form solution for
cracking induced by expansion of a two-dimensional cavity is
used to bring out essential features related to parametric de-
pendence and scaling. The three-dimensional axisymmetric
problem for an annular crack driven by a rigid spherical or
conical indenter is solved using numerical methods. The region
of highest tensile stress is identified corresponding to the loca-
tion where a crack is most likely to nucleate. This location co-
incides with the depth below the surface where the crack will
expand parallel to the surface under mode I conditions. The
solutions have been substantiated by comparison with measure-
ments of the cracks that form upon Vickers indentation. The
basic formula for the crack radius has been used to predict
trends in cracking upon static penetration and impact by a pro-
jectile. In both cases, the extent of the cracking is substantial-
ly diminished by increasing the toughness of the material. The
yield strength has a much smaller effect. The cracks caused by
penetration and the volume removed per impact both decrease
marginally at higher yield strength.

I. Introduction

WHEN a small indenter plastically penetrates a brittle solid, a
pattern of cracks often forms around the impression, as

the indenter is removed. Some cracks extend radially outward
and penetrate the material normal to the surface. Others nucle-
ate beneath the surface and enlarge laterally, parallel to the sur-
face.1–5 Indentation-induced radial cracking has become the
basis for a method that can be used to estimate the fracture
toughness.2,3,6–10 Moreover, detailed analysis has been conduct-
ed for the radial cracks that form upon machining and during
particle impact, which degrade the strength.11,12 Lateral cracks
have not been characterized to a comparable extent. Yet, such
cracks participate in equally important phenomena. Lateral
cracks at the interface between thin films and substrate can be
used to estimate the interface toughness.13,14 Such cracks are
also responsible for the abrasive wear and erosion of ceramics
and ceramic coatings.15–18 The role of these cracks in the erosion
and foreign object damage experienced by thermal barrier ox-

ides used in gas turbines, when impacted by small particles in the
gas stream, is of current interest.15–18 The objective of this article
is to present a basic mechanics analysis of lateral cracking
(Fig. 1) that can be used to understand and characterize these
phenomena: albeit that embellishments will be necessary in some
cases, such as in thermal barrier systems16,17 that include an-
isotropy. The focus is on the extension of the cracks (not on
initiation). It is implicit that small flaws are always present.

A suite of careful experimental measurements of lateral cracks
in transparent ceramics and glasses (symbols in Fig. 2) remains
the sole basis for characterization.4 Namely, based on these
measurements, by using dimensional analysis plus insights from
radial cracking, phenomenological expressions relating trends in
crack radius with material properties (elastic modulus, the Po-
isson ratio, toughness, and yield strength) have been deduced.
However, the trends in crack size with the individual properties
are difficult to de-convolute with adequate fidelity for two rea-
sons. (a) The cracking is affected by non-dimensional groups of
properties occurring in unknown combinations with unknown
exponents. (b) Only a limited range of measurements are avail-
able to calibrate the phenomenological functions. Accordingly,
herein, the mechanics of lateral cracks are approached from a
fundamental perspective, leading to expressions that explicitly
relate crack size to the individual material properties.

Basic insights about lateral cracks are first obtained by deriv-
ing analytical results for cylindrical configurations that can be
solved in closed form. The analogous problem for the spherical
configuration cannot be solved because, while the stress fields
surrounding an expanded cavity are known, as well as the mode
I stress intensity factor for cracks in the vicinity of the impres-
sion, there is no solution for the mode II stress intensity factor.
These results for the cylinder give clear indications of trends in
material properties. Thereafter, results for indentations are ob-
tained by re-deriving the corresponding non-dimensional groups,
and then calculating specific results for the stresses and stress
intensity factors by using finite elements. The solutions (lines in
Fig. 2) are compared with the experimental measurements.

II. Cracking Outside a Cylindrical Cavity

A model two-dimensional problem for cracking due to a cylin-
drical cavity expanded into an elastic-perfectly plastic solid pro-
vides insight into three-dimensional indentation-induced cracks.
The advantage of the cavity model is that it can be solved in
closed form providing precisely the combination of dimension-
less groups that govern the solution and aspects of scaling. This
is important since the number of groups that govern the solution
is smaller than the total set of dimensionless groups. The anal-
ogous three-dimensional model cavity problem would also be
relevant, but it cannot be solved in closed form. The assessment
is performed by first analyzing the stresses that develop outside
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the plastic zone upon unloading. Cracks are then introduced
and energy release rates and mode mixities ascertained.

To determine the stresses, the cylindrical cavity depicted in
Fig. 3 is expanded by internal pressure, p, to its current radius a,
starting from zero. Attention is restricted to elastic-perfectly
materials governed by a Mises yield surface (with Young’s mod-
ulus, E, Poisson’s ratio, v, and yield stress, sY). In the elastically
incompressible limit (v5 1/2), the plane-strain (or cavitation)
problem,19,20 can be solved in closed form. The solution reveals
that the cavity expands at constant (cavitation) pressure:
p� 5lsY. The coefficient l is weakly dependent on the yield
strain, with (0.001osY/Eo0.003), lD3.70. The radius of the
plastic zone is related to l by

RP=a ¼ eð
ffiffi
3

p
l�1Þ=2 ffi 14:9 (1)

The cavity plastic zone size is much larger that the plastic zone
surrounding an indent. However, large plastic strains are con-
fined to radii less than about 3a. In cylindrical coordinates the in-
plane stresses outside the plastic zone (r4Rp) upon unloading are

syy ¼ �srr ¼
W

r2
Q (2)

whereW is the work per unit length required to create the cavity

W ¼ pp�a2 ¼ plsYa
2 (3)

and

Q ¼ 1

pl
1ffiffiffi
3

p e
ffiffi
3

p
l�1 � l

� �
ffi 10:8 (4)

A crack is inserted along x25�d with its left end at x15 b,
taken such that the crack lies outside the plastic zone (Fig. 3).
The normal and shear stresses acting on the crack plane prior to
its formation are readily determined from (2) as

ðs22;s12Þ ¼
WQ

r2
ð� cos 2y; sin 2yÞ (5)

where y is defined in Fig. 3. The normal stress is positive
for y4p/4. Since the deformations accompanying the forma-
tion of the crack are elastic, and ignoring the small interaction
of the crack with the cavity itself, the mode I and II stress
intensity factors at the right-hand crack tip (b1c,�d) can be
written as21

ðKI;KIIÞ
Wa�3=2

�ðqI;qIIÞ ¼
Qffiffiffiffiffiffiffiffiffiffiffiffi
pc=2a

p
�
Z c=2a

�c=2a

� cos 2y; sin 2yð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=2aþ x
c=2a� x

s
dx

ðr=aÞ2

(6)

The limits of integration are consistent with x as the variable.
The corresponding energy release rate is:

G

W2=ðEa3Þ ¼
3

4
ðq2I þ q2IIÞ (7)

and the associated measure of mode mix c is

tanc � KII

KI
¼ qII

qI
(8)

Fig. 2. Plot of lateral crack dimension (c) versus load (P) for four brittle
materials: comparison between theory and experiments. The symbols
represent experimental data obtained from Marshall et al.,4 and solid
lines are theoretical predication from the present analysis. (a) MgF2 and
ZnS and (b) As2S3 and soda lime glass.

Fig. 1. Schematic showing of the lateral crack system. The spherical
indentation (with load P) on an elastic–plastic solid leaves an impression
with projected contact radius a. The lateral crack is annular with length
(or radius) c, which forms just outside the plastic zone, at distance d
below the free surface.
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The normalized energy release rate and the mode mix are plot-
ted as a function of crack length in Fig. 4 for cracks at various
depths below the symmetry plane: all having their left end at
b5Rp. By symmetry, the crack along x25 0 (d5 0) is neces-
sarily a Mode I crack. At all depths, the energy release rate first
increases and then falls as the crack grows, similar to indenta-
tion-induced cracks.

The preceding results illuminate indentation-induced crack
scaling (although precise details depend on the dimensionality
of each problem). For example, to expose the role of the cavity
size and the yield stress, by using W ¼ pp�a2 and p� ¼ 3:70sY,
G/(W2/Ea3), in (7) and Fig. 4 can be re-expressed as:

G/[(3.70psY)
2a/E]. Alternatively, to express the energy release

rate exclusively in terms of the work to create the cavity,
relevant to impact indentation of a substrate, then G/(W2/Ea3)
becomes G=½W1=2ð3:70psYÞ3=2=E�. Counterparts to these nor-
malizations will be presented below for indentation-induced
cracks.

III. Basic Relations for Indentation of a Half-Space

When the penetration of a spherical or conical indenter into an
elastic/perfectly-plastic half-space is plasticity dominated, well-
known results22 relate the indentation load, P, contact radius, a,
and indentation depth, d:

P ¼ kpa2sY (9)

For shallow indents created by a spherical indenter of radius R:

d ¼ a2=2R (10)

while for conical indenters with cone angle p/2�b:

d ¼ a tan b (11)

In order to obtain representative results and make connections
between spherical and conical indentations, the effect of plastic
pile-up is ignored. The effect of pile-up (or elastic sink-in) and
work hardening are discussed in Section V. The hardness of the
material is

H � P=ðpa2Þ ¼ ksY (12)

For conical indenters, the coefficient k depends weakly on the
yield strain and the cone angle: for many applications it is suf-
ficient to use, k5 3. This choice also applies for spherical ind-
enters (with minor departures dependent on the yield strain and
on a/R). Procedures to account for the effects of yield strain and
strain hardening will be discussed in the next section.

The work to create an indent, volume V, is

W ¼
Z

P dd ¼ ksY

Z
pa2 dd ¼ ksYV (13)

For future scaling purposes, note that the work can be expressed
in terms of d, P, and a, independently. For spherical indentation:

W ¼ pksYRd
2 ¼ P2

4pRksY
¼ p

4
ksY

a4

R
(14)

For conical indentations:

W ¼ p
3

ksYd
3

tan2 b
¼ tan b

3
ffiffiffi
p

p P3=2ffiffiffiffiffiffiffiffiffi
ksY

p ¼ p
3
tanbksYa

3 (15)

Neglecting the weak dependence of k on indenter geometry and
yield strain, Eqs. (8) and (13) imply an equivalence between
conical and spherical indentation: namely, indents with identical
contact radius a and volume V require the same load P and
work W and have the same hardness H. The corresponding
stress fields outside the plastic zone created by the indent are
also essentially the same. The relation between the cone angle b
and a/R for the spherical indenter, such that the two indentations
have identical a and V, is plotted in Fig. 5. The conical equivalent
of the Berkovich indenter corresponds to a/R5 0.44, while that
for the Vickers indenter corresponds to a/R5 0.49.

IV. Indentation-Induced Cracks in Elastic-Perfectly
Plastic Materials

Lateral cracking from indentations can be analyzed in two parts.
(i) Determination of the stresses induced by indentation of an

Fig. 4. (a) The dimensionless energy release rate, G/(W2/Ea3), and (b)
the mode mix phase angle, C, as a function of normalized lateral crack
radius, c/Rp, for various depths of the crack below the symmetric plane.

Fig. 3. Schematic drawing of cracking outside a cylindrical cavity.
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elastic-perfectly plastic half-space after unloading (with no crack
present). (ii) Calculation of the stress intensity factors for an
annular crack in the stress field created by the indent. The cracks
are assumed to form outside the plastic zone, where the residual
stresses acting on the crack plane are tensile. Both parts of the
problem are analyzed numerically, by using the finite element
code ABAQUS Standard,23 and carried out within a finite strain
framework, accounting for finite geometry changes. The energy
release rate is calculated from the J-Integral around the crack
front.

The distribution of the residual stress component s22 sur-
rounding a spherical indentation, following load removal, is il-
lustrated in Fig. 6. The plastic zone extends out to about twice
the contact radius. The maximum tensile s22 occurs near the
boundary of this zone at a depth roughly equal to the contact
radius. Cracks destined to propagate parallel to the interface are
most likely to be nucleated in this relatively small region. It will
emerge that the depth of an annular crack parallel to the surface
corresponding to mode I conditions is also at this depth.

The normalization of the energy release rate at the outer tip of
the annular crack surrounding the spherical indent in Fig. 1 is:

G

W2=ðEa5Þ ¼ f
c

a
;
a

R
;
d

a
;
b

a

� �
(16)

This scaling is analogous to that for the model cylindrical void-
induced crack except that here W is the total work to create the
indentation, not the work per unit length. One important im-
plication of (16), affecting trends in crack size with material
properties, is that f is not explicitly dependent on the yield
strength (it enters implicitly through its influence on W, as well
as on a, if P is prescribed). Moreover, direct numerical calcula-
tion has verified that there is no dependence of f on sY/E. The
normalization for the conical indenter has the same form as (16)
with the dependence on a/R replaced by a dependence on b.

Results for the normalized energy release rate as a function of
crack length, computed from the finite element analysis, are
presented in Fig. 7 for four values of a/R (all with d/a � 1 and b/
aD1.5). The left tip of each crack lies within the zone of high
tensile stress noted in conjunction with Fig. 6. The normalized
energy release rate and the mode mix for cracks at various
depths below the free surface are plotted on Fig. 8 (in each case
for a/R5 0.7 and b/a5 1.5). Note that the crack depth associ-
ated with both the largest energy release rate and with mode I
conditions is d/aD1; these two features hold for a wide range of
a/R. Thus, cracks at this depth are favored not only because it
coincides with the largest tensile stress but also because, once
nucleated, cracks must propagate in mode I (parallel to the sur-
face). Subsequently, we focus on spherical indentation with a/
R5 0.5 since this choice corresponds closely to either Berkovich
or Vickers indenters (cf. Fig. 5). Comparisons to be made later
with experimental data will be based on Vickers indentations.

The normalized energy release rate as a function of crack
length for a/R5 0.5, d/a5 1, and b/a5 1.5 is plotted on Fig. 9.
The peak energy release rate at c/a D 0.6 is

Gmax

W2=ðEa5Þ ffi 0:11 (17)

The following function has been fit to the results in Fig. 9 to the
right of the peak (in the range 0.6rc/ar4):

G

W2=ðEa5Þ ¼ 0:10 e� ðc=a�0:75Þ=0:65ð Þ (18aÞ

Fig. 5. The relationship governing conical (cone angle b) and spherical
indentation (with contact radius/indenter radius ratio a/R), such that the
two indentations create the same contact radius and volume.

Fig. 6. Contour plot of the residual stress component normal to the
lateral crack system (s22) caused by spherical indentation, with a/
R5 0.9.

Fig. 7. Normalized energy release rate G/(W2/Ea5) as a function of lat-
eral crack length c/a for three values of contact radius a/R caused by
spherical indentation. The cracks are aligned with the preferred cracking
path, where G attains maximum and KII5 0 (for given a/R), all with d/
a � 1 and b/aD 1.5 (see Fig. 8).
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The accuracy of this fitting function is evident in the figure.
However, it is not useful for assessing trends in cracking with
material properties, discussed in the next section. Instead, a
power law relationship is required. The best fit to a power law is
given by:

G

W2=ðEa5Þ � 0:1ða=cÞ4 (18bÞ

as also plotted on Fig. 9. The fit is good but imperfect. Over the
relevant range of crack size (c/ar4), it is deemed sufficiently
accurate to capture the material property trends described
below.

If GIc is the mode I toughness of the material, a necessary
condition for the propagation of a crack is Gmax4GIc. Conse-
quently, from (17), the work of penetration at the cracking
threshold is,

W2
th=ðEa5Þ ¼ 9:1GIc (19)

Assuming that the work exceeds the threshold, the crack prop-
agates outwards and then arrests at the crack length c corre-
sponding to G5GIc, which by (18a) is

c

a
¼ 0:75� 0:65 ln

10GIc

W2=ðEa5Þ

� �
(20aÞ

or by (18b) is

c � 0:22Wffiffiffiffiffiffiffiffiffiffi
EGIc

p
a3=2

(20bÞ

In summary, for either a Berkovich or a Vickers indentation (or a
spherical indentation with a/R � 0.5), the potential crack plane
which simultaneously has the largest energy release rate and
mode I conditions is located below the surface at depth, d/aD1.
There is a maximum energy release given by (17). If the tough-
ness exceeds this maximum, a crack will not form. If it is lower, a
crack may nucleate. If it does, it would propagate and arrest at
an outer radius b1c, where b/aD1.5 and c/a is given by (20).

V. Application and Comparison with Measurements

The non-dimensional parameter characterizing the indentation,
W2/(Ea5), can be expressed in the following alternative ways
that highlight the roles of the load, P, the indent radius, a, and
the work of indentation, W, respectively:

W2=ðEa5Þ ¼ tan2 b
9

ðpksYÞ3=2P1=2

E

¼ tan2 b
9

ðpksYÞ2a
E

¼ 31=3 tan5=3 b
9

ðpksYÞ5=3W1=3

E

(21)

By using (21) to convert the lateral crack size solution in (20b) to
a trend in crack size with Vickers indentation load, the trend in
the crack size with material properties, at fixed load, can be as-
certained as:

c � 0:1

9

tan2 bffiffiffiffiffiffi
pk

p
� �

P2

EGIc

ffiffiffiffiffiffiffi
P

sY

r� �� �1=4

(22)

Note that the crack size increases as the toughness decreases and
as the yield strength increases. Incorporating the data for tough-
ness and hardness from Marshall et al.,4 the crack lengths pre-
dicted by the present model can be superposed on Fig. 2. Note
that, in all cases, the measured trends in crack length are con-
sistent with formula (22). That is, the formula predicts that the
cracks in ZnS should be slightly larger than those in MgF2

(Fig. 2(a)), and the cracks in As2S3 be appreciably larger than

Fig. 8. (a) The dimensionless energy release rate, G/(W2/Ea5), and (b)
the mode mix phase angle, c, as a function of normalized lateral crack
length, c/a, for various depths of the crack below the free surface (for a/
R5 0.7 and b/a5 1.5).

Fig. 9. The normalized energy release rate G/(W2/Ea5) as a function of
lateral crack length c/a for Vickers indenter (a/R50.5, d/a5 1, and b/
a5 1.5). Symbols represent results obtained from the finite element
analysis, and solid line is the functional fit from Eq. (18a).
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those in glass (Fig. 2(b)). Both predictions are in accordance
with the measurements. Given the uncertainty in the yield
strength (hardness) and toughness for these materials, the cor-
respondence is considered adequate for further application of
the model.

The cracking that occurs upon projectile impact can be pre-
dicted by relating the plastic work of penetration, W, to the
kinetic energy of the projectile: W � 0.8 mv2/2, (with m the
projectile mass and v its velocity): neglecting strain rate hard-
ening,z,24

c � 0:35 p2k2 tan2 b
mv2
� 	10s2

Y

EGIcð Þ6

" #( )1=24

(23)

Since the material between the crack and the surface is suscep-
tible to removal (Fig. 1), the volume of material removed per
impact, Vimpact, scales as:

Vimpact ¼ pc2a

� 0:41
1

p2k2 tan2 b
ðmv2Þ14

ðEGIcÞ6s2
Y

" #( )1=12

(24)

Consequently, to minimize the erosion rate, the material should
have high toughness. The influence of the yield strength is neg-
ligible: countering the commonly held belief that the erosion re-
sistance is improved by choosing materials with high hardness.
Anisotropy of the type found in thermal barrier oxides will af-
fect the specifics but not the trends with material properties. The
implications are discussed elsewhere.16,17

The foregoing results can be elaborated by using Johnson’s22

(p. 167) solutions to account for the dependence of k on sY/E,
indenter elasticity, cone angle, or the depth of a spherical in-
dentation. From several sources, Fig. 10 reproduces the spread
in k as summarized by Johnson. Here E� is a modulus depend-
ent on both substrate (E, v) and indenter (Ei, vi) elastic proper-
ties: 1=E� � ð1� v2Þ=E þ ð1� v2i Þ=Ei. Note that E� reduces to
the plane strain modulus of the substrate when the indenter is
rigid (as in the present study). Johnson also discusses Tabor’s
rules25 for assigning a value to sY for strain hardening materi-

als. For example, for a cone with b5 19.71, representative of a
Berkovich indenter, Tabor recommends that sY is identified
with the stress at a compressive strain of 8%. For a spherical
indenter, sY is taken as the stress at a compressive strain 0.2a/R.

VI. Conclusion

A combined analytical–numerical analysis has been presented of
the lateral cracks that form when a hard object plastically pen-
etrates a ceramic. The radii of cracks predicted to form upon
Vickers indentation have been compared with experimental
measurements. An adequate correspondence between the meas-
urements and predictions provides a rationale for using the
model to predict trends in cracking for various scenarios. The
basic formulas relating the crack radius to the load and work of
penetration have been used to predict trends with material prop-
erties for two situations: (a) static penetration up to a specified
load and (b) impact by a projectile. In both cases, cracking
is diminished by increasing the toughness of the ceramic (con-
sistent with many previous findings). The yield strength has
essentially no effect.
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