Plan of Study for the Environmental Science \& Engineering AB Concentration
Effective for Students Declaring the Concentration after August 1, 2020

NAME: \qquad

EMAIL: \qquad

This Plan of Study Form is for a (Circle One):

CLASS: \qquad

DATE: \qquad

DECLARATION
REVISION

REQUIRED COURSES (Circle or fill-in for courses planned in each category.)	Semester (FA/SP Year)
Mathematics (2-5 courses) Begin according to placement: Math 1a - Introduction to Calculus I (or Math Ma \& Mb) Math 1b - Calculus, Series, and Differential Equations Math 21a - Multivariable Calculus (or Math 22a or 23b, or Applied Math 21a or 22b) Math 21b - Linear Algebra and Differential Equations (or Math 22b or 23a, or Applied Math 21b or 22a)	-
Physics (2 courses) AP 50a - Physics as a Foundation for Sci. \& Eng. Part I (or PS 12a or Physics 15a or 16)	-
AP 50b - Physics as a Foundation for Sci. \& Eng. Part II (or PS 12b or Physics 15b)	-
Chemistry (2 courses) Select two: Recommended: Physical Sciences 11 - Foundations and Frontiers of Modern Chemistry: A Molecular and Global Perspective (or Physical Sciences 1 - Chemical Bonding, Energy, and Reactivity)	-
Life Sciences 1a - An Integrated Introduction to the Life Sciences (or Life \& Physical Sciences A - Foundational Chemistry and Biology)	-
Physical Sciences 10 - Quantum and Statistical Foundations of Chemistry Chemistry 17 - Principles of Organic Chemistry (or Chemistry 20 - Organic Chemistry)	-
Chemistry 60 - Foundations of Physical Chemistry	

REQUIRED COURSES (Circle or fill-in for courses planned in each category.)	Semester (FA/SP Year)
Breadth in Environmental Science \& Engineering (2 courses) Strongly recommended to select one course on environmental physics and one course on environmental chemistry. With permission of the Director of Undergraduate Studies, students may substitute alternative ESE courses.	
One course on environmental physics: ESE 129, 131, 132, 162	
One course on environmental chemistry: ESE 133, 163, 164	
Approved Electives (5 courses) Select five from the options below (course titles are listed on page 3). With permission of the Director of Undergraduate Studies, up to two courses may be substituted with a relevant upper-level course from other areas of the natural sciences and engineering. Courses marked with an * are approved for the required design experience (see below).	-
- ESE 101, 109, 122, 129, 130*, 131, 132, 133, 136, 138, 160*, 161, 162, 163*, 164,	
166*, 168, 169*	

Required Signatures:

Student

Date

Associate Director of Undergraduate Studies

Date

ADUS indicate if a petition is needed: Yes \qquad No \qquad

[^0]Date

COURSE TITLES FOR APPROVED ELECTIVES:

ESE 101 - Global Warming Science 101
ESE 109 - Earth Resources and the Environment
ESE 122 - Designing Satellite Missions: Research Methods through Lens of Earth Observing Systems
ESE 129 - Climate and Atmospheric Physics Lab
ESE 130 - Biogeochemistry of Carbon Dioxide and Methane
ESE 131 - Introduction to Physical Oceanography and Climate
ESE 132 - Introduction to Meteorology and Climate
ESE 133 - Atmospheric Chemistry
ESE 136 - Climate and Climate Engineering
ESE 138 - Mysteries of Climate Dynamics
ESE 160 - Space Science and Engineering: Theory and Applications
ESE 161 - Applied Environmental Toxicology
ESE 162 - Hydrology
ESE 163 - Pollution Control in Aquatic Ecosystems
ESE 164 - Environmental Chemistry
ESE 166 - State-of-the-art Instrumentation in Environmental Sciences
ESE 168 - Human Environmental Data Science: Agriculture, Conflict and Health
ESE 169 - Seminar on Global Pollution Issues
ES 91r - Supervised Reading and Research
ES 96 - Engineering Problem Solving and Design Project
ES 112 - Thermodynamics by Case Study
ES 115 - Mathematical Modeling
ES 123 - Intro to Fluid Mechanics \& Transport Processes
ES 181 - Engineering Thermodynamics
ES 183 - Introduction to Heat Transfer
EPS 53 - Marine Geochemistry
EPS 134 - Global Warming Debates: The Reading Course
EPS 187 - Low Temperature Geochemistry II: Modern and Ancient Biogeochemical Processes
OEB 55 - Ecology: Populations, Communities, and Ecosystems
OEB 120 - Plants and Climate
OEB 157 - Global Change Biology

Prerequisite Planning Table for the Environmental Science \& Engineering AB					
	Typically Offered	Math	Chemistry	Physics	Other
Required Courses					
ESE 6	Spring				
Selected Electives					
ESE 101	Spring	216			
ESE 109	Spring (odd)				ESE 6
ES 112	Spring				
ES 123	Spring	21a,b		A	
ESE 129	Fall	21a		A	
ESE 130	Bracketed		PS 11		ESE 6
ESE 131	Spring (even)	21a,b		A	
ESE 132	Fall (even)	21a,b		A	
ESE 133	Spring	1b	PS 11		
ESE 136	Spring	1a	PS 11	A	
ESE 138	Fall (odd)	21a, b		A	
ESE 160	Fall (even)	21a,b		A,B	
ESE 161	Fall (odd)	1b	PS 11		
ESE 162	Fall (even)	21a,b		A	
ESE 163	Fall (odd)	21a			ESE 6
ESE 164	Fall		PS 11		
ESE 166	Spring	1b	PS 11	A, B	
ESE 168	Fall				
ESE 169	Spring (odd)	1b	PS 11		

${ }^{1}$ Courses listed as Recommended Preparation, and not an enforced
${ }^{2}$ Equivalent courses are accepted for prerequisites (e.g., Phys 15a, PS 12a, or AP50a all count for Physics A)

[^0]: Director of Undergraduate Studies

