Undergraduate Engineering Stats (as of Spring 2020)

<table>
<thead>
<tr>
<th></th>
<th>BE/BME</th>
<th>EE</th>
<th>ESE</th>
<th>ME</th>
</tr>
</thead>
<tbody>
<tr>
<td># Concentrators</td>
<td>95</td>
<td>37</td>
<td>42</td>
<td>78</td>
</tr>
<tr>
<td>% SB (vs. AB)</td>
<td>46%</td>
<td>84%</td>
<td>48%</td>
<td>88%</td>
</tr>
<tr>
<td>Median Class Size</td>
<td>25</td>
<td>21</td>
<td>16</td>
<td>28</td>
</tr>
</tbody>
</table>

Where have our recent graduates gone?

A few examples of where recent alumni are currently:

- Raytheon
- Medtronic
- Amazon
- Chevron
- Boeing
- Intuitive Surgical
- Medtronic
- Amazon
- Chevron
- Boeing
- Intuitive Surgical

You’re invited to learn more!

Talk to our engineering advisors:

- **Electrical & Mechanical Engineering:**
 - Chris Lombardo
 - lombardo@seas.harvard.edu

- **Bioengineering / Biomedical Engineering:**
 - Linsey Moyer
 - lmoyer@seas.harvard.edu

- **Environmental Science & Engineering:**
 - Patrick Ulrich
 - pulrich@seas.harvard.edu

Learn more on the web: www.seas.harvard.edu/engineering

Engineering @ SEAS

Engineers solve real-world problems by applying math and science for analysis and design.

Bioengineering

At the intersection of life and physical sciences biomedical engineers apply principles of engineering to understand and model living systems and design novel therapies to improve human health.

Degrees offered: Engineering Sciences SB (Bioengineering track); Biomedical Engineering AB

Electrical Engineering

Covers a range of research areas from devices to systems, offering ample research opportunities, both theoretical and experimental, at the forefront of the field and its interdisciplinary applications.

Degrees offered: Electrical Engineering SB; Engineering Sciences AB (Electrical and Computer Engineering Track)

Environmental Science and Engineering

To understand, predict, and respond to natural and human-induced environmental change, environmental scientists and engineers provide technical solutions and advance innovations in environmental measurements, modeling, and control.

Degrees offered: Engineering Sciences SB (Environmental Science and Engineering track); Environmental Science and Engineering AB

Mechanical Engineering

Mechanical engineering uses the principles of physics and materials science for the analysis and design of mechanical and thermal systems.

Degrees offered: Mechanical Engineering SB; Engineering Sciences AB (Mechanical and Materials Science and Engineering Track)
Frequently asked questions

- What’s the difference between Bachelor of Arts (A.B.) and Bachelor of Science (S.B.)?
 - AB: 14-16 courses, more flexible requirements, can do research thesis, can do joint concentration
 - SB: 20 courses, engineering design courses, including individual capstone design project in ESE100 (this is a required thesis), ABET-accredited (for professional licensure)

- How can I get involved in research?
 - Term-time: SEAS labs welcome undergraduates to work on research projects during the term
 - Can do research for credit by taking ES 91r
 - During summer: Students regularly join SEAS labs with funding through PRISE, HCRP, HUCE
 - Many students participate in research at other universities through NSF REU programs

- What kinds of internships can I do?
 - Research internships are available through SEAS and national labs. See above.
 - Industry internships are available and can be found by attending SEAS career fairs or talking to a concentration advisor (ADUS) in any of our fields to chat about your options

- Where do I start?
 - Start taking math (according to placement) and science in your first year
 - Talk to a concentration advisor (ADUS) in any of our fields to chat about your options
 - Take one of our introductory courses (see below)
 - Joint a SEAS club (HCES, EWB, HURC, etc…)

Full FAQ @ www.seas.harvard.edu/programs/engineering/engineering-faq

Common course sequences for the first two years

Bio/biomedical engineering

<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td>Foundational Math LS 1a/UPS A</td>
</tr>
<tr>
<td></td>
<td>Foundational Math Physics (LS 1b)</td>
</tr>
<tr>
<td>Sophomore</td>
<td>Found. Math (if needed) Physics</td>
</tr>
<tr>
<td></td>
<td>Found. Math (if needed) Engineering course</td>
</tr>
</tbody>
</table>

Tips for Bio/BME students:
- Most Bio/BME students take ES 53 in sophomore fall, though some take the course in fall of first year
- While not strictly required for the SB program, many premed SB students take LS 1b (beyond concentration requirements)

Electrical engineering

<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td>Foundational Math CS 50</td>
</tr>
<tr>
<td></td>
<td>Foundational Math Physics Consider: CS 50</td>
</tr>
<tr>
<td>Sophomore</td>
<td>Found. Math (if needed) Physics</td>
</tr>
<tr>
<td></td>
<td>Found. Math (if needed) ES 155 or ES 152</td>
</tr>
<tr>
<td></td>
<td>Found. Math (if needed) CS 141 ES 156</td>
</tr>
</tbody>
</table>

Tips for EE students:
- First-year students who place out of Math 1b can take ESE 155 in their first fall semester
- First-year students who take CS50 in fall or have programming experience can take CS141 in spring
- Strongly recommended to start physics in first year to be able to take ESE152 (co-req Physics b) in sophomore year

Environmental science and engineering

<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td>Foundational Math LS 1a/UPS A</td>
</tr>
<tr>
<td></td>
<td>Foundational Math ESE 6 Consider: PS 11</td>
</tr>
<tr>
<td>Sophomore</td>
<td>Found. Math (if needed) Physics</td>
</tr>
<tr>
<td></td>
<td>Found. Math (if needed) ES 51 or Engineering course</td>
</tr>
</tbody>
</table>

Tips for ESE students:
- Most ESE students take ESE 6 in spring of first year
- Students are highly encouraged to consider PS11 in spring of first year

Mechanical engineering

<table>
<thead>
<tr>
<th>Fall</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td>Foundational Math ES 51, AM 10, or CS 50</td>
</tr>
<tr>
<td></td>
<td>Foundational Math Physics Consider: ES 54</td>
</tr>
<tr>
<td>Sophomore</td>
<td>Found. Math (if needed) Physics</td>
</tr>
<tr>
<td></td>
<td>Found. Math (if needed) ES 54 (if needed) ES 120</td>
</tr>
</tbody>
</table>

Tips for MechE students:
- MechE students should complete ES 51 by sophomore fall
- Almost all MechE students take ES 120 in sophomore spring